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ABSTRACT OF THE DISSERTATION

Hardware-Software Techniques for Accelerating Sparse Computation

by Mohammadreza Soltaniyeh

Dissertation Director: Prof. Santosh Nagarakatte

Linear algebra kernels are widely used in various fields such as machine learning, data

science, physical science, and graph analysis. Many of these applications work with sparse

data (i.e., only a small fraction of data is non-zero). Sparse data are often stored in a com-

pressed format (ie, sparse format) that stores only the non-zero elements with additional

metadata to identify where the non-zero elements are located. Using compressed formats

eliminates the need to store and process zeros, making the storage and computation of

sparse kernels more efficient.

General purpose architectures, such as CPUs and GPUs, are not able to deliver the

same performance for sparse linear algebra kernels as they do for dense versions. First, ac-

cessing non-zero elements in sparse format introduces many indirect and irregular memory

accesses incompatible with SIMD and caching mechanisms used by CPUs and GPUs. In

addition, Dennard scaling is obsolete and Moore’s law is slowing down, ending the era in

which general-purpose architectures become faster and more energy efficient transparently.

This has led to a plethora of research into developing specialized hardware, such as FPGAs

and ASICs to improve the performance and energy efficiency of these sparse kernels. A

key strategy for the specialized hardware is to customize the sparse format (i.e., storage)

according to the operation memory access pattern, the pattern of non-zero elements in the

input (i.e., sparsity pattern), and the underlying hardware structures. This approach is effec-
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tive if the operations and input sparsity patterns do not change. However, applications often

perform various operations on sparse data. Additionally, the sparse inputs may frequently

change for each execution, and each input may have a different sparsity pattern. When this

happens, the performance of specialized hardware degrades because a reformatting step is

required to convert the data into a format that is compatible with the hardware. The data

reformatting can be expensive when it cannot be overlapped with the computation on the

hardware or amortized over multiple application executions with the same input data.

This dissertation presents a few hardware-software techniques that enhance the perfor-

mance and energy efficiency of some of the most important sparse problems, including

sparse matrix-vector multiplication (SpMV), sparse general matrix-matrix multiplication

(SpGEMM), and sparse convolutional neural networks (CNNs). The key insight of our

method is to use the software to reformat the sparse data into a hardware-friendly format,

allowing the hardware to perform the computation with a high degree of parallelism. The

software improves design flexibility by supporting multiple sparse formats, and the hard-

ware improves performance and energy efficiency. We applied these hardware-software

techniques to SpMV, SpGEMM, and sparse CNNs. These problems have different charac-

teristics, such as different input densities and distinct input sparsity pattern features. The

contribution of this dissertation can be summarized as follows. First, we present a syn-

ergistic CPU-FPGA system to accelerate SpMV and SpGEMM kernels. In our proposed

design, the CPU reorganizes sparse data into a format suitable for the FPGA, and the FPGA

computes with high parallelism using the preprocessed data. We develop an intermediate

representation that allows the software to communicate regularized data and scheduling

decisions to the FPGA. Besides, most of the CPU and FPGA execution are overlapped.

Our approach can effectively handle sparse kernels with low input densities and sparsity

patterns varying for each sparse input. Our end-to-end full system evaluation of the REAP

prototype using Alveo-U200 FPGA has up to 3.4× and 1.3× speedup over the highly op-

timized Intel MKL library on a multicore CPU for SpMV and SpGEMM for widely-used
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sparse formats. Our results show that REAP achieves both high frequency and promising

speedup compared to state-of-the-art FPGA accelerators for SpMV and SpGEMM while

supporting various sparse formats and precision configurations. Second, we present a hard-

ware accelerator for sparse CNN inference tasks. We formulate the convolution operation

as general matrix-matrix multiplication (GEMM) using an image to column (IM2COL)

transformation. With a dynamically reconfigurable GEMM and a novel IM2COL hardware

unit, our design can support various layers in CNNs with high performance. Besides, our

design exploits sparsity in both weights and feature maps. We use the software to perform

group-wise pruning followed by a preprocessing step that puts the pruned weights into our

hardware-friendly sparse format for efficient and high performance computation. We eval-

uated our accelerator using a cycle-level simulator and an HLS implementation realized on

an Alveo FPGA board. Our ASIC design is on average 2.16×, 1.74×, and 1.63× faster

than Gemmini, Eyeriss, and Sparse-PE, which are prior hardware accelerators for dense

and sparse CNNs, respectively. Besides, our hardware accelerator is also 78×, and 12×

more energy-efficient when compared to CPU and GPU implementations, respectively.
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CHAPTER 1

INTRODUCTION

Many problems from various domains, including simulating physical body dynamics [58],

multigrid methods [41], network routing[153], graph processing [65], and neural networks [57]

can be expressed in terms of operations on vectors and matrices. For an important class of

these problems, most of the elements in the matrices or vectors are zeros. When a substan-

tial fraction of the elements in the data is zero, the data is called sparse. A dense repre-

sentation of sparse data consumes more storage and involves many unnecessary operations

on zeros. Hence, it is efficient to store sparse data using a compressed format (i.e., sparse

format) where only the non-zero elements are stored. Sparse formats offer two advantages.

First, a sparse format can reduce the total storage by orders of magnitude compared to a

dense representation. In addition, operations on zeros can be skipped to reduce the overall

computation.

Sparse formats store only the non-zero elements and use various techniques to encode

the positions of the non-zero elements within the matrix [15, 26, 72, 91, 104, 131]. In most

standard sparse formats, determining the position of the non-zero elements requires a series

of indirect memory accesses that introduce irregular memory accesses. For example, to

access an element A[i, j] in the Compressed Sparse Row (CSR) [104] format, one needs to

consult the row pointer to obtain the location where the row i begins (i.e., row pointer[i]),

search the column indices until the beginning of the next row to check if the item is present

(i.e., search from col[row pointer[i]] to col[row pointer[i + 1]), and then subsequently

access the data element at the matched index. In addition, skipping the operation involving

zeros requires extra work to determine if the non-zero elements match before performing

the operation. The overhead of accessing the indices into the sparse structure, not including

the matching cost, can exceed the work of the mathematical operations by 2×-5× [59, 61].
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In addition to the steps involved in extracting and matching the non-zero elements in

sparse data, there are other factors that make sparse computation more complex than the

dense version. First, the density of the non-zeros in the sparse input can vary wildly for

various applications. The density ratio is defined as the number of non-zero elements di-

vided by the total number of elements in the dense representation. For example, in a neural

network, the density varies across the layers anywhere from 20% to 80%. By contrast,

in graph processing, the input densities are as low as 10−6%. The density of non-zeros

can impact the irregularity of memory accesses. Sparse data with a low-density exhibit

more random access to memory. As a second factor, the distribution of non-zeros in the

data referred to as the sparsity pattern affects the complexity of memory accesses in a

sparse problem. It is easier to store and compute sparse data with a regular sparsity pat-

tern (when all the non-zero values are around the diagonal). Besides, the sparsity pattern

can be adjusted for some applications. For example, pruning is a method used to remove

redundant weights in neural networks after training. Eliminating the weights creates zeros

in the weights. Different pruning methods result in different sparsity patterns. A random

pruning approach can leave zeros at any location in the input. Alternatively, a structured

pruning technique leaves zeros in well-defined locations. Thus, the sparsity patterns can be

controlled by choosing different pruning methods. In many other applications, the sparsity

pattern cannot be altered. Furthermore, the sparse inputs in some applications can often

change, with each input having a different pattern of sparsity. In contrast, the sparsity pat-

tern of input (i.e., pruned weights) remains unchanged throughout the inference process in

neural network inference tasks.

The difference in delivered Floating Point Operations per Second (FLOPs) between

dense and sparse kernels can be significant depending on the density of the sparse in-

put and the sparsity pattern [128, 142]. There have been numerous efforts to build high-

performance software libraries and frameworks for sparse kernels to reduce the gap be-

tween the performance of sparse and dense versions [1, 2, 3, 76, 123, 130]. CPUs and
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GPUs use a Single Instruction Multiple Data (SIMD) model to perform more useful work

per instruction. Additionally, they rely on caching techniques to maximize memory perfor-

mance by utilizing temporal and spatial data localities. SIMD and caching techniques are

effective for most dense computations, but they are not as effective for sparse problems.

Using sparse formats introduces many indirect and irregular memory accesses, which lim-

its the benefits of caching and the SIMD model. As a result, using the same formulations

and optimizations as the dense version for the sparse version results in poor performance.

For many years, Moore’s Law [92] and Dennard scaling [32] helped general-purpose

processors become faster and more energy efficient transparently. Dennard scaling is ob-

solete, and Moore’s law has slowed down and is expected to end in the coming years. In

response, there has been an increased interest in designing specialized hardware, such as

ASICs and FPGAs, for various applications, including sparse problems. Specialization

can be applied at different levels for sparse computation. At the algorithmic level, new

algorithms and methods can be developed to perform more optimally for sparse scenar-

ios [15, 46, 137]. For sparse data storage, the sparse formats can be customized based on

the operations’ memory access pattern and sparsity pattern of the inputs [38, 61, 97, 120].

Lastly, custom hardware can be designed to perform operations such as extracting the non-

zero elements or matching the non-zeros more efficiently [7, 42, 52, 61]. These customiza-

tions aim to improve sparse computation’s performance and energy efficiency by extracting

parallelism at a finer level and optimizing the memory hierarchy to accommodate irregu-

lar memory accesses arising from sparse problems. Sparse Matrix-Vector Multiplication

(SpMV), Sparse General Matrix-Matrix Multiplication (SpGEMM), and sparse neural net-

works are among the most studied sparse problems for these specialized hardware.

The custom hardware accelerators improve sparse problems’ performance and energy

efficiency at the expense of generality. Often, sparse data is subject to multiple operations,

and each operation may require the data to be stored in a different format for optimal

performance. For example, the COO format makes it easier to import data into a sparse
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matrix since it is efficient for appending non-zeros [10]. However, SpMV performs twice

as fast if the sparse input is stored in CSR instead of COO format [127]. Thus, sparse

data are usually stored in standard sparse formats that are suitable for various operations.

The discrepancy between the sparse format customized for an application and the format

used to store the data on the memory requires a preliminary reformatting step. The data

reformatting can be expensive if it cannot be amortized over multiple application executions

with the same input data.

1.1 Dissertation Statement

This dissertation presents a number of hardware-software techniques to improve the per-

formance and energy efficiency of sparse linear algebra kernels, including SpMV and

SpGEMM and sparse convolutional neural networks. Our general strategy is to use soft-

ware methods to reformat the sparse data into a hardware-friendly format that allows the

hardware to perform the computation with a high degree of parallelism. The software im-

proves design flexibility to support multiple sparse formats, and the hardware improves

performance and energy efficiency. We develop an intermediate representation that allows

the software to communicate regularized data and scheduling decisions to the hardware.

Besides, most of the software and hardware execution are overlapped. We applied these

hardware-software techniques to three sparse problems: sparse matrix-vector multiplica-

tion, sparse general matrix-vector multiplication, and sparse convolutional neural network.

Different characteristics of these three applications raise different questions, and we have

answered some of them in the following contributions:

1. A CPU-FPGA system to improve the performance of SpMV and SpGEMM ker-

nels in comparison to CPU-only and FPGA-only designs, while supporting multiple

sparse formats and data precisions.

2. An intermediate representation that enables the CPU to communicate the regularized
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sparse data and the scheduling decisions to the FPGA and allow them to compute in

parallel.

3. An ASIC and an FPGA accelerator to improve the performance and energy efficiency

of sparse CNN inference task by building a hardware unit to perform IM2COL cou-

pled with a reconfigurable systolic array-based general matrix-matrix multiplication

unit.

4. A sparsity-aware design for sparse CNNs that minimizes storage while skipping the

computation involving zeros without requiring complex hardware.

1.1.1 Synergistic CPU-FPGA Acceleration for SpMV and SpGEMM

Sparse linear algebra kernels such as SpMV and SpGEMM are the key components of

many applications from various domains [58, 65, 153]. Many of these applications have

input with very low densities (e.g., below 1%). With sparse kernels, the challenge is to

extract enough parallelism to improve performance while reducing storage and avoiding

computation on zeros.

FPGAs offer great performance for compute-intensive applications with their programma-

bility and massive parallelism. FPGAs achieve finer-grained parallelism than general-

purpose architectures because they can customize memory hierarchy and computation en-

gines for specific applications. However, most sparse problems are memory-bound due to

the irregular and random nature of their memory accesses. Sparse problems suffer from

low external memory bandwidth. The limited on-chip memory of FPGAs cannot fully

compensate for sparse kernels’ low external memory bandwidth. Hence, FPGAs cannot

extract enough parallelism to compensate for their lower frequency to offer significant per-

formance gains over general-purpose architectures for sparse problems.

These challenges can be addressed in several ways for FPGAs. One common technique

is to build a sparse format customized for the FPGA’s memory hierarchy and its computa-
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tion engines [35, 119]. Another effective method is to use a software scheduler that ana-

lyzes the sparsity pattern and schedules non-zero input pairs to an FPGA microarchitecture

to increase the resource utilization [54]. Both of these approaches can improve the per-

formance of FPGA designs for sparse kernels by increasing their parallelism, which com-

pensates for the lower frequency of FPGAs compared to CPUs. However, both methods

require an expensive preprocessing step that involves software and cannot be overlapped

with hardware computation.

In Chapter 2, we introduce REAP, a CPU-FPGA system for sparse linear algebra that

incorporates both CPU and FPGA. REAP aims to accomplish three goals. Our first goal

is to support a wide range of standard sparse formats. Hardware accelerators often require

data to be available in their customized format and thus do not support standard sparse

formats directly [35, 38, 54, 119, 120]. Due to the disparity between the compressed for-

mat used by the accelerator and the format used to store data in memory, these approaches

require a reformatting step to convert the sparse data into the hardware supported format.

Data reformatting is only justified if it can be amortized over multiple program executions

with the same sparse input. Further, we want the data reformatting step in software to be

overlapped with the FPGA computation. Second, we want to make our design efficient and

optimized for high precision inputs (e.g., Float) as well as low precision inputs (e.g., Int8),

depending on the application requirement. Relaxing the data precision of sparse kernels

can lead to significant performance gains [6]. Therefore, our design can be adapted to dif-

ferent data precisions to further improve performance. Our third objective is to propose a

generic design that can be applied to a variety of sparse linear algebra kernels. There are

several hardware accelerators designed for a single sparse kernel [38, 54, 97, 118, 120]. In

contrast, our method is generic and can be applied to a variety of sparse kernels. The gener-

ality of our approach is demonstrated by building designs for two sparse kernels with differ-

ent complexities, namely, sparse matrix-vector multiplication (SpMV) and sparse general

matrix-matrix multiplication (SpGEMM).
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REAP combines the strengths of both the CPU and the FPGA. To maintain high PE

utilization, the CPU reorganizes sparse data into a format suitable for the FPGA. CPUs are

good at manipulating small-scale, unpredictable memory access patterns as they have high

clock rates and multiple levels of cache, while FPGAs with an application-specific routing

and an abundant number of DSP units and on-chip memory are suitable targets to perform

numerical computation on the reformatted streams of data. In the reorganization task, the

CPU identifies the elements that match and schedules the computation for the FPGA. The

FPGA design consists of replicated pipelines with a large number of multipliers. To convey

reorganized data and scheduling information from the CPU to the FPGA, we developed a

new intermediate representation. The FPGA reads the regularized data in the intermediate

format. We organize the entire computation in stages to facilitate parallel execution on

the CPU and FPGA. When the CPU preprocesses the data for step k, the FPGA performs

the computation corresponding to step k − 1. By overlapping CPU and FPGA execution,

performance is further improved. An important feature of REAP is that it requires only a

change to the software on the CPU to adapt to a new sparse format. Thus, we can support

multiple sparse formats with a single FPGA design. In addition, our intermediate represen-

tation can be adjusted to different sparsity patterns, input sizes, and data precisions.

We have synthesized a prototype of REAP for SpMV and SpGEMM for commonly

used sparse formats using the Xilinx HLS toolchain on an Alveo-U200 FPGA board. Our

prototype supports CSR, ELL, and DIA sparse formats and a wide variety of precision

(float, integers of various bit-widths). Our end-to-end evaluation of the system on large

matrices with various sparsity patterns shows that REAP, on average, exhibits up to 3.4×

and 1.3× speedup over multi-core versions of highly optimized Intel Math Kernel Libraries

on a CPU for SpMV and SpGEMM, respectively. Finally, REAP achieves high frequency

and delivers promising speedup compared to state-of-the-art FPGA accelerators for SpMV

and SpGEMM while offering flexibility in supporting various sparse formats.

Many sparse problems, such as the sparse neural network, can be reduced to SpMV
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and SpGEMM computations. The design presented in Chapter 2 targets sparse problems

with very low input densities (below 1%) and varying inputs. There is a need for a different

hardware design to improve the performance of sparse problems with higher input densities

or applications with sparse inputs that do not change frequently. A sparse convolutional

neural network is one such application. Next, we describe how we apply our software-

hardware approach to sparse convolutional neural networks.

1.1.2 An Accelerator for Sparse Convolutional Neural Networks Leveraging Systolic

General Matrix-Matrix Multiplication

Neural networks are extensively used to solve complex problems in numerous domains

such as video processing [68], speech recognition [23], and natural language process-

ing [50, 113]. Convolutional neural network (CNN) is one of the most widely used neural

networks. CNNs can have multiple types of layers, including convolution layers, fully

connected layers, and pooling layers, with most of the computation performed in the con-

volution layers. Each CNN layer has multiple features, such as number of filters, kernel

size, stride size, and channel size. The computation of each layer produces a higher-level

abstraction of the input data, called a feature map.

To achieve higher accuracy, neural networks often include many layers. Neural net-

works with many layers present both performance and energy efficiency challenges to the

underlying processing hardware. Luckily, most neural networks have significant redun-

dancy that can be pruned during training without substantially reducing accuracy [48, 49].

The elimination of redundant weights will result in a network with a large number of zero

values, which can potentially reduce inference computation and storage requirements. In

addition to zeros in the weights, zeros also appear on the feature map while performing the

inference task.

