Given \(S = \{A_1, \ldots, A_n\} \), any \(n \) segments in \(\mathbb{R}^2 \)

Get: \(I = \{ i, j : A_i \cap A_j \neq \emptyset \} \)

\(\sigma(I) = \{ \text{distinct pts } A_i \cap A_j, 1 \leq i, j \}

\(0 \leq |\sigma(I)| \leq |I| \leq \binom{n}{2} \)

At first: "gen. position"

1. No proper intersection...
2. No 3 segs at a pt.
3. No 8 verticils.

Fix all later (so don't restrict)

Lower bound \(\Omega(\log n) \) for \(|\sigma(I)| \); \(|I| \) w/ element uniqueness

We will get
1. \(O\left[(n + |I|) \log n \right] \)
2. \(O\left[(n + |\sigma(I)|) \log n \right] \)

Bose-Sweeney '95, \(O(n \log n + |I|) \)

Idea: "Sweep" vertical \(x = t \) from \(-\infty \to +\infty \)

- Discover elements of \(I \) \((\sigma(I)) \) as sweep.

(over)
ALGORITHM FOR SEG-INT (Special Case)

- Sort \(A_i, B_i, i = 1, ..., n \) by \(P \times \left[\begin{array}{c} x_i \\ \delta_i = \overline{A_i \cap B_i} \end{array} \right] \)

- \(Q \leftarrow \) "balanced" binary search tree for \(\delta \) endpoints

- \(t \leftarrow \min(\delta) - 1 \)

- \(T \leftarrow \emptyset \) (empty BST for current segments at \(x = t \))

- WHILE \(Q \neq \emptyset \) DO
 - get next event \(P = (x,y) \) from \(Q \) (has \(\min x \))
 - \(t \leftarrow x \) (sweep to next event \(P \))
 - \"PROCESS\((P)\)\"
 - update \(\text{STATUS} (t) \)
 - update \(Q \) for future events caused by \(P \)
 - delete \(P \) from \(Q \)
 - balance \(Q, T \) if needed

- END WHILE

(details given)

in class