The prevalence of CNNs and the complexity of exploiting sparsity in CNNs has led to

a large body of work on building hardware accelerators for sparse CNNs [8, 19, 21, 30, 36,
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40, 48, 98, 102, 103, 115, 138, 145]. Given the variety of layers with different features in

a CNN, it is difficult to design a hardware accelerator that performs optimally for all types

of layers. Thus, some accelerators only support a few types of layer in CNNs [48, 139] or

they perform optimally only for certain types of layer [21, 98]. Supporting sparse inputs

makes designing CNN hardware challenging. A sparsity-aware design exploits the spar-

sity of one input (i.e., one-side sparsity) [8, 48, 145], or both inputs (weights and feature

maps) [30, 98, 102] to enhance the performance and the energy efficiency of the sparse

CNN computation. There are many ways to utilize sparsity in CNNs. First, the sparsity

can be used to reduce energy consumption by gating operations involving zeros [21]. Ad-

ditionally, the computation involving zeros can be skipped, improving the performance in

addition to the energy consumption [30, 42, 98].

In Chapter 3 we present the details of our hardware accelerator that implements the con-

volution layer as a single large general matrix-matrix multiplication (GEMM) operation us-

ing an image to column transformation (IM2COL). Using GEMM as the core computation

unit allows us to support a wide range of CNN layers. We discovered that the IM2COL op-

eration accounts for a sizable fraction of the execution time (29% of the total time). Further,

IM2COL performs many redundant memory accesses, contributing to the overall energy

consumption. Additionally, doing the IM2COL operation in software instead of hardware

prevents fine-grained pipelining of the IM2COL transformation and matrix-multiplication

operations. Hence, we design both IM2COL and and GEMM units in hardware. We call

our sparse convolutional network accelerator SPOTS. The three key innovations in SPOTS

are: (1) a novel IM2COL unit that allows us to pipeline GEMM and IM2COL computations

to improve performance, (2) a dynamically reconfigurable GEMM unit with the capability

to adapt to different CNN layers and shapes, and (3) sparsity awareness that allows the

design to support sparsity in both the feature map and filters. Combining these techniques

increases CNN performance and energy efficiency over prior accelerators for CNNs.
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A dedicated hardware IM2COL unit in SPOTS. We propose a dedicated hardware IM2COL

unit that operates in parallel with the hardware GEMM unit. With the specialized IM2COL

unit, we can reduce redundant accesses, resulting in faster inference speed and lower en-

ergy consumption. A novel aspect of the IM2COL unit in SPOTS is that it has a collection

of patch units (PUs) that streams the input only once, performs data reorganization, cre-

ates multiple patches in parallel, and eliminates redundant accesses. Each patch unit in the

IM2COL unit has three local buffers that identifies overlapped elements between patches

and avoids expensive DRAM accesses. These patches are subsequently fed into a systolic

array-based GEMM unit.

SPOTS is sparsity-aware. SPOTS efficiently handles zeros in both inputs: weights and

the input feature map. SPOTS uses sparsity to skip data transfer and computation for

zeros. By using a group-wise pruning technique with a new sparse format, we can reduce

the storage requirements while still allowing high-speed access to the weights necessary

to keep the PEs active. Further, SPOTS tags and skips blocks of zeros in the result of the

IM2COL unit and weights before entering the systolic array, saving computation cycles and

memory transfers. Finally, SPOTS can also prevent load imbalances caused by an uneven

distribution of zeros in the inputs by skipping the zero blocks for all PEs.

A dynamically reconfigurable GEMM unit in SPOTS. The GEMM unit in SPOTS can

be configured as multiple GEMM units with square-shaped systolic arrays with processing

elements (PEs) or a single tall-thin unit. The tall-thin shape better balances the memory

bandwidth requirement of the GEMM unit and the IM2COL throughput, which allows effi-

cient pipelining of operations between the PEs performing the matrix multiplication and the

PUs executing the IM2COL reorganization. The dynamic reconfigurability of the GEMM

units enables SPOTS to achieve high PE utilization for various kinds of convolutional lay-

ers that differ in number of filters, kernel size, stride size, and input dimensions. In addition

to the convolution and fully connected layers, SPOTS supports pooling layers with a minor
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enhancement to the IM2COL unit.

Improvement in performance and energy efficiency with SPOTS. The techniques in

SPOTS improve CNN performance and energy efficiency over prior accelerators. We eval-

uate our design for four popular CNNs, AlexNet, VGGNet, ResNet, and GoogleNet, which

features a diverse set of convolution layers with different memory and computation re-

quirements. We compare the performance and energy efficiency of SPOTS with other

state-of-the-art hardware accelerators for CNNs. Our results show that SPOTS is on aver-

age 2.16×, 1.74×, and 1.63× faster than Gemmini [40], Eyeriss [21] and, Sparse-PE [102]

respectively. SPOTS is also 78× and 12× more energy efficient when compared to CPU

and GPU systems, respectively. In addition, we demonstrate that SPOTS can achieve high

PE utilization under different CNN shapes.

1.1.3 A End-to-end FPGA Prototype of SPOTS for Sparse CNNs

Designing and manufacturing ASICs can take a long time and cost thousands of dollars.

FPGAs are an alternative solution for building custom hardware. FPGA reconfigurable

substrates reduce non-recurring engineering (NRE) costs and can be reprogrammed for

different applications. Despite these advantages, FPGAs have some disadvantages when

compared to ASICs. FPGAs operate at a lower frequency than ASICs partially due to their

reconfigurability features. Therefore, FPGAs are slower than ASICs unless they can take

advantage of more parallelism to compensate for their lower frequency.

FPGAs are also constrained by the number of available resources, such as the on-chip

memory. Most FPGAs have very limited on-chip memory resources compared to CPUs’

multi-level caches and GPUs’ on-chip memory. In Chapter 4 we present our end-to-end

FPGA design for sparse convolution neural network based on our design in Chapter 3. To

build our end-to-end FPGA accelerator, we borrowed some of the main design strategies

from our ASIC design, such as offloading the IM2COL and GEMM computations to the



12

hardware and our sparsity-awareness design. However, we revisited some aspects of the

design, including the design for the IM2COL and the GEMM units to better suit FPGA.

There are two main advances in our FPGA design. First, our design is scalable to different

FPGAs with different resource constraints. Second, unlike many prior FPGA designs,

our design uses sparsity in feature maps and weight inputs without introducing additional

complexity. We describe how we used the high level synthesis (HLS) tools to build an end-

to-end prototype of our design. Our end-to-end evaluation on Alveo U200 FPGA shows

that by exploiting sparsity in both inputs and by overlapping the IM2COL and GEMM

computation, our design can achieve better or similar CPU performance with a frequency

20× less than the CPU. Besides, our FPGA solution is more energy-efficient than the CPU

and GPU implementations.

1.2 Papers Related to this Dissertation

This dissertation presents the ideas and techniques presented in the following publica-

tions written in collaboration with my advisor Santosh Nagarakatte and other collaborators,

Richard P. Martin from Rutgers University, Veronica Lagrange, Matt Bryson, and Xuebin

Yao from Samsung Semiconductor’s memory solutions lab.

1. “Synergistic CPU-FPGA Acceleration of Sparse Linear Algebra,” [115], which presents

a software/hardware technique to improve the performance of sparse matrix-vector

multiplication and sparse matrix-matrix multiplication on a CPU-FPGA system.

2. “An Accelerator for Sparse Convolutional Neural Networks Leveraging Systolic Gen-

eral Matrix-Matrix Multiplication,” [117] and its corresponding technical report [116]

that presents our hardware accelerator for sparse convolutional neural network by

proposing a novel hardware unit to perform the IM2COL transformation of the input

feature map coupled with a systolic array-based general matrix-matrix multiplication

(GEMM) unit.
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3. “Near-Storage Processing for Solid State Drive Based Recommendation Inference

with SmartSSDs.” [114], which builds an inference engine for deep learning-based

recommendation systems using a SmartSSD device that features an FPGA and an

SSD device. Our design offloads part of the computation to the FPGA on the SmartSSD,

improving performance, and energy efficiency by doing the computation near the

data.

1.3 Dissertation Organization

Chapter 2 provides background on sparse formats and sparse linear algebra kernels and

then presents details on our synergistic hardware/software design for SpMV and SpGEMM

kernels using a CPU-FPGA system. In Chapter 3, we first provide a primer on CNNs

and sparsity-awareness designs. Then, we present our ASIC design for accelerating sparse

CNNs inference task. Chapter 4 presents the end-to-end FPGA prototype of our accelerator

for sparse CNNs. Chapter 5 evaluates the performance and energy efficiency of our ASIC

and FPGA prototypes for various sparse CNNs. Chapter 6 concludes the dissertation and

provide future directions.
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CHAPTER 2

SPARSE LINEAR ALGEBRA ACCELERATION FOR MULTIPLE FORMATS

USING A CPU-FPGA SYSTEM

There are a variety of applications from various domains that use linear algebra kernels,

including multigrid methods [41], graph processing [65], and simulating physical body dy-

namics [58]. In many of these applications, the majority of the elements are zeros (more

than 99%). Many compressed formats (i.e., sparse formats) have been explored to avoid

storing the zero elements and performing computations on them. Most standard sparse for-

mats involve indirection and irregular memory accesses to locate and match the non-zero

values, resulting in low memory bandwidth for these sparse kernels. In response to this,

hardware accelerators are utilizing specialized sparse formats that cater to specific opera-

tion and input sparsity patterns. By using custom formats, these hardware accelerators are

able to access the non-zero elements with higher bandwidth and extract more parallelism.

Despite its benefits, this method has two main disadvantages. First, sparse data are of-

ten subject to multiple operations, and each operation may require the data to be stored in

a different format for optimal performance. Thus, the inputs must be preprocessed from

other formats into a hardware-friendly format before computation can begin. Second, the

inputs to the application may frequently change where each input has a different sparsity

pattern. Hence, customizing the sparse data storage based on the sparsity pattern of the

input requires an expensive preprocessing step for each input.

This chapter presents a software-hardware approach for high performance and adap-

tive computation of sparse matrix-vector multiplication (SpMV) and sparse general matrix-

matrix multiplication (SpGEMM) kernels on a cooperative CPU-FPGA platform. In our

design, which we call REAP, the CPU reorganizes the elements of a sparse matrix, al-

lowing the FPGA to perform the computation with a high degree of parallelism. We pro-
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pose a novel intermediate representation, which we call REAP intermediate representation

(RIR), enabling the CPU to communicate the sparse data and the scheduling decisions to

the FPGA. The preprocessed data in the RIR format, which is created by the CPU, removes

all indirect accesses and index matching operations on the FPGA. Hence, the FPGA de-

sign can adapt to different sparsity patterns, dimensions, and data precision. To maximize

performance, CPU tasks and FPGA tasks are overlapped. In contrast to prior research,

our approach accelerates computation with multiple commonly used sparse formats with-

out changing the FPGA’s design, which is a significant improvement over approaches that

require a custom design for each sparse format.

2.1 Overview of Our CPU-FPGA system for Accelerating Sparse Linear Algebra

Kernels

Field Programmable Gate Arrays (FPGAs) promise to improve energy, throughput, and

latency for sparse kernels, as they become more widely available in modern data centers.

FPGAs are better than general-purpose architectures at exploiting fine-grained parallelism

by allowing for application-specific custom memory accesses and compute engines. How-

ever, broadly realizing gains for sparse computation using FPGAs remains a challenge.

Most standard sparse formats introduce indirect and irregular memory accesses, resulting

in suboptimal memory throughput. The irregularity in the sparse operations also can in-

troduce data dependencies that reduce the frequency and increase resource needs. These

factors result in low compute utilization and limit the FPGA’s ability to extract sufficient

parallelism to achieve meaningful performance improvements over general-purpose archi-

tectures.

A large body of prior work has explored various methods to address these challenges. A

common approach is to use a customized compressed format tailored to a specific FPGA’s

architecture. For example, recent work proposed a custom format for multi-die High Mem-

ory Bandwidth (HBM) FPGAs [35]. Another work proposed a scheduling technique that
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partitions the sparse inputs into smaller batches that fit into the on-chip memory [119]. Sim-

ilarly, SPAGHETTI [54] uses a pattern-aware software scheduler that analyzes the sparsity

pattern and schedules the non-zero pairs of the inputs onto the fixed microarchitecture.

While these studies successfully improved the performance of an FPGA for certain sparse

kernels and architectures, their end-to-end performance degrades for standard sparse for-

mats because of expensive preprocessing costs.

We propose a design with three key features to address some of the weaknesses of

prior FPGA accelerators for sparse linear algebra kernels. First, our design supports a wide

range of standard sparse formats. Instead of requiring a preprocessing step to convert the

data from its original format to the format supported by the hardware, our design processes

the input directly using the sparse format in which the data is stored. Second, our design

is flexible to support both high precision inputs (e.g., Float) as well as low precision inputs

(e.g., Int8) depending on the application’s need. Relaxing the data precision of sparse

kernels can result in significant performance gain [6]. Third, our approach is generic and

thus can be applied to various sparse linear algebra kernels, not only a single sparse kernel.

Our design which we call it REAP is a cooperative CPU-FPGA system for sparse com-

putation that combines the strengths of both the CPU and the FPGA. In REAP, the CPU

reorganizes the sparse data into a format suitable for the FPGA to keep its computation

units active. CPUs are good at manipulating small-scale, unpredictable memory access

patterns as they have high clock rates and multiple levels of cache, while FPGAs with an

application-specific routing and an abundant number of DSP units and on-chip memory are

suitable targets to perform numerical computation on the reformatted streams of data.

The CPU identifies the matching elements that need to be multiplied and schedules the

computation on the FPGA during the reorganization task. To communicate the reorganized

data and scheduling information from the CPU to the FPGA, we developed a new inter-

mediate representation called REAP intermediate representation (RIR). Our FPGA design

consists of replicated pipelines with a large number of multipliers. The FPGA reads the
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regular preprocessed data from the CPU in RIR format and performs the computation. We

organize the entire computation in steps to facilitate parallel processing of the data reorga-

nization by the CPU and the computation on the FPGA. When the CPU preprocesses the

data for step k, the FPGA performs the computation corresponding to step k − 1. This

overlapped execution by the CPU and the FPGA further improves performance. The other

important feature of our design is its ability to adapt to a new sparse format by simply mod-

ifying the software preprocessing task on the CPU. More importantly, it is not necessary to

change the hardware on the FPGA to handle a new sparse format, which allows us to sup-

port widely used sparse formats with a single design. Besides, RIR can adapt to different

sparsity patterns, input sizes, and data input precision.

2.1.1 Contributions

The contributions to this chapter can be summarized as follows:

• We propose a synergistic CPU-FPGA system for accelerating sparse linear algebra

kernels whose inputs have a high percentage of zeros.

• We propose an intermediate data representation for communication between the CPU

and FPGA that can be applied to multiple sparse kernels while supporting various

sparse formats and different data precisions.

• We propose a high performance CPU-FPGA implementation for two important sparse

problems namely, SpMV and SpGEMM kernels that supports multiple sparse for-

mats and different data precisions.

2.2 Background on Sparse Formats and Sparse Linear Algebra Kernels

In this section, we first provide a brief primer on different sparse formats to store sparse

matrices in a compressed form. We then provide background on sparse matrix-vector mul-
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tiplication (SpMV) and sparse general matrix-matrix multiplication (SpGEMM). Finally,

we review the high-level architecture of modern FPGA devices.

2.2.1 A Background on Sparse Formats

In a sparse matrix, the majority of the elements are zeros. The number of non-zero el-

ements divided by the total number of elements in a matrix is termed the density of the

matrix. It is inefficient to store a sparse matrix in the same format as a dense matrix. Thus,

researchers have explored different compression schemes (sparse formats) to avoid storing

zero elements [10, 11, 15, 26, 104]. Each sparse format is ideal under certain conditions,

and no single format is superior for storing sparse matrices. The ideal format depends on

different factors such as the sparsity pattern, the workload, and the hardware in use. Hence,

it is desirable that accelerators support multiple formats. Otherwise, extra reformatting is

required to put the data into the supported format.

In this dissertation, we discuss some of the most commonly used sparse formats, such

as Coordinate format (COO), Compressed Sparse Row (CSR)[104], Diagonal (DIA), ELL-

PACK (ELL)[26], Bitmap Encoding [91], and Run-Length Encoding (RLC) [72]. Next, we

explain each of these sparse formats.

Coordinate (COO). Coordinate format, commonly known as COO format [10] is the

most primitive way to store the non-zero values of a sparse matrix. The COO format keeps

a list of values and the coordinates (i.e., row and column indices) of the non-zero elements

(Figure 2.1(b)). The COO format has a minimal preprocessing cost since it only requires

appending the non-zeros with their coordinates.

Compressed sparse row (CSR). The COO format redundantly stores row coordinates

for every non-zero value. One way to remove these redundant row coordinates is by using

an auxiliary array that keeps track of which non-zeros belong to each row. The values and

columns of the non-zero elements are stored row by row in the two separate arrays. Then

we store the starting offsets for all the rows in another array, commonly named row pointer
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Figure 2.1: Different sparse format representations. (a) A dense representation of the ex-
ample matrix (as a 2-dimensional array). (b) COO representation. (c) CSR representation.
(d) CSC representation. (e) DIA representation. (f) ELL representation. (g) RLC represen-
tation. (h) Bitmap representaion. Here, * in the sparse representations indicates 0.

array. This method of storing the non-zero values is called Compressed Sparse Row (CSR)

(i.e., CSR in Figure 2.1(c)). The dual of the CSR format is called Compressed Sparse

Column (CSC) that stores the column pointers instead of the rows, and the non-zero values

are stored in column-major fashion in contrast to the row-major fashion in the CSR format

(Figure 2.1(d)).

Diagonal (DIA). is a memory efficient format for sparse matrices where most of the

non-zero elements are near the diagonal. The DIA storage format is specified by two arrays:

distance and value. Here, distance is an integer array whose dimension is equal to the

number of non-empty diagonals. Element i of the distance array represents the distance

between the ith diagonal and the main diagonal. A positive distance suggests the element is

above the main diagonal, while a negative distance indicates the element is below the main

diagonal. The main diagonal has a distance equal to zero. The value is a matrix with the

number of rows equal to the number of rows in the dense representation and the number

of columns equal to the number of non-zero diagonals. The ith-column of the value matrix
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stores the elements belonging to the ith non-zero diagonal. They are stored in the rows

corresponding to the dense representation. For example, the value of 1 belongs to the 1st

diagonal, which has a distance of −3 from the main diagonal (see DIA in Figure 2.1(e)).

ELLPACK (ELL). is useful for matrices that contain a bounded number of non-zeros

per row. ELL storage is specified by two arrays: column and value, which both have N by

M dimension, where N is the number of rows of the matrix and M is the maximum number

of non-zeros per row. The value and column indices of each non-zero element in row i is

stored in the ith row of the value and column arrays, respectively (see ELL in Figure 2.1(f)).

Run-length Encoding (RLC). Run-length encoding (RLC) [72] compressed a given

sequence of values by replacing the continuing series of the same values with a single

value that shows the number of repetitions (run). For a sparse matrix, the run indicates the

total number of zeros before (or after) a non-zero value. Thus, in RLC, a sparse matrix is

identified with a list of non-zero values and their run values (Figure 2.1(g)). Each run value

indicates the total number of leading zeros before the next non-zero in the list. For example

in Figure 2.1(g) there are two zero values between A3 and the previous non-zero element

(A2) in a row-major order, therefore the run value for A3 is 2 (the third index).

Bitmap Encoding. Similar to COO, the Bitmap encoding [91] stores only the non-

zeros elements in the matrix. Along with the non-zero values, we need one flag bit for all

the elements in the matrix including both zero and non-zero elements (Figure 2.1(h)). The

flag bit indicates whether an element is zero (i.e., flag=0) or a non-zero (i.e., flag=1). The

bitmap encoding is effective for low to moderate sparsity percentages such as sparse neural

networks.

2.2.2 A Background on SpMV and SpGEMM kernels

SpMV. In SpMV, we multiply a sparse matrix with a dense vector that produces an out-

put vector that is also dense. Each output value is the result of a dot product between a

row of the matrix and the input vector. A naive dense implementation of the SpMV ker-
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 (3) Column by column  (4) Outer product

Figure 2.2: Four different formulations to perform general matrix-matrix multiplication.
(1) Inner product. (2) The row by row method. (3) The column by column method. (4)
Outer product. The stationary input for each formulation is shown in dark color.

nel performs computations on every element of a two-dimensional matrix, including the

zero elements. The naive approach introduces high computational and storage overheads.

Instead, the SpMV implementation computes the dot product using the sparse representa-

tion of the matrix (e.g., CSR format). The algorithm avoids unnecessary computations of

zero elements by iterating only over non-zero elements. However, this approach introduces

pointer-chasing operations to access the elements in the vector. The column indices of the

element in the sparse matrix are used as an index to load the appropriate element of the

vector (line 7 in Algorithm 1).

SpGEMM. In SpGEMM, we multiply two sparse matrices, A and B, which results in

another sparse matrix (C). Based on the order (i.e., row-major or column-major) in which

each input matrix is accessed, there are four different formulations for a SpGEMM, as

shown in Figure 2.2. We compare each formulation from four different perspectives: (1)

preprocessing requirements, (2) on-chip memory requirement for the inputs and the out-

put matrices, (3) opportunities for parallelization, and (4) data reuse. A formulation has

higher data reuse if it performs more multiply-accumulate (MAC) operations per memory

read/write.
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Row-by-column formulation. This formulation is also known as the inner product.

In this formulation, each element of the output is calculated by performing a dot product

between a sparse row from matrix A and a sparse column of matrix B (see the inner product

in Figure 2.2). The two input matrices for the inner product are accessed in two different

orders (i.e., one matrix in row-major order and the other in column-major order). It needs

a preprocessing step if the input sparse formats are not in the expected order. The inner

product has low on-chip memory demands as it needs one row of the first matrix and one

column of the second matrix to compute one element of the output matrix. The dot product

computation for any two distinct elements of the output matrix can be performed in parallel.

For the dot product, the indices are matched for the two input sparse vectors (sparse row of

matrix A and sparse column of matrix B). Since the two input matrices are highly sparse,

it is possible that none of the indices match, which results in data being read without any

computation. Overall, the inner product has low data reuse since the MAC operations are

performed only when the indices of the non-zero elements are matched.

Column-by-row formulation. This formulation is also known as the outer product. In

contrast to the inner product, the outer product takes each column of A and a row of B and

computes partial products belonging to the entire output matrix. Given a column vector of

A and a row vector of B, the outer product multiplies a given element of the column vector

with all elements of the row vector to produce partial products that correspond to a row of

the output and accumulates them (see the outer product in Figure 2.2). Similar to the inner

product method, the two input matrices are accessed in two different opposite orders. Un-

like the inner product, the first matrix is accessed in column-major order, while the second

matrix is accessed in row-major order. Hence, it needs a preprocessing step if the input

matrices are not in the appropriate order. As this method produces partial products for the

entire output matrix that need to be accumulated in each step, the on-chip memory require-

ment for an outer product is high. The partial products can be computed in parallel, but

accumulation needs synchronization. All read items are used with multiplication. Hence,
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this formulation has the highest data reuse.

Row-by-row formulation. In this formulation, the entire B matrix is read for each

row of A to produce a single row of the output matrix. Each row of A is multiplied with

every row of B, one at a time, and the partial products are accumulated (see row by row

in Figure 2.2). This formulation is often known as Gustavson’s algorithm [46]. The core

computation of a row-by-row formulation is a scalar-vector product. Unlike inner-product

and outer product, the row-by-row formulation access both matrices in row-major order.

Therefore, it can process two inputs in the same format. In contrast to the outer product, a

single output row is computed at a time. Hence, the memory requirement is not as high as

the outer product. However, it does require one matrix to be read multiple times. Further,

all the rows of the sparse output matrix can be computed independently and in parallel.

Column-by-column formulation. In this formulation, the matrix A is read multiple

times for each column of B to produce one column of the output matrix. For a given

column of B, we multiply each column of A with that column of B to compute partial

products and accumulate them to produce the column of the output matrix (see column by

column in Figure 2.2). Both matrices are accessed in the column-major order. The memory

requirements, parallelism, and data reuse is similar to the row-by-row formulation.

2.3 Synergistic CPU-FPGA Acceleration

In this section, we describe the general architecture of REAP for accelerating sparse lin-

ear algebra kernels. We then describe the instantiations of REAP for two kernels: SpMV

and SpGEMM. The unique aspect of our approach to accelerating sparse computation with

REAP is that we divide the computation of sparse linear algebra kernels into two main

tasks. The first task involves discovering the position of non-zero elements in the sparse in-

puts and reformatting them as regularized data in the intermediate data representation. The

second task performs numerical computation on the reformatted data in the intermediate

data representation. REAP uses the CPU for the first task and the FPGA for the second.
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Further, the computation on the CPU and the FPGA are overlapped. When the CPU pre-

processes the data for step k, the FPGA performs the computation corresponding to step

k − 1. Thus, the CPU and FPGA can execute in parallel, which improves performance.

For the CPU to communicate the reformatted data to the FPGA, we developed the

REAP intermediate data representation (RIR). Our CPU-FPGA synergistic approach

using the RIR format has three main advantages. First, reformatting the sparse data by

the CPU removes all indirect accesses and index matching operations. It also allows large

bursty data transfers from the CPU to the FPGA. A second benefit of the RIR format is

that the same custom hardware can support multiple sparse formats. The FPGA computes

using inputs in RIR format. Thus, multiple sparse formats can be supported with the same

FPGA design by only changing the software. We can avoid long re-compilation times and

performance regressions when adjusting the FPGA design to support a new sparse format.

Additionally, it allows our approach to flexibly support different sparsity patterns, input

sizes, and data input precision.

RIR has two important features - it is extensible and supports information about both

data and metadata. We designed RIR to be extensible. RIR can be used to express infor-

mation in multiple sparse kernels. For a given sparse kernel, the RIR format is designed

with respect to the core operation of that kernel. While the core features of the RIR format

remain the same for different sparse kernels, each sparse kernel has its own unique RIR

structure. For the FPGA part of the design, this feature is essential to achieving optimal

performance. We describe the RIR format for SpMV and SpGEMM in Sections 2.3.1 and

2.3.2.

The information exchanged between the CPU and FPGA is aggregated into a collec-

tion called the RIR bundle. In this way, we can amortize the cost of communication. RIR

supports both data and metadata bundles. The data bundle includes the values and coordi-

nates of the elements required for the kernel’s core computation. The metadata provides

extra information that allows the FPGA to manage the partial products and schedule the



25

SLR 0

SLR 1

SLR 2

DRAM 1

DRAM 2

DRAM 4

DRAM 3

Kernel 1

Kernel 2

Kernel 3

Figure 2.3: The floorplan of XCU200 FPGA.

work among different processing elements. This requires co-designing the software and

hardware such that the software on the CPU is aware of the FPGA design.

Computation on the FPGA in REAP. Modern FPGAs use Stacked Silicon Intercon-

nect (SSI) technology to build large FPGAs with an affordable power envelope. Figure 2.3

shows the floorplan for the Xilinx XCU200 FPGA device features on the Alveo U200

board. XCU200 FPGA comprises three Super Logic Regions (SLRs) that are stacked on

top of each other using SSI technology. Any crossing (connection) between the SLR re-

gions can negatively impact the operating frequency. Our FPGA design consists of repli-

cated pipelines, with each pipeline consisting of multiple processing elements (PEs). To

achieve high frequency and memory bandwidth, each pipeline is assigned to a different

SLR and memory bank (see Figure 2.3). The FPGA reads the inputs that are preprocessed

by the CPU and stored in RIR format. Figure 2.6 and Figure 2.8 present our FPGA designs

for SpMV and SpGEMM, respectively.

There are two sources of parallelism in the FPGA design: the parallel pipelines and the

independent PEs inside each pipeline. Keeping both the pipelines and the PEs busy is the

key to performance for the FPGA part of the design. The only way to accomplish this is to

access the data with high memory bandwidth. The three essential requirements for achiev-

ing peak memory bandwidth for FPGAs are: large input/output data width, sequential and

predictable memory accesses, and reading the data in large burst sizes [84]. Preprocessing

of sparse data by the CPU eliminates indirect accesses and allows the FPGA to achieve
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near-peak memory bandwidth.

Preprocessing performed by the CPU in REAP. In REAP, the CPU processes the

sparse inputs in their native compressed format and transforms them into a more hardware-

friendly RIR format. The two main tasks done by the CPU involve identifying the non-zero

elements from the compressed sparse data for a particular sparse kernel and computing the

metadata that allows the FPGA to complete its numerical computation with high perfor-

mance.

Identifying non-zero elements and index matching often introduces indirect memory

accesses. We found that CPUs are better at manipulating small-scale, unpredictable mem-

ory access patterns with their multiple levels of caches. Besides, in REAP, the CPU does

not perform any arithmetic operations. Instead, numerical computations are performed by

the FPGA. In most modern CPUs, the same memory bandwidth can be achieved by operat-

ing at half the base frequency [107]. Thus, our design allows the CPU to operate at a lower

frequency and still maintain the memory bandwidth, which helps reduce the energy con-

sumption on the CPU side. The flexibility of REAP in supporting various sparse formats

comes from the software on the CPU. Each sparse format needs a unique decoding step; all

is done in software.

When building RIR bundles in software, there are two levels of parallelism to target:

pipeline parallelism and PE-level parallelism within the pipeline on the FPGA. Addition-

ally, CPU preprocessing is done in parallel using multiple threads. The task of building

RIR bundles for different pipelines can be performed independently and in parallel on mul-

tiple threads since they are independent. Building RIR bundles for PEs within a pipeline

can also often be executed in parallel. CPU preprocessing is specific to the kernel being

accelerated. We describe the regularization of data with preprocessing performed by the

CPU for SpMV in Section 2.3.1 and for SpGEMM in Section 2.3.2.

Overlapping the work done by the CPU and the FPGA. To facilitate the parallel

execution of data reorganization by the CPU and computation on the FPGA, we organize



27

Generating 
RIR 

bundles

Transfering 
RIR budles 

to FPGA

FPGA
kernel 

execution

Tranfering 
output back to

CPU

GR TI KE TO

GR GR

TI

GR

TI

KE

GR

TI

KE

TO

GR

TI

KE

TO

GR

TI

KE

TO

GR

TI

KE

TO

Stage 1

Stage 2

Stage 3

Stage 4

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

GR

TI

KE

TO

GR

TI

KE

TO

GR

TI

KE

TO

GR

TI

KE

TO

GR

TI

KE

TO

Step 8 Step 9 Step 10 Step 11 Step 12

GR

TI

KE

TO

TI

KE

TO

KE

TO TO

Step 13 Step 14 Step 15 Step 16

Figure 2.4: Overlapping of the tasks performed by the CPU and FPGA tasks in REAP. The
pipeline consists of four stages. (1) Generation of RIR bundles (GR). (2) Transfer of RIR
bundles to the FPGA (TI). (3) FPGA kernel execution (KE). (4) Transfer of the output back
to the CPU (TO). All four tasks can be performed in parallel in the steady state (i.e., steps
4-13).

the entire computation in steps. When the CPU preprocesses the data for step k, the FPGA

performs the computation corresponding to step k − 1. Figure 2.4 shows different steps

performed by the CPU and the FPGA. There are four tasks: generating the bundles (done

by the CPU), transferring the RIR bundles to the FPGA memory, performing the computa-

tion (done by the FPGA), and transferring the result back from the FPGA memory to the

CPU. After the initial steps, all four tasks can be performed simultaneously. The tools for

programming modern FPGAs provide asynchronous application programming interfaces

(APIs) for data transfers and kernel invocation. In addition, we use double buffering to

facilitate parallel execution by the CPU and the FPGA. The CPU uses one set of buffers

and the FPGA uses the other.

Another design consideration in overlapping the computation on the CPU and the

FPGA concerns the choice of input sizes for each computation step. A large chunk size

reduces the total number of steps and reduces the overlapping opportunities, especially for

smaller input matrices. In contrast, larger input sizes are preferable for achieving higher

memory bandwidth [84]. We choose the input size based on the profiling information for

our prototype.
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2.3.1 Instantiation of REAP to Accelerate SpMV

In a sparse matrix-vector multiplication (SpMV) kernel, we multiply a sparse matrix with

a dense vector to produce a dense vector. Algorithm 1 presents the SpMV formulation

that we use. Each output value is computed with a dot-product between a row of the

sparse input matrix and the input vector (lines 10-13 in Algorithm 1). Due to sparsity, the

size of the vectors used for the dot-product can vary with each row. In our design, the

CPU reads the sparse input matrix and organizes the vectors for a dot-product. The FPGA

computes the dot product using the preprocessed vectors. The CPU and the FPGA can

independently process different rows of the sparse input matrix, allowing their computation

to be overlapped.

The RIR format for SpMV. The key operation in SpMV is the dot-product of a row

of the sparse matrix (V alAr in Algorithm 1) and the input vector. The result of each dot-

product is one element of the final vector. The number of multiply-add operations needed

for computing one element of the result vector is proportional to the number of non-zeros in

a row of the sparse matrix. The RIR format for SpMV is designed based on the dot-product

computed by the SpMV kernel.

We design both data and metadata bundles tailored for SpMV in the RIR format. Fig-

ure 2.5(b) and Figure 2.5(c) shows the RIR format for metadata and data bundles. Each

data bundle consists of N pairs of non-zero values from the sparse matrix and the input

vector. The value of N is a design parameter. For each data bundle, there is a correspond-

ing metadata bundle. The metadata bundle contains two pieces of information. First, it

carries one bit of information (End in the Figure 2.5(b)) that indicates if this bundle is the

last bundle belonging to the same output element or not. This becomes important when the

number of non-zeros in a row is greater than N . In those cases, we divide the non-zeros

into multiple bundles. The last bundle in a series is marked with a 1 in the End section,

while the other bundles are marked with a 0. Besides the End bit, each bundle also includes

scheduling information (PE ID). This enables the FPGA to route the data bundles to the
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different processing elements (PEs). All bundles that contribute to the same output element

are processed by the same PE, which eliminates the need for any communication between

PEs. The CPU is aware of the number of PEs in each pipeline to do the scheduling task

properly.

An invariant of the RIR format for SpMV is that every row in the input sparse matrix

has at least one data bundle. We maintain this invariant to avoid storing the row index in

the metadata. When there is a row with all zeros in the input sparse matrix, there will be

a data bundle filled with a pair of zeros (see bundles 3 in Figure 2.5(c)). We found that

maintaining the row index in the metadata degrades performance significantly compared to

our design with a single data bundle with a pair of zeros.

Optimal N depends on the sparsity pattern of the sparse matrix. Large values of N can

reduce the metadata overhead. However, for rows with less than N non-zeros per row, the

remaining pairs are filled with zeros (For example, see bundles 2 and 6 in Figure 2.5(c)).

We set N as 4 in our prototype based on empirical analysis. The size of the data bundle is

dependent on the precision of the input data element. The size of the bundle is N ∗ 2 ∗ 4

bytes if the input is single-precision float and there are N pairs of non-zero values. When

N = 4 with a single-precision float as the data type, the size of each data bundle is 32

bytes.

Packing RIR bundles to build wide vectors. Using wide AXI ports for accessing

external memory improves FPGA memory bandwidth. A port width of 512 bits was dis-

covered to be optimal for memory performance. By packing multiple RIR bundles together,

we can build one large input vector. For single-precision inputs with 32-byte data bundles,

we can pack two data bundles into a 512-bit vector. For a 16-bit integer and an 8-bit integer,

we can pack 4 and 8 data bundles per vector, respectively.

The FPGA design. Figure 2.6 shows the details of the SpMV FPGA architecture. Our

design consists of three pipelines (Figure 2.6(a) shows only one of the three pipelines).

Each pipeline consists of five stages (fetch, scheduler, dot-product, merge, and write) that
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Figure 2.5: (a) The input matrix A and the dense vector V are both in their dense represen-
tation. (b) The RIR metadata bundle generated for the SpMV operation on sparse matrix A
and dense vector V in (a). (c) The RIR data bundle for this example.

process the input data in the RIR bundle. Each fetch unit reads the RIR bundles from a bank

of DDR4 memory. It is connected to one advanced extensible interface (AXI) channel to

read data from memory in burst mode, which is feasible because of the preprocessing done

by the CPU. Further, REAP’s design uses a wide data bus of 64 bytes. Using a wide

data bus helps the FPGA reach its peak memory bandwidth. The fetch unit passes the

data to the scheduler, which distributes the RIR bundles among the PEs by examining the

metadata embedded in the bundle by the CPU. Each bundle is assigned to one of the PEs.

In REAP’s SpMV design, each pipeline has up to 16 PEs. Each PE then performs the

dot product. Each PE has 4 multiplication units with an add tree (see Figure 2.6(b)). The

result of multiplication from each bundle is sent to the merge unit to be added to the result

of the previous bundles. Once the merge unit receives the last bundle of a row vector, it

sends its result to the write unit. The write unit reads the result received from different

PEs connected to it and packs the result into a wide vector, and then writes the results

to memory. All stages are connected by FIFO streams, which enables them to operate

concurrently.

Preprocessing on the CPU. CPUs preprocess sparse input matrices and dense vectors

to generate RIR bundles, which keeps FPGA pipelines busy. The CPU in the preprocessing
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step needs to match the non-zero elements of the sparse matrix with the elements in the

input vector. Each non-zero value in matrix A with a column index of c is matched with

the element in row c of the input vector. To compute one element in row R of the output

vector, we need B data bundles where B can be calculated as B = dNNZR

N
e, where N is

the number of non-zero pairs in each data bundle and NNZR is the number of non-zeros

in row R.

Our design schedules the bundles to PEs in a round-robin fashion. While using a dy-

namic scheduling algorithm can improve the load balance between the PEs in some cases, it

can change the order in which the PEs compute the output elements. Thus, to combine the

output elements and write them to the memory, we should include the output index (e.g.,

the row index) in the metadata bundle, which can introduce extra overhead. In addition, a

more complex scheduling algorithm can also increase the CPU execution time.

The CPU preprocessing itself to generate RIR bundles happens in parallel using mul-

tiple threads. Each CPU thread processes an equal number of rows from the input matrix.

To produce a single array of RIR bundles for the FPGA, the outputs of the different threads

must be merged. Each CPU thread writes to the different parts of the single output array.
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Algorithm 1 SpMV formulation.

1: procedure SPMV(Input(SpA, V ecV ), Output(V ecC))
2: for each row r in SpA do
3: NNZ[r]← GetNNZ(SpA, r)
4: ColAr ← GetColIndices(SpA, r)
5: V alAr ← GetV alues(SpA, r)
6: for j = 0 to NNZ[r] do
7: V alVr[j]← V ecV [ColAr[j]]
8: end for
9: Sum← 0

10: for i = 0 to NNZ[r] do
11: Sum← Sum+ (V alAr[i] ∗ V alVr[i])
12: end for
13: V ecC[r]← Sum
14: end for
15: end procedure

We calculate the total number of bundles for each thread and pass them as the starting index

for each thread. The starting indices can be easily calculated for most sparse formats. For

example in CSR, the row pointer[i]− row pointer[j] gives the total number of non-zero

elements between row index j and row index i. DIA and ELL formats have a fixed number

of non-zero elements in each row.

We support any input size for the input vector and sparse matrix as opposed to prior

work that maintains the entire dense vector on FPGA on-chip memory [66, 147].

2.3.2 Instantiation of REAP to Accelerate SPGEMM

From the perspective of acceleration, SpGEMM is more complicated than SpMV as it

involves two sparse input matrices and a sparse output matrix. Unlike SpMV, the number

of non-zeros in the output is input dependent in SpGEMM. A SpGEMM kernel consists

of two main tasks: multiply and merge (also known as accumulation). The multiply task

generates partial products. A partial product is the result of multiplying a non-zero value of

input A with a corresponding non-zero value of input B. A match occurs when a column
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Algorithm 2 SpGEMM formulation.

1: procedure SPGEMM(Input(SpA, SpB), Output(SpC))
2: for each row r in SpA do
3: NNZ[r]← GetNNZ(SpA, r)
4: ColAr ← GetColIndices(SpA, r)
5: V alAr ← GetV alues(SpA, r)
6: for j = 0 to NNZ[r] do
7: V alA[j]← V alAr[j]
8: NNZB[j]← GetNNZ(SpB,ColAr[j])
9: ColBj ← GetColIndices(SpB,ColAr[j])

10: V alBj ← GetV alues(SpB,ColAr[j])
11: RowCr ← GetRow(SpC, r)
12: for i = 0 to NNZB[j] do
13: PPV al← V alA[j] ∗ V alBj[i]
14: PPCol← ColBj[i]
15: RowCr ←Merge(RowCr, PPCol, PPV al)
16: end for
17: end for
18: end for
19: end procedure

index of A matches a row index of B. The merge task sums up all partial products that have

the same coordinates (i.e., row and column) and produces the final result.

We use the row-by-row formulation (also known as Gustavson algorithm [46]) in our

design because the partial products belong to a row of the output rather than the entire

matrix (as with the outer product [97]). Section 2.2.2 reviews four formulations for mul-

tiplying two matrices and their advantages/disadvantages. Although explored by prior

work [97], the outer product formulation offers good throughput for the multiply task but

has poor throughput for the merge task. A high overall throughput requires balancing the

multiply and merge tasks. Our design with the row-by-row formulation has less complex-

ity in maintaining partial products and performing the merge task and it better balances the

merge and multiply tasks than outer product formulation.

Algorithm 2 illustrates a row-by-row formulation for multiplying two sparse matrices

A and B. Intuitively, each row of A is compared with all the rows of B, matching elements
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EndValA / RowA PE ID ColB3 / ValB3ColB1 / ValB1 ColB2 / ValB2 ColB4 / ValB4

1a1,3  /  1 0

2a1,5  /  1 0

0a2,2  /  2 1

2a2,2  /  2 1

2a4,1  /  4 2

2a5,5  /  5 3

b1,5 / 5b1,1 / 1 b1,3 / 3 -

-b3,2 / 2 - -

b5,3 / 3b5,1 / 1 b5,2 / 2 -
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-b2,5 / 5 - -

b1,5 / 5 b1,1 / 1 b1,3 / 3 -

b5,3  / 3 b5,1 / 1 b5,2 / 2 -

Figure 2.7: (a) Two input matrices A and B in their dense representation. (b-c) The RIR
metadata and data bundles for this example. a1, 1 matches with the first row of matrix B.
The three values in the first row of B are b1, 1, b1, 3, and b1, 5. Since each bundle holds
four pairs, one pair is unused.

scalar-vector 
product Mergepipeline 1

(a) REAP FPGA architecture for SpGEMM displaying one of the three pipelines

scalar-vector 
product MergePE 1

PE 16

Fetch Scheduler DDR
BankWrite val A

Xval B1

Xval B2

Xval B3

Xval B4

(b) Mul unit performing 
scalar-vector product

DDR
Bank

PE 2 - PE 15

Figure 2.8: (a) FPGA design for SpGEMM. (b) The architecture of the multiply unit per-
forming dot product.

(i.e., when the column index of an element in A and the row index of an element in B

are equal) are multiplied to generate partial products, and the partial products belonging to

the same column index are accumulated to produce a row of the final result matrix. The

A-matrix is read once, and the B-matrix is streamed into the FPGA for each row of A.

Given that A and B matrices are sparse, it is not necessary to stream all the rows of B for a

given row of A. When we read a row of A, we identify the column indices of the non-zero

elements in that row and only stream those rows of B that match one of the column indices

of A (lines 3-5 in Algorithm 2). For example, if there is only one non-zero element in a row
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Figure 2.9: (a) The multiply unit in action in various steps while processing the first row of
the result matrix from Figure 2.7(a). This involves the first three bundles from the example
in Figure 2.7(b-c). (b) The merge unit in action in various steps while processing the first
row of the result matrix from the example in Figure 2.7.

of A, it is unnecessary to stream all rows of B. Just streaming one row of B that matches

the column index of the single non-zero element of A is sufficient.

The main tasks in SpGEMM are: (1) extract the matched non-zero elements from the

two sparse matrices, (2) multiply the matched elements (i.e., compute partial products), and

(3) merge the partial products to produce the final result. Our design uses the CPU for the

first task, and the FPGA for the rest. Similar to SpMV, the CPU reorganizes the input data

as RIR bundles to make it easier for the FPGA to attain higher throughput computation.

The RIR bundles for SpGEMM. Like the SpMV design, we have data and metadata
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RIR bundles. For each data bundle, there is a corresponding metadata bundle. The core

computation of our SpGEMM formulation is a scalar-vector product. In our design, the

data bundles contain the vector of non-zero elements, and the metadata bundles contain the

scalar element. It is essential to include both value and column indices in each bundle for

SpGEMM. To compute the final result, the column indices are required to merge the partial

products.

Figure 2.7(a) shows an example of two matrices in their dense formats for illustration.

In our design, the inputs are stored in their native compressed format (e.g., CSR). The

CPU preprocesses the data and creates RIR bundles shown in Figure 2.7(b-c). Each RIR

metadata bundle includes (1) the row identifier and the value of a non-zero element of the

matrix A, (2) the identifier for the PE that processes the bundle, (3) two bits (End bits) to

encode three values representing whether we have seen all rows of B for a given row of A

or not. A 0 for the End bits encodes that there are more bundles with a given row of B for

a non-zero element of A. A value 1 encodes the end of bundles with a given row of B for a

non-zero element of A. A value 2 encodes the end of bundles corresponding to all rows of

B for the whole row of A. As the values of matrix B are streamed for every row of A, this

metadata enables our design to handle matrices of any size. The data bundles include up to

N non-zero elements of B that should be multiplied with the element from matrix A. For

each non-zero element, we store both value and its column index.

Similar to our SpMV design, the size of the RIR bundle depends on the data types

used for the column indices and the value. In our prototype, we use 32-bits for the column

indices, which allow us to support matrices with dimensions as large as 232. The number of

elements in each data bundle (N ) is a design parameter, which is chosen based on the input

data precision and the sparsity pattern of the input matrices. Based on profiling information,

N = 4 is used in our design for single-precision inputs.

Our FPGA design for SpGEMM. Figure 2.8(a) provides the FPGA architecture for

SpGEMM. It consists of three replicated pipelines. Each pipeline has five units that process
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the data in RIR bundles (i.e., fetch, scheduler, multiply, merge, and write). All units are

connected with FIFOs, which allow concurrent execution. The fetch unit reads the bundles

and passes them to the scheduler. The scheduler sends the bundles to their assigned PE

using the scheduling information included in the RIR bundle. Each pipeline includes 16

PEs that perform multiply and merge tasks.

Each pair of data and metadata bundle received by each PE includes all the elements for

a scalar-vector product. This significantly simplifies the job of the FPGA by eliminating

the need to match the indices, which otherwise would require a costly content-addressable

memory (CAM) in the FPGA.

The multiply unit performs a scalar-vector multiplication to produce the partial products

for the ith row of matrix C. This is done by multiplying the value of A (included in the

metadata bundle) with all the B’s elements in the data bundle. Each multiply unit in a PE

performs up to N multiplications in parallel. Effectively, 192 multiplications can happen in

parallel per cycle in the entire design (3 pipelines * 16 PEs per pipeline * 4 multipliers per

PE = 192). The partial products are then sent to the merge unit with their corresponding

index (e.g., B’s column identifier). The merge unit accumulates all the incoming partial

products with the same column index.

When the CPU creates the bundle for a non-zero element of A, it orders the corre-

sponding non-zero elements of B based on the column indices. Hence, the partial products

arriving at the merge unit corresponding to each non-zero element of A are sorted by their

column indices. We need to accumulate partial products belonging to the same output el-

ement. We use three queues (Q1, Q2, and Q3) to perform this merge and accumulation.

The queue Q1 contains the partial products produced by the multiply units. The previously

accumulated products corresponding to a row of B are in Q2. In each cycle, the merge unit

gets an element from Q1 and Q2 and merges the result into result queue Q3. If the column

indices of the elements at the front of Q1 and Q2 match, the values from both queues are

removed, their values are added, and their result is pushed to Q3. If the column indices of
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the elements at the front of Q1 and Q2 do not match, the value with the smaller column

index is popped and pushed to Q3. While Q1 always stores the incoming partial products,

we alternate Q2 and Q3 as inputs and outputs depending on whether we have completed

processing a row of B, which avoids unnecessary copies of queue elements.

Figure 2.8(b-c) illustrates the operation of the multiply and merge units for the example

from Figure 2.8. Finally, the write unit writes a complete row of the output from each PE

in the order they are received.

When multiplying two sparse matrices, the number of non-zeros in a row of the result

matrix is not known a priori. We address this issue by maintaining fixed-size queues in the

merge unit and recomputing the results on the CPU when the number of such partial results

exceeds the queue size. To store partial results for each row, we use a 1024 entry queue on

the FPGA. Similarly, the CPU also uses the same sized data structure to store the results

for each row. When the number of non-zero partial results in a given row exceeds the size

of the queue, the FPGA informs the CPU by setting a bit in the output data. Subsequently,

the CPU discards the results computed FPGA for that particular row and recomputes the

results on the host.

Preprocessing performed by the CPU. The two main tasks of the CPU are (1) to

access the elements in their compressed form and (2) to match the elements from the two

input matrices. Each data bundle includes the rows of B that match with a non-zero element

of matrix A. To compute the ith row of the result matrix (C), we need M scalar-vector

multiplication where M is the number of non-zero elements in a ith row of A. All bundles

belonging to the ith row of matrix A are scheduled to the same PE. Similar to SpMV, the

bundles are distributed among the PEs in a round-robin fashion.

We use multiple threads to parallelize the generation of RIR bundles, like SpMV de-

sign. Each thread handles a fraction of the rows of the A matrix. To handle the uneven

distribution of non-zero elements, we first generate the metadata bundles. Since there is a

one-to-one mapping between the data and metadata bundles, we can use the information
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Table 2.1: The CPU, and FPGA configurations.

Platform Configuration
CPU 48 cores, 2.6 GHz (base), 192 GiB DDR4

Intel Xeon 6130 Cache(KB) L1:32K, L2:1024K, L3:19712K
FPGA 1,182K logic elements, 2280 DSP blocks

Xilinx Alveo-U200 25-Mbits BRAM, 64 GB DDR4,
Max memory bandwidth 77 GB/s

Table 2.2: FPGA resource utilization for SpMV and SpGEMM designs.

Application LUT BRAM URAM FF DSP
SpMV 11% 24% 0% 10% 16%

SpGEMM 35% 30% 3% 12% 24%

(the number of metadata bundles) when generating the data bundles. When generating the

metadata bundles, we use separate arrays for each thread and then combine their results into

one large array containing all the bundles’ metadata. While this approach needs extra data

copies, overall, its performance is better than using a single thread process for generating

the metadata.

2.4 Experimental Methodology of REAP

Prototype. We have built an end-to-end prototype of REAP for SpMV and SpGEMM and

evaluated it on the Xilinx Alveo U200 card. Alveo U200 features the XCU200 FPGA,

which consists of three Super Logic Region (SLR). The SLR regions are combined to

build a large device with an affordable power envelope using Stacked Silicon Interconnect

(SSI) technology. Figure 2.6(c) shows the floorplan for the Xilinx XCU200 FPGA de-

vice. The three SLR regions in XCU200 FPGA are connected to different DRAM banks.

Our design uses all three SLRs by mapping each of the three pipelines to a different SLR

(Figure 2.6(c)). This allows our design to utilize multiple DDR banks and also attain high

operational frequency by avoiding the crossing between different SLRs. Furthermore, we

also use wide data buses and large burst transfers to attain the highest efficiency for the

memory controller on the FPGA.
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We developed the FPGA designs using the Xilinx HLS toolchain. We used appropri-

ate pragmas in our programs specifying the desired microarchitecture. We implemented

the streaming interface between different components of a pipeline using the Xilinx HLS

Stream pragma. We experimented with unroll and pipeline factors for each individual loop

to attain the best possible frequency. Table 5.2 shows the FPGA specification. The CPU

and the FPGA communicate through PCIe. Our FPGA uses a Gen3 x16 PCIe interface.

After place and route, FPGA designs for SpMV and SpGEMM can operate at 250 MHz

and 200 MHz on the Alveo U200 card, respectively. Table 2.2 reports details on resource

utilization on the FPGA for SpMV and SpGEMM designs for the single-precision inputs.

Our designs created enough pipelines and processing elements to balance the CPU’s and

FPGA execution times.

CPU Baseline. We evaluate REAP design by comparing it to the well-optimized sparse

kernels in Intel Math Library (MKL) [3]. Table 5.2 provides details on the CPU used for

the comparison. We use the same CPU for the CPU execution of the REAP. To evaluate

the SpGEMM kernel, we calculate C = A2, which is a standard method for evaluating

SpGEMM performance [53, 54, 120, 148]. Both SpMV and SpGEMM matrices use single-

precision floating-point for the evaluation except when we explicitly specify the data width.

To test the ability to support various sparse formats, we evaluate REAP for three sparse

formats: CSR, DIA, and ELL. Intel MKL does not directly take these formats as inputs.

Hence, our evaluation includes the time taken to convert the matrix in these formats into

CSR. We also compare the performance of REAP for 16-bit and 8-bit integer input data. We

mainly used twenty-one sparse matrices from the SuiteSparse matrix collection [27] listed

in Table 2.3. Most of these matrices have been used by prior work in this domain [53, 54,

89, 97, 120]. These matrices vary in size, density, and sparsity patterns. We use wall clock

time to measure the end-to-end performance, including the time for data reorganization on

the CPU, data transfer, FPGA computation, and transferring the result from the FPGA to

the CPU’s memory.
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Table 2.3: Matrices from SparseSuite [27] used in our evaluation. We use the ID to refer
to specific matrices in the evaluation. 1 NNZ: the number of non-zero entries. 2 zeros are
shown with black dots as opposed to the rest of the benchmarks.

Name ID Dimension NNZ1 Kind Sparsity pattern

cont-300 SA 180K X 180K 980K Optimization Problem

thermomech dK SB 200K X 200K 20M Thermal Problem

offshore SC 250K X 250K 4.2M Electromagnetics Problem

oh2010 SD 366K X 365K 1.7M Undirected Weighted Graph

mario002 SE 389K X 389K 2M Duplicate 2D/3D Problem

pa2010 SF 421K X 421K 2.0M Undirected Weighted Graph

largebasis SG 450K X 450K 5.2M Optimization Problem

fl2010 SH 484K X 484K 2.3M Undirected Weighted Graph

delaunay n19 SI 524K X 524K 3.1M Undirected Graph

mc2depi SJ 525K X 525K 2.1M 2D/3D Problem

ecology1 SK 1M X 1M 4.9M 2D/3D Problem

debr SL 1M X 1M 4.1M Undirected Graph Sequence

roadNet-PA SM 1M X 1M 3.0M Undirected Graph

thermal2 SN 1.2M X 1.2M 8.5M Thermal Problem

atmosmodd SO 1.2M X 1.2M 8.8M Computational Fluid Dynamics

belgium osm2 SP 1.4M X 1.4M 3.0M Undirected Graph

g3 circuit SQ 1.5M X 1.5M 7.6M Circuit Simulation Problem

transport SR 1.6M X 1.6M 23.4M Structural Problem

kkt power SS 2M X 2M 12.7M Optimization Problem

netherlands osm ST 2.2M X 2.2M 4.8M Undirected Graph

curlCurl 4 SU 2.3M X 2.3M 26.5M Model Reduction Problem
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Design Float-CSR Float-DIA Float-ELL Int16-CSR Int16-DIA Int16-ELL Int8-CSR Int8-DIA Int8-ELL

SpMV 1.18 1.25 1.87 1.68 1.87 2.93 2.20 1.86 3.42

SpGEMM 1.00 1.06 1.27 1.02 1.10 1.30 1.03 1.12 1.31

Table 2.4: REAP speedup compared to a 16-core Intel MKL for SpMV and SpGEMM for
three sparse formats and different input precisions. We report the geometric mean of all the
benchmarks in Table 2.3. The configurations are shown in the following format: precision-
sparse format.

FPGA Baselines. We compare REAP with recent FPGA accelerators for SpMV and

SpGEMM. HiSparse [35] is a high-performance SpMV accelerator designed for a multi-die

HBM-equipped FPGA device. Similar to REAP, they build their prototype using the Xilinx

HLS toolchain. We compare REAP with HiSparse using the same set of benchmarks as it

is used in their evaluation. HiSparse needs a preprocessing step to transform the sparse

data into an HBM-friendly format that we include its execution time when comparing with

REAP. For SpGEMM, we compare REAP with SPAGHETTI [54], which is an FPGA ac-

celerator for highly sparse matrices. Similar to SpMV, we evaluate the speedups using the

benchmarks used in their work and some of them can be found in Table 2.3. SPAGHETTI

utilizes a pattern-aware software scheduler that analyzes the sparsity pattern of the sparse

inputs and schedules row-col pairs of the inputs for the FPGA. The authors did not report

the execution time for the scheduler. Thus, we only compare the FPGA execution times.

Unlike REAP, they do not overlap the CPU and the FPGA computation in their design.

2.5 Experimental Evaluation of REAP for SpMV and SpGEMM

Performance evaluation for various sparse formats and data precisions. REAP sup-

ports various sparse formats with a single FPGA design by modifying only the CPU’s part

of the design. REAP also supports different data precisions. Table 2.4 provides a sum-

mary of the REAP speedups compared to a 16-core Intel MKL running on a CPU listed in

Table 5.2. We report the geometric mean of the speedups for all the benchmarks listed in

Table 2.3. For all the configurations, REAP performs similarly or better than MKL. Unlike
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Figure 2.10: Speedup of REAP compared to 16-core Intel MKL for the SpMV and
SpGEMM kernels with single-precision inputs stored in the CSR format. The last bars
(blue bars) in each figure show the geometric mean of all the sparse matrices in Table 2.3.

MKL, which is primarily optimized for CSR format, REAP is optimized for various sparse

formats. REAP also has advantages over MKL for low-precision data inputs. MKL only

supports a limited number of data precision (e.g., single-precision and double-precision in-

puts). For SpMV, there is up to 2× performance difference between the higher precision

inputs (e.g., Float) and lower precision input (e.g., Int8). For SpGEMM, the RIR bundles

include the coordinates and the values, limiting the performance gain for lower precision

inputs. The main advantage of REAP over MKL is its ability to decouple the sparse data
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Figure 2.11: A comparison of the end-to-end execution time of two implementations of ELL and
DIA formats, one that performs computation directly using ELL and DIA and the other converts the
input from ELL or DIA to CSR format then performs the computation.

regularization from the numeric computation on the data and overlap the two computations

using a CPU-FPGA system. REAP can also perform the computation directly using the

original sparse format used to store the inputs, without requiring a preprocessing step to

transform the input to a target format (e.g., CSR for MKL).

Performance evaluation of SpMV. Figure 2.10a shows the speedup of REAP’s SpMV

design compared to 16-core Intel MKL on the CPU. For this experiment, the values are

single-precision, and the input matrix is stored in a CSR format. The matrices are sorted

based on their dimension, from small to large. REAP is 18% faster than MKL on average.
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Figure 2.12: (a) Comparing REAP Float and Int8 SpMV implementation with HiSparse [35]
for five graph processing benchmarks. (b) Comparing REAP’s FPGA execution time with
SPAGHETTI [54]. The last bar (G) shows the average for all benchmarks.

For large matrices, REAP outperforms MKL by up to 3×. It is easier to overlap the CPU

and the FPGA computation for large matrices with more steps.

Performance evaluation of SpGEMM. Figure 2.10b shows the speedup with REAP

for SpGEMM compared to 16-core Intel MKL. Similar to SpMV, both input matrices are

stored in CSR format. REAP and MKL perform similarly overall for the CSR format. For

the same reason as SpMV, REAP is up to 2× faster than MKL for larger matrices. REAP

also performs better for matrices with a more irregular pattern of non-zeros. MKL’s vec-

torization techniques are more effective for more simple sparsity patterns such as banded
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matrices (e.g., SO and SK). However, REAP’s CPU reorganization outperforms the MKL’s

optimization for more irregular access patterns (e.g., SS and ST).

Performance evaluation for DIA and ELL formats. Figure 2.11 compares the rela-

tive execution time for ELL and DIA formats. We compared two versions of each format.

One version performs the computation directly using their original format (i.e., Native-

ELL and Native-DIA in Figure 2.11). This is similar to the method used in REAP. The

other version converts the input to a CSR format and then performs the computation on

the reformatted data. Overall, for DIA and ELL formats, the first method (REAP’s ap-

proach) is faster than the second method. In particular, for the banded matrices (e.g., SU),

performing the computation directly on a DIA format significantly outperforms the other

approach (transforming the input into CSR first). However, for the matrices with more ir-

regular non-zero patterns (e.g., SD and SI), the performance improves if the matrices are

first transformed from DIA format into a more compact format like CSR before doing the

computation. The same observation applies to the ELL format.

Performance evaluation compared to other FPGA accelerators. We compared REAP

with state-of-the-art FPGA designs for SpMV and SpGEMM. Figure 2.12a shows REAP

speedup compared to HiSparse [35] for the benchmarks used in their paper. HiSparse

transforms the sparse inputs to an HBM-friendly format using a preprocessing step. Unlike

REAP, their preprocessing stage is more expensive than the CPU’s process in REAP, and

it is not overlapped with the computation on the FPGA. Since the dataset includes mostly

the graph dataset, we compared both Float and Int8 versions of REAP with their design

that only supports Float. While their FPGA design enjoys higher bandwidth memory than

REAP using an HBM memory, REAP performs 3% and 60% better than HiSparse for Float

and Int8 versions, respectively.

Figure 2.12b shows the relative FPGA execution time of REAP and SPAGETTI [54].

Their design uses the software to analyze the sparsity pattern of the inputs and organize the

non-zero before starting the computation on the FPGA. Figure 2.12b only compares the
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Figure 2.13: REAP execution breakdown for (a) SpMV and (b) SpGEMM. REAP execution time
consists of generating RIR bundles(GR), transferring RIR bundles to FPGA (TI), and FPGA kernel
execution(KE).

FPGA execution times for REAP and SPAGHETTI. They have not reported the software

analysis execution time to allow us to compare the overall performance of the two systems.

However, we suspect that their analysis execution time exceeds the data reorganization step

in REAP. Besides, unlike REAP, they do not overlap the CPU and FPGA executions. On

average, the FPGA execution time for SPAGHETTI is 1.75× faster than REAP.

REAP performance characterization. Figure 2.13 shows the breakdown of the REAP

execution time for SpMV and SpGEMM designs. REAP’s pipeline consists of generat-

ing RIR bundles(GR), transferring RIR bundles to FPGA (TI), and FPGA kernel execu-
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tion(KE). For SpMV, generating the RIR bundles exceeds the FPGA kernel execution. In

contrast, for SpGEMM, the FPGA execution time surpasses the execution time of the CPU.

For SpGEMM, the RIR bundles transfer time from the CPU to the FPGA memory is as ex-

pensive as generating the RIR bundles. For SpGEMM, the RIR bundle includes the value

and indices from two matrices. Another important observation from Figure 2.13a is that

the difference between the CPU and FPGA execution times is more significant for matrices

with irregular access patterns (e.g., SI, SM, ST) compared to matrices with regular access

patterns (e.g., SO, SR). In other words, for matrices with an irregular pattern of non-zero,

the CPU requires more time to organize and schedule the non-zero for the FPGA. In con-

trast, the FPGA execution time merely depends on the overall non-zero operations.

Performance analysis of load imbalance in SpMV and SpGEMM.

Figure 2.14 studies the impact of load imbalance on the FPGA execution time for

SpGEMM and SpMV. We used the metric defined in Equation 3.1 to quantify the load

imbalance ratio [33].

imbalance percentage =
maximum work − average work

maximum work
× n

n− 1
(2.1)

For this experiment, we used a synthetic benchmark with a dimension of one million

and sixteen million non-zeros. We adjusted the imbalance ratio for each experiment while

the total number of operations remained the same for all the experiments. There are up

to 2×, and 3× differences in performance across different imbalance ratios for SpMV and

SpGEMM, respectively. The load imbalance impacts SpGEMM execution times more than

the SpMV design due to more expensive operations in the merge step. The load balance

can possibly be improved using a dynamic and complex scheduling mechanism than the

static round-robin scheduling used in REAP. However, using a more complex scheduling

mechanism can increase the CPU execution time. Thus, it is unclear if the overall execution
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Figure 2.14: Studying the impact of load imbalance on the FPGA execution time for
SpGEMM and SpMV.

time can improve using other scheduling techniques. We leave studying the load balance

problem and the scheduling techniques for sparse kernels for our future study.

2.6 Related Work on Accelerators for SpMV and SpGEMM Kernels

There is a large body of work on accelerating a variety of sparse linear algebra kernels

on various platforms, including CPUs, GPUs, FPGAs, and ASIC designs. This section

presents works aimed at SpMV and SpGEMM kernels.

General Purpose Architectures for SpMV and SpGEMM. There are highly opti-

mized sparse linear algebra kernels for CPUs [3] and GPUs [1, 2]. In addition, there is a
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large body of work on building cache-friendly and distributed algorithms [5, 14, 16, 46,

122], system level optimizations with parallelism on modern general purpose hardware

including GPUs [79, 80, 88, 106, 136, 140]. TACO [22] addresses the problem of acceler-

ating sparse computation with diverse formats by delegating the problem to the compiler.

REAP’s design provides the flexibility of TACO while exploiting FPGA to accelerate the

computation.

FPGAs for SpMV and SpGEMM. Prior FPGA designs have been tailored to either

SpMV [34, 38, 118] or SpGEMM [54, 77, 84, 119, 141]. Table 3.1 qualitatively compares

REAP with some of the most recent FPGA accelerators for SpMV and SpGEMM.

For SpMV, the main challenge is supporting multiple random accesses to the dense

input vector necessary to keep the FPGA units active. One solution is to replicate the dense

vector in on-chip FPGA memory [66, 147]. This approach does not scale to large matrices

due to limited on-chip memory. An alternative solution is to explore a custom sparse format

to store the sparse input [18, 34, 35, 38, 43, 66, 118]. This needs a reformatting phase

that transforms the data from its original format to the custom format. Unlike REAP, this

reformatting step is performed before the computation begins. Thus, it is not overlapped

with the computation on the FPGA. Recent work also utilizes FPGAs with high bandwidth

memory (HBM) to accelerate the memory-bound SpMV kernel [35, 118]. [35] proposes

a sparse format tailored for HBMs to increase the memory bandwidth utilization results

compared to the conventional sparse formats like CSR. Like REAP, they split the kernel

into multiple units and map each unit to different SLR regions to improve their design

frequency. Unlike REAP, the processing time for arranging the sparse data into an HBM-

friendly format is significant.

For SpGEMM, researchers have explored using 3D-stacked memory [152] and CAM-

based accelerators [141]. Although feasible for small input matrices, they likely will not

work with large inputs. Further, they are simulation-based studies without end-to-end sys-

tem measurements on a realistic FPGA. Recent work used streaming accelerator for differ-
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Table 2.5: Qualitative comparison of REAP with prior work that use FPGAs to accelerate
sparse linear algebra kernels. 1 SpMM: Sparse-Matrix Dense-Matrix multiplication. 2

ACF: Accelerator-customized sparse format.

Accelerator Implementation Sparse Kernel Sparse Format Memory technology Data precision
Sextans [119] HLS SpMM1 ACF2 HBM Float

SPAGHETTI [54] Chisel SpGEMM CSR/CSC DRAM Multiple precisions
HiSparse [35] HLS SpMV ACF2 HBM Float, Fixed-point
Serpens [118] HLS SpMV ACF2 HBM Float

REAP (this work) HLS SpMV, SpGEMM Multiple formats DRAM Multiple precisions

ent variations of sparse matrix multiplication [54, 119]. Like REAP, SPAGHETTI [54] is a

streaming accelerator that targets the multiplication of two highly sparse matrices. Similar

to REAP, they use a software-hardware approach where a software scheduler analyzes the

sparsity pattern and schedules the non-zeros of the inputs for the hardware. Unlike REAP,

the work done by the software is not overlapped with the computation on the hardware.

Besides, unlike REAP, which uses a row by row formulation for SpGEMM, they employed

an outer-product formulation for their SpGEMM design. Their method suits better for ap-

plications where the sparsity pattern of the inputs does not change often. SEXTANS [119]

is another recent streaming accelerator. Unlike REAP and SPAGHETTI [54], they target

matrix-multiplication when only one of the inputs is sparse. They partition the inputs into

smaller patches that fit on the on-chip memory of the FPGA. They limit all random mem-

ory accesses to FPGA’s on-chip memory. The inputs in the off-chip memory are streamed

in/out in batches and are always sequential. Unlike REAP, they schedule the non-zero

in an out-of-order fashion. A recent work [9] characterizes the performance implications

of different sparse formats in sparse workloads. Their study considered various metrics,

including decompression overhead, latency, load balance, memory bandwidth utilization,

and resource utilization. Similar to REAP, their result suggests the important role of sparse

formats in the overall performance of the sparse kernels.

ASICs for SpMV and SpGEMM. Attaining good performance with FPGAs has been

a challenge with sparse computation. Hence, there are many ASIC design proposals to

accelerate SpGEMM and SpMV [53, 89, 97, 101, 120, 144, 148].

Extensor [53] is an ASIC that supports high-dimensional sparse data (i.e., tensors).
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Mapraptor [120] and Gamma [144] are both ASICs that employs a row-by-row formulation

of SpGEMM similar to our work, which can be more efficient compared to ASIC that use

an outer-product formulation [97, 148]. Similar to REAP, SMASH [61] uses a software-

hardware approach to accelerate a variety of sparse linear algebra kernels. In Smash, they

use the software to encode the sparse data as a hierarchy of bitmaps. This encoding is then

used by an ASIC to avoid unnecessary memory accesses and reduce the overhead. Another

recent work enhanced a tensor processing unit chip to support various sparse formats [100].

The high-level insight of their work is to decouple the compressed format used for tensor

storage (they call it MCF) from the format used by the accelerator to perform the compu-

tation (they refer to it as ACF). Hence, they extend their sparse tensor accelerator with a

hardware module that serves as a library to convert different MCFs to ACFs. These exten-

sions require adding complex units such as prefix sum and parallel divide units. In contrast,

in REAP, the hardware side always uses a fixed sparse representation (i.e., RIR) that sim-

plifies the hardware design and requires minimum metadata preprocessing by co-locating

the input tensor values.

2.7 Summary

This chapter makes a case for a cooperative solution involving the CPU and the FPGA to

accelerate sparse computation such as SpMV and SpGEMM. The CPU preprocesses the

data and provides FPGA with regular computation, which is accelerated using a systolic-

style design with logic units and on-chip memory. Decoupling the work done by the CPU

and FPGA in a coarse-grained fashion enables us to overlap their execution for higher

performance and support various sparse formats and data precisions. The speedups over

mainstream libraries with our end-to-end system demonstrate that it is possible to achieve

performance with FPGAs while being flexible to adapt to various formats.
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CHAPTER 3

AN ASIC ACCELERATOR FOR SPARSE CONVOLUTIONAL NEURAL

NETWORKS

In Chapter 2, we presented a synergistic hardware/software system that increases the per-

formance and versatility of sparse kernels with input densities under 1% and inputs of

varying sparsity patterns. There is another class of sparse problems that has higher input

densities and fixed sparsity patterns. Sparse convolutional neural networks are a notable

example of these problems. This chapter presents a novel hardware accelerator for the

inference task of sparse convolutional neural networks (CNNs). To build a hardware ac-

celerator for sparse CNNs, we first formulate the convolution operation as general matrix-

matrix multiplication (GEMM) using a transformation called Image to Column (IM2COL).

Then we build a hardware unit to perform IM2COL transformation of the input feature

map coupled with a systolic array-based GEMM unit. Our accelerator for sparse CNNs

inference, which we call SPOTS carefully overlaps the IM2COL transformation with the

GEMM computation to maximize parallelism. We propose a novel design for the IM2COL

unit that uses a set of distributed local memories connected by a ring network that im-

proves energy efficiency and latency by streaming the input feature map only once. The

systolic array-based GEMM unit in the accelerator can be dynamically configured as mul-

tiple GEMM units with square-shaped systolic arrays or as a single GEMM unit with a

tall systolic array. This dynamic reconfigurability enables effective pipelining of IM2COL

and GEMM operations and attains high processing element utilization for a wide range

of CNNs. Further, our accelerator is sparsity-aware, improving performance and energy

efficiency by effectively mapping the sparse feature maps and weights to the processing el-

ements, skipping ineffectual operations, and unnecessary data movements involving zeros.

After the training phase, we apply a group-wise pruning followed by a preprocessing step
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to reformat the pruned weight into a hardware-friendly sparse format prior to the hardware

execution. The non-zero weights pattern does not change throughout the inference task, so

the approach is effective for sparse CNN inference.

3.1 Overview of SPOTS

Neural networks are widely used in numerous domains such as video processing [68],

speech recognition [23], and natural language processing [50, 113]. They have surpassed

or are close to human accuracy in many of these tasks. To achieve such accuracy, the

training phase involves large datasets and several iterations of weight updates, which can

take several hours or days to complete. Hence, the training phase is typically performed in

the cloud or on a large cluster of machines. Unlike training, the inference is performed both

in the cloud as well as at the edge devices (e.g., mobile devices or the Internet of Things

(IoT) devices). It is often desirable to compute on edge devices, especially when network

connectivity is limited or unavailable. The edge devices typically have limited memory and

compute resources with strict requirements on energy usage. Thus, our hardware design

targets the CNN’s inference task on edge devices.

A number of applications, including image processing, use convolutional neural net-

works (CNNs). CNNs can have multiple layers, including convolution layers, fully con-

nected layers, and pooling layers, with most of the computation taking place in the con-

volution layers. A convolution operation involves sliding a smaller filter window over an

input array with a stride size, producing patches. A CNN layer has multiple features: the

number of filters, kernel size, stride size, and channel size. Thus, designing an accelerator

that performs well for all types of layers in a CNN is challenging given the wide range of

features. Further, supporting sparse inputs introduces additional complexity to the design.

Given the importance of CNNs in various applications, numerous CNN accelerators

have been explored by the community [8, 19, 21, 30, 36, 40, 42, 48, 56, 81, 98, 102, 103,

109, 145]. Often, designs are tailored to particular CNN architectures [48, 139]. Hence,



55

they suffer from low resource utilization for certain layer shapes and sizes. With respect

to sparsity-awareness, many prior approaches handle sparsity in either the weights [69,

145] or the input feature map [4, 8]. Many recent designs support sparsity in both the

feature map and weights [30, 42, 98, 102]. As an example, SparTen [42] uses a costly

prefix sum unit to locate the non-zero pairs that match. Their sparsity-awareness method

for finding the non-zero pairs contributes to 42% and 62% of the total area and energy,

respectively. Sparse-PE [102] avoids the need for expensive hardware units for finding non-

zero pairs by decompressing the sparse vectors into a dense format before locating them.

However, this solution involves an additional decompression step (zero insertion) and uses

large buffer sizes inside each core in order to store the vectors densely. Unlike the other two

methods, SCNN [98] uses a Cartesian product method to avoid the index matching phase

altogether. The main drawback of such an approach is that it introduces irrelevant partial

products. Finally, while prior sparsity-aware accelerators, including SparTen and Sparse-

PE, successfully prevent the ineffectual multiplications (multiplications involving zeros),

they fail to avoid many unnecessary data transfers. The index matching phase requires the

sparse vectors to be fetched by each processing element (core) even if they do not contribute

to any output result (e.g., when they are not matched with any non-zero).

To implement CNNs, one way would be to realize a convolutional layer as a large, sin-

gle General Matrix-Matrix Multiplication (GEMM) using a data reorganization transforma-

tion called Image-to-Column (IM2COL). Unsurprisingly, many mainstream frameworks

use this approach since highly optimized GEMM primitives are available (e.g., BLAS [13]

or CuBLAS [94]). One method to accelerate the convolution computation is to offload

only the GEMM operation to a hardware accelerator. However, the IM2COL operation

accounts for a sizable fraction of the execution time (29% of the total time). Addition-

ally, IM2COL performs many redundant memory accesses, which contributes to the overall

energy consumption. Furthermore, offloading only the GEMM operation to a hardware ac-

celerator and doing the IM2COL operation in software prevents fine-grained pipelining of
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the IM2COL transformation and the matrix-matrix multiplication operation. Finally, per-

forming the IM2COL operation in hardware reduces the amount of data transfer between

the CPU and the hardware accelerator.

We propose a dedicated hardware IM2COL unit that operates in parallel with the hard-

ware GEMM unit. Using this specialized IM2COL unit eliminates the redundant data ac-

cesses and enhances the data reuse, allowing us to improve performance and reduce energy

consumption. A novel aspect of the IM2COL unit in SPOTS is that it has a collection of

patch units (PUs) that streams the input only once, performs data reorganization, creates

multiple patches in parallel, and eliminates redundant accesses. To eliminate redundant

accesses, each patch unit in the IM2COL unit has three local buffers that identify over-

lapped elements between patches and avoid expensive DRAM accesses. These patches are

subsequently fed into a systolic array-based GEMM unit.

The GEMM unit in SPOTS is efficiently pipelined with the IM2COL unit. The GEMM

unit can be configured as a single tall-thin unit or multiple GEMM units with square-shaped

systolic arrays with processing elements (PEs). The tall-thin shape better balances the

memory bandwidth requirement of the GEMM unit and the throughput of IM2COL unit,

which allows efficient pipelining of operations between the PEs performing the matrix

multiplication with the PUs executing the IM2COL reorganization. The dynamic reconfig-

urability of the GEMM units enables SPOTS to achieve high PE utilization with a variety of

convolutional layers varying in number of filters, kernel size, stride values, and feature map

dimensions. In addition to convolutions and fully connected layers, SPOTS also supports

pooling layers via minor enhancements to the IM2COL unit.

One of the most important features of SPOTS is that it supports sparse inputs for both

weights and feature maps. Sparsity in weights results from the pruning step in CNNs.

Pruning reduces computation and memory footprint by eliminating weights after training

without affecting accuracy. SPOTS uses sparsity to skip data transfer and computation for

sparse regions. Our new sparse format, tailored to our group-wise pruning algorithm, re-
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duces the storage requirements for the weights by a substantial amount in comparison to

random pruning [48] while allowing PEs to access the weights with relatively high band-

width. Finally, SPOTS tags and skips blocks of zeros in the result of the IM2COL unit and

weights before entering the systolic array, saving computation cycles and memory trans-

fers. Further, this approach helps SPOTS avoid the potential load imbalance caused by an

uneven distribution of the zeros in the inputs since the zero blocks are skipped for all PEs.

3.1.1 Novelties of SPOTS

• We design a novel IM2COL design that executes in parallel with the GEMM unit and

minimizes the latency and DRAM accesses by exploiting the data locality that exists

in the patches.

• We propose a dynamically reconfigurable GEMM unit with the ability to adapt to

different CNN layers and shapes to achieve high PE utilization.

• We present a sparsity-aware design that reduces storage and computation require-

ments by exploiting sparsity in both feature maps and weights.

3.2 Background on CNNs, IM2COL, and Sparsity-Awareness in CNNs

We provide background on CNNs (Section 3.2.1), structuring the convolution operation

as general matrix-matrix multiplication with the help of the IM2COL transformation (Sec-

tion 3.2.2), and leveraging sparsity to improve performance and energy efficiency (Sec-

tion 3.2.3).

3.2.1 Convolution Neural Networks

A Convolution Neural Network (CNN) consists of a series of layers. In a CNN, each

layer extracts a high-level feature from the input data, called a feature map (fmap). There

are different types of layers in CNNs, including convolution, activation (e.g., non-linear
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Figure 3.1: Illustration of a convolution layer along with its inputs.

operator), pooling, and fully connected layers. The convolutional layers are the main layers

in a CNN. They are responsible for the bulk of the computation. There are several filters

in each convolutional layer. The values of these filters (i.e., weights) are learned during the

training phase. In the inference phase, the network classifies new inputs presented to the

network.

Figure 3.1 shows the computation in the convolution layer. The input feature map is

structured as a 3-D tensor with W, H, and C as its width, height, and the number of channels,

respectively. Similarly, the filters are structured as 3-D tensors with width (R), height (S),

and C channels. The filters and the input feature maps have the same number of channels.

There are K filters in this example. Typically, a collection of N input feature maps are

convolved with K filters (i.e., a batch size of N). For inference tasks, it is common to use a

batch size of 1. For some convolution layers, a 1-D scalar bias is also added to the result,

which is not shown in Figure 3.1.

Fully Connected (FC) Layers. Most CNNs have one or more fully connected layers at

the end of the network to extract dense features from the input vector. In a fully connected
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transformed into a matrix before performing a matrix-vector multiplication. The labels are
shown only for some of the weights.

layer, all the inputs neurons are connected to all the outputs neurons in the next layer (see

Figure 3.2(a)). Figure 3.2(b) shows how the weights between the input and output neurons

are transformed into a matrix. The number of rows and columns in the matrix matches the

number of input and output neurons in a layer. For the example in Figure 3.2, there are 4

input and 3 output neurons. FC layers can be computed using matrix-vector multiplication.

3.2.2 Transforming Convolution to General Matrix-Matrix Multiplication

The convolution operation can be transformed into general matrix-matrix multiplication

(GEMM) using the IM2COL transformation. To structure a convolution operation as matrix-

matrix multiplication, we need to create two matrices from two inputs: input feature map

and the K filters. Figure 3.3 illustrates how the two matrices are created. The product of

these two matrices is equivalent to the result of the convolution operation. For building the

weight matrix, each filter is mapped to one row of the weight matrix. The weight matrix

will have K rows if there are K filters in a leyer (Figure 3.3(a)). The number of columns in

the weight matrix is R× S × C.
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Figure 3.3: Transforming the inputs of a convolution layer (i.e., input feature map and
filters) into two matrices to use a GEMM-based formulation of convolution.

To construct a 2-D matrix from a 3-D input feature map, a more complex transforma-

tion is required. This transformation is called Image to Column (IM2COL). The IM2COL

result depends on the kernel size and the stride size, which are the two parameters of the

convolution. In convolution, each filter slides across different positions in the input feature

map. We call all elements in the input feature map covered by the filter as a patch or a tile.

Patches are often overlapped with each other when the stride size is less than the filter size.

This overlap results in the repetition of the same element of the input feature map in multi-

ple patches. Figure 3.3(b) and Figure 3.3(c) illustrates the IM2COL transformation with an

example filter of size (3 × 3 × C) and a stride of 1. Each column of the matrix produced

by the IM2COL transformation corresponds to one patch where the filter is applied for all

C channels, and it has R × S × C rows. Figure 3.3 shows the patches for one channel.

Finally, the product of the two matrices (Figure 3.3(a) and 3.3(c)) generates the output of

the convolution operation.
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3.2.3 Sparsity-Awareness in CNNs

Given a layer in the CNN, a significant fraction of the values in the weights and the fea-

ture map values can be zeros. A pruning step is often applied to remove unimportant and

redundant weights during the training phase, resulting in zeros in the final trained weights.

Unlike the zeros in the weights that are known after the training phase, the input feature

map can also have zeros that are not known until the inference task. A sparse format can

be used to compress the pruned weights. In addition to reducing the model size, different

hardware accelerators use sparsity to improve performance and energy efficiency of the de-

sign. The performance improvement comes from eliding multiplications and minimizing

data movement when it involves zeros.

Techniques for pruning filters. Pruning is typically employed to increase the sparsity

of the weights in the filters. There are two strategies for pruning: random pruning and

structured pruning. The random pruning strategy sets a weight to zero if it is below a
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threshold value [49]. Non-zero weights are typically stored in a compressed sparse format

after the pruning step. However, sparse formats involve indirect accesses and require extra

steps for extracting non-zero elements and matching indices. In contrast, the structured

pruning strategy addresses irregular accesses due to random pruning [62, 69, 135]. A

structured pruning method removes redundant weights only from certain locations or in

a specific block size. Figure 3.4 shows pruning at different levels with various pruning

methods. The dark points represent pruned weights in the filter. When we convert a 3-D

filter to a 2-D representation using the strategy shown in Figure 3.3(a), the resulting zeros

in the 2-D matrix are shown in the second row of Figure 3.4. The random pruning strategy

results in an irregular pattern of zeros. A coarse-grained structure (e.g., channel-wise) for

pruning can result in a group of zero columns in the 2-D matrix, which is more hardware

friendly. The downside is that it may compromise network accuracy. With a fine-grained

structure (e.g., shape-wise or group-wise) you get closer to random pruning while having

a regular structure with zeros. We will describe the details of our group-wise pruning in

Section 5.1.

3.3 Motivation for a GEMM-based Formulation of Convolution and Sparsity-Awareness

Design in SPOTS

In this section, we first discuss the inefficiencies of mapping a convolution operation to an

array of processing elements the way that some of the prior work proposes. Then we discuss

the advantages and disadvantages of using a GEMM-based formulation for convolution

with an IM2COL transformation. Finally, we review some of the sparsity-aware proposals

and their disadvantages to motivate SPOTS sparsity-aware design.

3.3.1 The Inefficiencies of Mapping Convolution Operation to Processing Elements

The sliding-window nature of the convolution operation introduces overlaps between the

patches. This makes it difficult to map a convolution operation to a set of processing el-
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Figure 3.5: The percentage of the total execution time spent in the IM2COL transformation for
various convolution layers from AlexNet, VGGNet, and GoogleNet for a CPU system.

ements (PEs) in a hardware accelerator. It is common to design a fetch unit within each

PE to retrieve the input patch, communicate the patch with other PEs, and manage the par-

tial results. For communication between PEs, a specialized interconnect is typically used.

Prior work such as SCNN [98] and Eyeriss [21] adopt this approach. One of the main

weaknesses of this approach is that the dataflow and interconnection networks are heavily

customized for the convolution operation. Hence, both SCNN and Eyeriss are inefficient

for other layers, such as fully connected layers. For example, SCNN can achieve 25% of

the peak throughput for fully connected layers. Similarly, Eyeriss fails to achieve high PE

utilization for small batch sizes.

3.3.2 Benefits and Challenges of Convolution with IM2COL

A separate IM2COL transformation allows the construction of input patches to be sepa-

rated from the eventual computation performed on them. The IM2COL transformation can

identify data overlap among different patches as each filter slides across different positions

in the input feature map. Further, a separate IM2COL transformation can enable one to

use highly optimized primitives or even available hardware accelerators for GEMM. How-

ever, performing the IM2COL transformation in software may not provide the best possible

performance for the following reasons. First, a naive IM2COL transformation can result in

numerous redundant memory accesses. Sliding the filters over the input feature map creates
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numerous repetitions in the IM2COL patches. Depending on the filter size and stride size,

the number of memory accesses can be 9× more than the number of elements, indicating

that many elements are accessed repeatedly. Second, IM2COL can account for more than

60% of the convolution operation’s execution time. On average, the decoupled IM2COL

transformation spends 29% of the overall execution time for various layers in AlexNet,

VGGNet, and GoogleNet for a CPU system.

Section 3.4 describes our accelerator that performs IM2COL on-the-fly, extracts signif-

icant parallelism between various patches, and uses the hardware IM2COL unit to simplify

the hardware accelerator for GEMM without the need for complex interconnection net-

works.

3.3.3 Drawbacks of Prior Sparsity-aware Designs

To motivate our design, we review some of the main drawbacks of prior sparsity-aware

designs.

Redundant multiplications. One challenge of a sparsity-aware design is to find non-

zero pairs to multiply depending on their indices. SCNN [98] uses a Cartesian product

method to avoid the index matching step entirely. The Cartesian product of two vectors

produces an output vector that includes the product of each element from the first vector

with all the elements from the second vector. A Cartesian product’s all-to-all nature elimi-

nates the need for an additional step to match the non-zero values in two vectors. The major

weakness of this approach is that it generates some unnecessary partial products during the

multiplication phase that do not contribute to any final output.

Expensive hardware to find the non-zero pairs to multiply. Other proposals such as

SparTen [42] and GoSPA [30] avoid redundant multiplications by using an index matching

step, sometimes referred to as an intersection. This approach has two major drawbacks.

First, the intersection step is often performed by using expensive hardware (e.g., prefix

sum in SparTen). Consequently, the intersection unit introduces significant area and energy
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costs to a sparsity-aware design. For example, in SparTen, the sparsity handling contributes

to 42% and 62% of the total area and energy of the design, respectively. Second, the

intersection step is in the execution’s critical path. Therefore, multiplication units may

experience frequent idle cycles while waiting for the intersection results.

Extra decompression steps. Some methods like Sparse-PE decompress the sparse

data into a dense format before finding the non-zero pairs. Using a dense format helps

them simplify the hardware unit for index matching. However, it introduces a further step

of decompression (e.g., zero insertion) and requires large buffer sizes to store vectors in a

dense format, which reduces the benefits of using a compressed format.

Unnecessary data traffic. Methods used in SparTen and Sparse-PE are successful in

avoiding redundant multiplications that involve zeros as a result of the index matching step.

However, both designs still generate unnecessary data traffic. In the index matching phase,

the sparse vectors must be fetched by each processing element (core), even if they do not

contribute to the final result.

Custom routing needed for partial products. Sparsity-aware accelerators, such as

SparTen, Sparse-PE, and SCNN, have two separate units, one for multiplication (i.e., gen-

erating partial products) and one for accumulation (i.e., adding the partial products to pro-

duce the final output). Due to the need to route the partial products from the multiplication

units to the accumulation units, this approach adds complexity to the design.

Contrary to existing work on sparsity-aware designs, our aim with SPOTS is to elim-

inate redundant multiplications, minimize expensive hardware units, reduce metadata and

memory footprints, and reduce data traffic, resulting in both performance and energy sav-

ings.

3.4 SPOTS: Our Hardware Accelerator for Sparse CNNs

This section describes our hardware accelerator for sparse CNN inference. Our design

uses a GEMM-based formulation of a convolution operation. Our design goals are four-



66

fold: (1) significant performance and energy benefits, (2) support multiple CNN layers and

efficiently execute various layers of varying shapes and sizes, (3) exploit the sparsity in the

weights and the filters to reduce the sotrage and computation of CNN’s inference, and (4)

fine-grained pipelining of the IM2COL operation with the GEMM computation.

We propose a hardware unit for the IM2COL transformation that is synergistic and

pipelined with the hardware unit for GEMM. The IM2COL unit reads the 3-D input feature

map, and creates a set of linearized patches. The IM2COL unit consists of patch units

(PUs) that are responsible for constructing linear patches. As values are streamed in, the

PUs construct patches and forward the overlapped elements to neighboring PUs. Once a

PU collects all the values in a patch, it sends the complete patch to the GEMM unit. As a

result of this approach, the IM2COL unit only reads in values from the feature map once

and reuses them, avoiding redundant memory accesses.

We design a dynamically reconfigurable GEMM unit with a systolic array-based design.

The array of PEs can be configured as a tall array to balance the work between IM2COL

and GEMM computation. GEMM units can be configured as small GEMM units (Sec-

tion 3.4.4) to maintain a high PE utilization with CNN layers of varying shapes. Through

dynamic reconfigurability, the computation of various shape CNN layers can be mapped

to the PEs in the GEMM unit efficiently. Additionally, our design is sparsity-aware that

allows it to detect and skip zeros in the inputs (Section 3.4.3). Figure 3.6a shows the over-

all architecture of our accelerator. The two main components are the unit for the IM2COL

transformation and the GEMM unit. IM2COL and GEMM are connected by two buffers

that enable effective pipelining of operations between them. The compress unit detects and

skips the zero blocks in the feature map and weights before they are sent to the GEMM

unit. Next, we will explain each component in more detail.
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systolic array-based GEMM unit. (b) The Overall IM2COL architecture and patch unit
internals.

3.4.1 The IM2COL Unit

The IM2COL transformation creates a 2-D matrix from a 3-D input feature map, which

reduces convolution to matrix multiplication (Section 3.2.2). The IM2COL transformation

is challenging because it inherits some of the complexity of the convolution operation. The

IM2COL has a complex memory access pattern that results in many redundant accesses to

the memory.

To accelerate IM2COL and minimize the number of accesses to the input feature map el-

ements, we propose a distributed hardware structure consisting of Patch Units (PUs)(Figure 3.6b).

A key insight in our IM2COL unit is that we use the localities that result from the overlap

between patches as we slide the filters over the input feature map both vertically and hor-

izontally. PUs are responsible for building patches one at a time. Our design goal is to

read the input feature map from SRAM only once. This is accomplished by each patch

unit having small local buffers containing values that can be used to build future patches.

PUs are also connected via a ring network, which enables them to communicate elements

locally and avoid redundant accesses to the input feature map in SRAM. Figure 3.6b shows

the overall architecture of our IM2COL unit that consists of three main components: input

controller, PUs, and output controller.
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The input controller reads the elements of the input feature map from SRAM and for-

wards them to the appropriate PU units. Along with sending values from the input feature

map to the respective PUs, the input controller maintains extra metadata. This metadata

contains information about the position of the current patch. For some convolution layers,

the stride size is the same as the kernel size. There is no overlap between the patches in

those cases. In those situations, the input control forwards its output directly to the output

controller by skipping the PUs.

The IM2COL unit contains multiple PUs. The PUs are the main components of the

IM2COL unit for generating patches. The internals of the PU are shown in Figure 3.6b.

Each PU has three buffers: the new buffer, the neighbor buffer, and the reserved buffer. The
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new buffer (N) contains the newly fetched element from the input controller. The neighbor

buffer (G) stores the elements received from the neighboring PU. The reserved buffer (R)

stores some of the elements previously received at that PU in the previous rounds. We

store the row and column indices (i.e., coordinates) along with the value for each element.

Every PU has a control unit that manages the buffer and generates patches. The controller

determines whether an element should be forwarded to the neighboring PU or maintained

in the reserve buffer for future use.

Each patch has a unique identifier (i.e., the row and column of the top-left element). The

control unit in a PU uses the patch identifier, the filter size, and the stride size to determine

which elements need to be (1) fetched from the input feature map, (2) forwarded to the

neighboring PUs, and (3) stored in the reserve buffer for future rounds. As an example, all

elements must be accessed from the input feature map when the first patch is processed by

a PU.

In a given round, all the elements required for adjacent patches are provided by neigh-

boring PUs. A PU typically receives K2 −K × S elements from the neighboring patches

as long as it is not the first patch in a given round, where K is the size of the kernel and S

is the stride size. We assign all patches that belong to the same column (i.e., column index

of the top-left element) in different rounds to the same PU. Therefore, the PUs store some

elements that may be useful to build patches in subsequent rounds in the reserved buffer.

The process is repeated for all channels in the feature map.

The total number of elements that are overlapped between the vertical patches for a

given filter size is C ×W × (K − S) where W is the width of the input feature map. This

represents the maximum amount of data reuse possible with a reserve buffer. Further, the

width and the channel size are inversely proportional to each other. For example, the first

few layers of a CNN often have a small number of channels that are wider. In contrast,

the later layers of the CNN have larger channels of smaller width. Therefore, a small

reserve buffer can provide substantial data reuse even for larger layers. When the number



70

of overlapping elements between vertical patches exceeds the size of the reserved buffer,

the input controller skips the reserved buffer and fetches the element from SRAM again.

Data reuse in such cases is limited to horizontally adjacent patches.

Finally, the output controller organizes patches formed by each PU and manages com-

munications with the GEMM unit. It coordinates double buffering that enables the IM2COL

unit and the GEMM unit to execute simultaneously.

Figure 3.7 illustrates the process of generating the patches using the PUs in our IM2COL

unit. For example, PU1 receives four elements (A1, A6, A2, A7) from the input controller

and stores them in the new buffer in step 1. Similarly, PU2 receives two new elements (A3,

A8). In a later step (i.e., step 2), the PU2 will receive other elements from the PU1.

Our hardware IM2COL unit offers two benefits: energy efficiency and performance.

Accessing the smaller SRAM and performing integer operations (such as computing row

and column indices) consumes significantly less power than accessing DRAM or large

SRAMs. Therefore, our design provides significant energy savings. Further, our distributed

collection of PUs unlocks extra parallelism beyond parallelism among the channels, allow-

ing multiple patches to be built simultaneously by different PUs in the IM2COL unit that

boosts performance.

3.4.2 The GEMM Unit

Our hardware unit for accelerating GEMM is a systolic array-based design. As opposed

to previous proposals that used systolic arrays for GEMM [21, 69, 70], we add dynamic

reconfigurability to the GEMM unit. The GEMM unit in SPOTS can be configured either

as a tall-shaped systolic array (the height is considerably larger than the width) to maximize

data reuse or as multiple GEMM units with square-shaped systolic arrays. Figure 3.8(b)

illustrates our systolic array-based design for GEMM with a tall array.

The use of a tall systolic array-based architecture for GEMM has two main advantages.

One of the inputs for the GEMM unit comes from the IM2COL unit. When a tall-shaped
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Figure 3.8: Illustration of our GEMM unit. (a) Inputs to the GEMM unit. (b) A tall array
for the GEMM unit. (c) Illustration of GEMM computation at various steps. We show the
current inputs and the partial results computed till a step for each PE. We demonstrate the
output-stationary attribute of our design.

array is used, the input arriving from the IM2COL unit requires less memory bandwidth.

We can achieve high PE utilization in the GEMM unit with less throughput in the IM2COL

unit. Thus, our IM2COL unit can be built with fewer resources and memory bandwidth

requirements. Second, the tall array allows our design to take advantage of sparsity in the

output of the IM2COL unit. As the width of the tall array is smaller than its height, fewer

columns from the IM2COL transformation enter the systolic array at any instant of time,

which increases the opportunity for detecting and skipping entire rows of inputs with zeros

before entering the systolic array. By using a tall-shaped array, we simplify our algorithm

by skipping redundant computations involving zeros in the input feature map. Section 3.4.3

describes our techniques for handling sparsity.

The GEMM unit employs an output-stationary dataflow, where a processing element
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(PE) computes the final result by accumulating partial products for a particular output ele-

ment. This output-stationary dataflow ensures maximum reuse of the output data. In addi-

tion, by using a tall array, SPOTS can achieve high data reuse for the result of the IM2COL

transformation (i.e., feature map input). In addition, the output-stationary dataflow elim-

inates the need for separate multiplication and accumulation units. As a result, multiple

levels of multiplication and addition are eliminated, as are routing logics across the two

units (Section 3.2.3). Figure 3.8(a) shows the weight matrix from the filter and the output

of the IM2COL transformation that forms the input to the GEMM unit. The values of the

filter matrix enter the GEMM unit’s systolic array from left-to-right. While the result of the

IM2COL unit enters the systolic array from top-to-bottom. Figure 3.8(c) shows the various

steps and partial results computed in the GEMM unit. Our design is parameterizable with

M rows and N columns in the systolic array.

Our specific prototype used 128 rows of PEs and 4 columns. These numbers were

chosen based on the characteristics of CNN layers. Each row of the systolic array can

have multiple rows of the filter matrix assigned to it, depending upon the scheduling mode.

There are fewer than 512 rows of filter matrices in the majority of layers in state-of-the-art

CNNs.

In each PE, there is a single multiply-accumulate (MAC) unit that uses two 16-bit fixed-

point inputs and accumulates the results in a 24-bit register. In our design, we use four K

registers per PE to handle multiple rows of the filter matrix (e.g., in our design, K = 4).

Each PE has three FIFOs. Two FIFOs, one for each arriving input. The other FIFO serves

as the work queue for the MAC unit. The coordinates of the elements of the two input

matrices should match before multiplying them in GEMM. As long as the inputs are sent

to the PEs in the right order, we do not need additional logic to perform index matching

inside a PE. Additionally, our output-stationary dataflow ensures that every partial product

produced in a PE belongs to the same output element. Next, we describe how to support

sparsities in both inputs without using any index matching units inside the PEs.
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3.4.3 Handling Sparsity in CNNs

Most CNNs have sparsity in both filters and the input feature map. Figure 5.1 quantifies the

amount of sparsity (percentage of zeros when compared to the total number of elements)

for the commonly used CNNs. We use structured sparsity learning (SSL) [135] for our

pruning method and optimize it to suit our hardware design better (Section 5.1). To store

pruned weights, we propose a new sparse format. Our sparse format delivers high band-

width access to the filters necessary to keep the PEs in a tall systolic array active. Our

sparsity-aware design identifies and skips the zeros on-the-fly and at block granularity. In

our sparsity-aware design, we skip zero blocks instead of individual zeros. That simplifies

our sparsity-aware design. In addition, SPOTS skips zero blocks outside the PEs and in

the input controller. Thus, we avoid using expensive hardware units for index matching or

introducing any redundant multiplications (Section 3.2.3).

Our sparse format for weights. Once the weights for the filters are learned during the

training phase, we divide them into blocks. The block size is equal to the group size used

for pruning, which is a design parameter. Logically, the filter matrix will be a 2-D matrix

of blocks when viewed in the dense representation. To minimize the memory footprint for

storing the filters during the inference, we convert them into a sparse representation that is

aware of the number of banks in the SRAM. To store the pruned weights compactly, we use

three arrays. Figure 3.10a shows our custom sparse format. We store all non-zero blocks

separately in one array (Array A) that is distributed in multiple banks based on the row

index of the block (i.e., vertical position in the filter matrix). We use two bitmap arrays

M1 and M2 to store the metadata. The bitmap array M1 indicates whether a column in the

filter matrix has any non-zero values. A zero in the bitmap array M1 indicates an empty

column. The bitmap array M2 maintains whether a block in a non-zero column is non-zero.

A zero in M2 indicates the corresponding block is zero (i.e., as a block is a collection of

values, it implies that all values in the block are zeros). Three arrays of our sparse format

(i.e., A, M1, and M2) are distributed across different banks of the SRAM so that the input



74

controller for the GEMM unit can access them in parallel.

Figure 3.9 compares the memory footprint of our format with some of the most com-

monly used sparse formats in prior work. Unlike sparse formats like run-length encoding

(RLC), CSR and DCSR, our format does not require additional storage to keep the count of

the non-zeros (e.g., RLC) or data pointers (e.g., row pointer in CSR). Thus, the metadata

size for our proposed sparse format is independent of the sparsity of filters, and it only de-

pends on the total number of blocks in the weight matrix. Another important benefit of our

sparse format over index-based sparse formats such as CSR is that it allows the non-zeros of

a column to be stored in multiple banks. The banks can be processed independently and in

parallel. CSC, CSR, and DCSR do not have this feature since they only keep the beginning

of a column (CSC) or a row (CSR and DCSR). As shown in Figure 3.9, our sparse format

outperforms other sparse formats for various density ratios. Compared to other bit-mask

sparse formats like the one used in SparTen or Sparse-PE, our sparse format needs nearly

8× less metadata by using the mask bits in a more coarse-grained fashion (i.e., block level).

In summary, using a structured pruning method together with a proper sparse format

enables SPOTS to gain a meaningful advantage over other sparse formats in storing the

pruned weights. This can directly translate into energy consumption savings since the

memory accesses (including both SRAM and DRAM accesses) are the main contributors

to the overall energy consumption, as previous studies show [21].

Skipping zeros in the feature map and weights. The compress component before

the GEMM unit in our accelerator (Figure 3.6a) identifies a block of zeros in the result of

the IM2COL transformation. For each block coming out of the IM2COL unit, a bitmap is

created. If all elements in a block in the output of the IM2COL unit are zeros, the bit is set

to zero for that block; otherwise, the bit is set to one. Subsequently, the input controller of

the GEMM unit uses this bitmap and M1 level bitmaps for the weights (Figure 3.10a) to

skip blocks of the input feature map and weights on-the-fly when they are all zeros.

One unique feature of our approach is that we skip MAC operations involving zeros
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outside the PEs and in the input controller. These have two advantages. First, we avoid the

unnecessary data traffic to stream the rows of feature maps and columns of filters to PEs

when they are zeros. Second, by detecting and skipping zeros centrally (inside the input

controller), the PEs are relieved of storing and processing any metadata, thus reducing the

amount of area and power consumed. Besides, our approach does not require any expensive

hardware units inside every PE to detect and match the non-zero pairs, unlike some prior

work (Section 3.3.3). Figure 3.10b illustrates how the zero columns in the weight matrix

and the zero rows in the output of the IM2COL unit are skipped. In addition to the zero

blocks that we skip in the control unit, some PEs may still receive zero blocks (the gray

blocks in C1, C2, and C4 columns in 3.10b). This happens when a column of the weight

matrix is partially zero. In those cases, the input controller sends one bit to the PE to

indicate a zero block. As a result, PEs ignore blocks with all zeros and MAC units are

gated to reduce energy consumption.

Finally, we highlight the role of the tall systolic array in our on-the-fly detection of the

non-zero blocks in the feature map. The number of elements entering a tall systolic array is

limited to blocks with a small number of elements (e.g., blocks consist of 4 elements in our

prototype). Small block sizes increase the possibility of detecting blocks that include only
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skips rows and columns with all zeros. (1) Weight matrix with the metadata about columns
with all zeros. (2) The IM2COL result with the metadata about rows with all zeros. (3) If a
row or a column is all zeros, all such rows and columns can be skipped (i.e., and operation
of the row and column metadata). (4) GEMM computation when rows and columns are
skipped. For example, the first element of column C4 will be fetched by the first PE in
cycle 2 (skipping columns C2 and C3).
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(a) Enhancements to the tall systolic array to support 
CNN layers with different shapes
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Figure 3.11: (a) Enhancements to reorganize the tall systolic array (SA) as multiple GEMM
units. (b) Illustration of how inputs are distributed in the configuration with multiple
GEMM units.

zero elements and are easier to skip. The ? marker in Figure 5.1 indicates the percentage of

zeros skipped on-the-fly with this technique in the output of the IM2COL transformation.

3.4.4 Handling Various CNN Layers/Shapes

CNNs have multiple layers that can vary in size and shape. When PEs have a fixed con-

figuration, they can be underutilized for some layers’ shapes and sizes. Each filter forms

a row of the weight matrix that is assigned to a distinct row of the systolic array. When

the GEMM unit is configured as a tall systolic array, and the number of filters is relatively

smaller than the systolic array’s height (e.g., 128), some PEs will remain unused.

With GEMM’s dynamic reconfigurability, we are able to support CNN layers with a va-

riety of attributes (Figure 3.11). Specifically, the PEs in the GEMM unit can be configured

either as one tall array or multiple small arrays. Both configurations have the same number

of columns. This enhancement allows our design to be more adaptive to different layer

shapes and thus maintains high PE utilization under different conditions. Figure 3.11(a)

demonstrates how a tall array can be used as two smaller arrays using the multiplexers.
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Hence, the PEs now can receive the input either from the PEs above (i.e., it forms a

tall array) or can get the input from a different IM2COL unit. Depending on the mode

register and the features of a layer, these multiplexers can be configured dynamically. The

weight matrix is broadcast to all small systolic arrays when the GEMM unit is configured

as smaller systolic arrays. Each small GEMM unit receives the feature map input from

their assigned IM2COL units. The two GEMM units compute two independent groups of

columns of the final result matrix (i.e., GEMM 1 computes the result columns from 0 to

N/2, GEMM computes the columns from N/2+1 to N). In our prototype, we have four

IM2COL units. There is one main IM2COL and three smaller IM2COL units to support

the two configurations. The main IM2COL unit is used for the tall array configuration.

The other configuration uses all four IM2COL units. This dynamic reorganization of the

GEMM unit’s systolic array coupled with the multiple IM2COL units enables our hardware

to maintain high PE utilization for various CNN layers with different shapes.

Supporting fully connected layers. Most CNNs have one or more fully connected

layers at the end of the network. The fully connected layers use the matrix weights learned

during the training and the output feature map provided by the final convolutional layer

that is flattened to a vector. The computation of the fully connected layer is equivalent to

matrix-vector multiplication for a batch size of 1. We can structure it as a matrix-matrix

multiplication by increasing the batch size. As we use a tall array, the batch sizes need not

be large to utilize the whole array of PEs fully (e.g., can be as small as 4).

Supporting pooling layers. A pooling layer summarizes the features generated by a

convolution layer. The two most common types of pooling layers are max pooling and

average pooling. Among them, max pooling, which picks the maximum element from a

feature covered by the filter, is more common. Similar to convolution layers, the pooling

layer has two parameters, filter size, and stride size. We support the pooling layer by adding

the pooling operation (e.g., MAX) to the output of the patch units (PUs) in the IM2COL

unit.
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3.4.5 Strategies to Improve Load Balance in SPOTS

Load imbalance happens in sparse CNNs due to the uneven distribution of the non-zeros in

weight and feature map inputs. An accelerator’s choice of dataflow and data reuse strategy

determines the source of load imbalance. Generally, accelerators adopt either an input-

stationary or an output-stationary dataflow. Subsequently, an input-stationary dataflow can

be weight-stationary or feature map-stationary. The input-stationary dataflow keeps one

input stationary in the PEs, while the other input is broadcast to each PE to ensure data

reuse. When there is an uneven distribution of non-zeros in the inputs, some PEs may

receive fewer inputs, forcing them to remain idle until the other PEs process their inputs

before they all can receive new inputs.

SPOTS adopts an output-stationary dataflow with a tall systolic array (Section 3.4.2).

In a tall systolic array, the feature map values are passed through as many PEs as possible

to ensure maximum data reuse. We skip the zeros in the feature map input inside the input

controller before entering the systolic array, as described in Section 3.4.3. Thus, the non-

zeros are skipped for all PEs (not just for an individual PE) in the systolic array. SPOTS’s

early zero detection method avoids load imbalance caused by the uneven distribution of

non-zeros in the feature map. In a similar way, SPOTS detects and skips the zeros in the

weights outside the PE when they span the whole filters (i.e., an entire column of the weight

matrix).

As a result of partially zero columns in the weight matrix (i.e., some blocks are zeros,

others are non-zeros), some PEs may receive zero blocks, while others receive non-zero

blocks. This can lead to an imbalance in work between PEs. The load imbalance among

the PEs can be quantified using the metric proposed by [33] where the load imbalance is

quantified as follows:

imbalance percentage =
maximum work − average work

maximum work
× n

n− 1
(3.1)
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The imbalance percentage corresponds to the percentage of time the PEs with less work

are not engaged in useful work and are waiting for the PE with the maximum work. A

perfectly balanced work distribution results in 0 imbalance percentage. Thus, a lower im-

balance percentage results in fewer idle cycles for the PEs.

One way to improve the load balance in the PEs is to rearrange (shuffle) the non-zero

blocks in the weights offline to make the distribution of the non-zero blocks more balanced.

However, this reshuffling can change the position of the output channels and thus requires

an additional step to reorder the output before the next layer uses them [42, 69]. In SPOTS,

we did not add any additional load balancing hardware or software units to avoid creating

additional complexity. In Section 5 we present the average imbalance percentage for all

four CNN architectures with SPOTS.

3.5 Related work

There is a substantial body of literature on using custom hardware accelerators to improve

neural network performance and energy efficiency [8, 19, 21, 30, 36, 40, 48, 55, 83, 98,

102, 103, 145]. Table 3.1 provides a qualitative comparison of SPOTS with closely related

work.SPOTS supports various operations in CNNs, is adaptive to layers of different shapes

with high PE utilization, and effectively supports sparsity both in the feature map and in

the weights.

Support for sparse inputs. Prior work has improved energy efficiency by support-

ing sparse inputs during inference. Cnvlutin [8] exploits sparsity in the input feature map

to skip multiplication operations and avoid data movement with zero elements. Cambri-

conX [145] supports sparsity in the weights. Similar to our work, SCNN [98] and Cam-

briconS [149] support sparsity in both the feature map and the weights to improve energy

efficiency and performance. Previous work has used data gating techniques to reduce the

power consumption when the operands are zeros [21, 103]. The zero value clock gating

technique reduces power consumption without reducing the number of effective operations.
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Similar to SPOTS, previous hardware designs have developed techniques to skip zeros and

minimize the amount of data transferred [30, 48, 90, 98]. Prior work use both random

and structured pruning techniques. EIE [48] uses a random pruning method coupled with

a fine-grained sparse CSR-encoded to store the pruned weights. ESE [47] extends this

approach to Long short-term memory (LSTM) neural networks. Similarly, MASR [45]

and Doping [126] exploit an unstructured sparsity for RNNs and LSRM, but instead of a

CSR format, they use a bitmask encoding. Similar to SPOTS, prior studies propose var-

ious structured pruning methods and hardware methods to take advantage of the sparsity

while avoiding the complexity of random pruning methods. Kang [63] proposed a scheme

that prunes the weights so that the number of weights for each weight group remains the

same. This addresses some of the inefficiencies of random pruning, such as the internal

buffer misalignments and load imbalances. A recent work [83] uses the same approach but

instead applies it to both weight and feature map input.

Support for various layers in CNNs. Many hardware designs are tailored for a single

type of computation and do not support all types of layers in CNNs, such as pooling lay-

ers [69]. EIE [48] is intended for the fully connected layers in CNNs. The input feature

map and filters are stored in a compressed format, and only non-zero operands are passed

to the multiplier. In contrast, SCNN [98] and Eyeriss [20, 21] primarily focus on the convo-

lution layers. This means they can underperform for the fully-connected layers. SCNN can

achieve 25% of peak throughput when performing the fully connected CNN layers. Eye-

riss provides significant energy gains only for batches larger than 16. In contrast, SPOTS

supports all the common layers that exist in CNNs.

Systolic array designs for CNNs. Tensor Processing Unit (TPU) [60] is an ASIC that

has matrix multiplication as its core computation block to accelerate CNNs. TPU requires

the use of the host CPU to perform some data reorganization and does not support sparse

inputs. Recent work [51, 69] uses a preprocessing step (i.e., column combining) to pack

a sparse CNN into a denser form before passing the inputs to a systolic array for GEMM.
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Table 3.1: Qualitative comparison of SPOTS with prior work.

Accelerator Supports sparsity Supports Adaptive to different
Feature map Weight Gate zero Skip zero pruned network layer shapes

Eyeriss [21] 3 7 3 7 7 7

Cnvlutin [8] 3 7 3 3 7 7

CambriconS [149] 3 3 7 3 3(structured) 7

SCNN [98] 3 3 3 3 3(random) 7

CMSA [139] 7 7 7 7 7 3

Column combining [69] 7 3 7 3 3(structured) 7

SIGMA [101] 3 3 7 3 3(random) 3

Sparse-PE [102] 3 3 7 3 3(random) 7

SPOTS (this work) 3 3 3 3 3structured 3

It is unclear how to prepare input feature maps for matrix multiplication. The method will

not be useful if the input feature map is highly sparse. Our group-wise pruning provides

higher accuracy than the column combining method. Simultaneous multithreaded systolic

array (SMT-SA) [112] addresses the underutilization and load imbalance introduced by

random pruning of the weights in a CNN. In Similar fashion to SPOTS, recent work [82]

utilizes a structured pruning accompanied by a novel data format called density-bound

block (DBB) better to map the sparse inputs to the systolic architecture. Gemmini [40] is

another accelerator that uses a GEMM to accelerate CNNs. Both software and hardware

IM2COL units are explored in their work. Similar to our work, their results demonstrate that

using a hardware IM2COL can significantly improve performance. As opposed to SPOTS,

Gemmini does not take sparsity into account. Furthermore, PEs are rigidly organized in

their design, resulting in underutilization of PEs for certain layer shapes. Recent work [150]

proposes a memory-efficient hardware for the IM2COL. The main insight is to layout the

feature map elements in the SRAM in a Channel-First manner. In this way, the feature map

inputs are sent one column at a time to the GEMM unit. We use multiple PUs connected by

a ring network instead of their single PU. This allows us to generate multiple columns of

inputs at the same time. Their design stores the feature map elements in one large SRAM.

Instead, we use multiple smaller SRAMs to store the feature maps to save energy.

Flexible interconnects. The flexibility of the interconnect between PEs can help sup-

port different filter sizes [71, 101]. Maeri [71] enables tree-based reconfigurable intercon-

nect networks to facilitate DNN accelerators dataflow mapping. The downside of MAERI
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is that it cannot handle sparsity in input feature maps. Similarly, FlexFlow [86] develops

a flexible dataflow architecture that uses different types of parallelism along with different

CNN workloads. As opposed to them, SPOTS uses a regular interconnect network between

the PEs. Another recent work SIGMA [101] proposes a flexible non-blocking interconnect

to achieve high compute utilization across layers of varying shapes. The SIGMA archi-

tecture is primarily designed to handle high-precision inputs during the training phase.

Moreover, they only focus on the GEMM and do not study the IM2COL transformation

and do not support other types of layers CNN. Recent work [139] design a configurable

multi-directional systolic array (CMSA) that improves the PE utilization for small-scale

convolution or depthwise convolution. Yet, their design focuses solely on increasing PE

utilization and does not take into account other aspects, such as sparse input and IM2COL

design.

Load balance in sparse CNN accelerators. Load balancing is not supported by many

hardware accelerators for sparse CNNs [90, 98, 102]. GoSPA [30] employs a passive

strategy to deal with load imbalance problems. To maintain high multiplier utilization

in the presence of load imbalance, it employs a two-stage buffering technique. Using large

buffers can negatively impact their design’s area and power consumption. By contrast,

SparTen [42] and Column Combining [69] use a systematic approach to deal with load im-

balance in their designs. SparTen proposes a greedy balancing method with two variants: a

pure software approach and a software-hardware hybrid. SparTen also balances load at two

granularities (e.g., at the filter and chunk levels). The load balancing at a finer grain (i.e.,

chunk level) requires a hardware multi-stage permutation network to unshuffle the partial

sum of each chunk to the appropriate output sum. Column Combining [69] suggests a new

method for packing sparse CNNs into a denser format for efficient execution using systolic

arrays. They combine multiple sparse columns of a convolutional filter matrix into a single

dense matrix. Like SparTen, they introduce extra hardware to permute the rows.

Bitwise sparsity. Some prior studies identify and skip the zero computations at the bit
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level [7, 29, 108]. Pragmatic [7] adopts the bit-sparsity for the weights. Tactical [29] targets

bit-sparsity in the feature map input instead. By doing that, they uncover more ineffectual

work. Laconic [108] outperform both designs by applying the bit-sparsity for both weight

and feature map inputs.

3.6 Summary

This chapter introduces SPOTS, a hardware accelerator for sparse CNNs using matrix mul-

tiplication with the IM2COL transformation. The hardware IM2COL unit reads the input

feature map only once, reuses the data, and executes in parallel with a tall systolic array for

the GEMM unit. We add flexibility to the systolic array that allows it to achieve high PE

utilization for CNN layers of varying sizes and shapes. SPOTS supports sparsity both in the

input feature map and the filters. Similar to our design in Chapter 2, we use the software to

preprocess the sparse data and organize them into a hardware-friendly format. This allows

the hardware to access the input with high bandwidth. Unlike the design for SpMV and

SpGEMM, the software preprocessing step is not overlapped with the hardware execution.

Instead, the software preprocessing happens prior to the hardware execution and its cost is

amortized over many executions of the hardware. We evaluate the performance and energy

efficiency of our accelerator and compare it with other recent hardware accelerators for

CNNs in Chapter 5.
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CHAPTER 4

AN FPGA ACCELERATOR FOR SPARSE CONVOLUTIONAL NEURAL

NETWORKS

In this chapter, we present our FPGA implementation of SPOTS. In Chapter 3, we pre-

sented an ASIC design of SPOTS for accelerating the inference of sparse convolution neu-

ral networks. In SPOTS, we formulate the convolution layers as general matrix-matrix

multiplication (GEMM) with an Image to Column (IM2COL) transformation and offload

both computations to the hardware. The process of designing and manufacturing ASICs

can take a long time and can be expensive. FPGAs are an alternative to designing cus-

tom hardware. FPGA reconfigurable substrates reduce non-recurring engineering (NRE)

costs and can be reprogrammed for different applications. This chapter presents our FPGA

design for the inference of sparse convolutional neural networks. We use the same convo-

lution formulation as Chapter 3. By offloading both IM2COL and GEMM computation to

the FPGA, we reduce CPU and FPGA data traffic. The ASIC and FPGA are different in

some respects. A main difference between FPGAs and ASICs is that FPGAs operate at a

lower frequency due to their reconfigurability. Hence, we revised some of the components

of our design in Chapter 3 to better map onto FPGA.

Unlike most prior FPGA designs for CNNs that support only the sparsity in the weight

input, our FPGA design exploits sparsity in both weights and feature maps. We avoid

complex hardware units for skipping zeroes by using a tall-thin structure of PEs along with

a hardware-friendly pruning method. Our sparsity-aware design suits FPGA architecture.

In addition, we enhance our design to have good performance for CNNs with different layer

shapes. Further, our design can scale up or down depending on the available resources of

a target FPGA. Finally, we demonstrate how different components of our design can be

realized using High-Level Synthesis (HLS) tools for FPGAs.
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4.1 Background on High Level Synthesis for FPGAs

We provide background on FPGA programming using the High Level Synthesis (HLS)

tool. While our examples use the Xilinx HLS syntax, these concepts also apply to other

HLS tools.

4.1.1 Building FPGA Designs with High Level Synthesis

Register transfer level (RTL) design using hardware description languages such as Verilog,

VHDL, and Bluespec is the gold-standard programming model for FPGAs. The process

of describing a design in RTL is often compared to writing assembly code for a CPU [93].

Over the past few decades, numerous attempts have been made to simplify the process of

building applications for FPGAs. One notable example is High Level Synthesis (HLS).

The HLS toolkit provides an API for FPGA designers to convert designs described in high-

level programming languages, such as C/C++, Scala, or Haskell, into RTL code. There are

several well-known HLS tools such as Vivado HLS [95], Synopsys Synphony C Compiler,

and LegUp [17].

While HLS tools relieve the designer from some of the difficulties of building custom

hardware on FPGAs, building an efficient design still requires a designer with extensive

application domain knowledge and familiarity with the hardware architecture. Next, we

describe some important optimizations that can improve the performance and efficiency of

the FPGA design while using HLS tools.

4.1.2 HLS Optimizations

HLS tools use a C/C++ front end and a set of transformation heuristics to map software

constructs onto hardware elements along with a back end that generates RTL code [17,

24]. To satisfy resource, layout, and timing requirements, a constraint solver is typically

deployed [25]. To guide the transformation, programmers can add #pragma hints. HLS



87

With
 pipeline

Without 
pipeline

RD MUL WR

RD MUL WR

i

i+1

RD MUL WR

RD MUL WR

i

i+1

for ( i=0 ; i < N ; i++){
    #pragma hls PIPELINE II=1
  
    C[i] = A[i] * 2 ;
}

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

Figure 4.1: Example of a loop pipelining. A designer can indicate the desired initiation
interval by setting II. The compiler pipelines the loop iteration automatically if there is no
data dependency between iterations. In this example, the initiation interval is set as 1. This
means the next iteration starts as soon as the next cycle.

tools make a heuristic effort to translate any valid C/C++ program to RTL. In this section,

we present some of the most important pragmas that programmers can use to improve their

design performance in HLS.

Exploiting Parallelism. FPGAs enable designers to extract parallelism at a finer granu-

larity to improve performance. Parallelism can be defined at various levels in HLS. It can

be the operations within a loop or the parallelism between multiple functions. Programmers

can use directives (via pragmas) to express parallelism in their code.

Loop pipelining. Loop pipelining is used to define parallelism at the instruction level.

Figure 4.1 shows an example of a simple loop that performs simple arithmetic operations

on two vectors (A and C). The loop includes a read operation to read one element of input

A, a multiplication operation, and a write operation to write the result to the output array

(C). Figure 4.1 shows the loop execution cycles with and without the pipelining. A loop

without the pipeline pragma processes the three operations sequentially and waits for all

the operations in the previous iteration to finish before starting the new iteration. When

a pipeline pragma is used, the next iteration is started immediately after the module can
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for ( i=0 ; i < N ; i++){
    #pragma hls UNROLL factor=2
  
    C[i] = A[i] * 2 ;
}

Cycle 1 Cycle 2 Cycle 3

Figure 4.2: Example of unrolling a loop. A designer can indicate the desired unrolling
factor by setting unroll factor. In this example, the unrolling factor is 2, meaning two
copies of the modules will execute the loop in parallel.

accept new input. The initiation interval (II) defines how fast the next iteration can begin.

II is set at the cycle level. In general, it is desirable to have loops with II=1. In some cases,

the tool may not be able to reach the designer’s desired initiation interval. For example,

loop carry dependencies can prevent loop pipelining. When this occurs, the tool selects

the minimum possible II from that loop. Several other pragmas can be used to provide

additional information to the tool to overcome loop-carry dependencies, but we do not

explain them here.

Loop unrolling. Unrolling is another type of parallelism that can be defined within a loop.

Unrolling makes multiple copies of the operational module that can then execute in paral-

lel. A user can set the unrolling factor. Figure 4.2 shows the earlier example (Figure 4.1)

this time with an unrolling pragma. In this example, the unrolling directive instructs the

HLS tool to create 2 copies of the multipliers. A loop can be unrolled partially or com-

pletely. Loop unrolling represents an area/performance trade-off. Unlike loop pipeline,

unrolling can only be applied when loop iterations are known at compile time. Similar

to loop pipeline, the compiler may fail to achieve the designer requested unrolling factor.

Insufficient resources are one of the most common reasons for this. In our example, if

there are not enough memory ports to read input for multiple copies of the loop body, then
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void func (..){
  #pragma hls DATAFLOW
  
  function1(in1,o1);
  function2(in2,o2);

}

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

Figure 4.3: Example of using the dataflow pragma. With a dataflow pragma, function 2 can
start right after function 1. This saves 2 cycles compared to the design without a dataflow
pragma.

the compiler will not be able to unroll the design as requested. We will discuss how the

memory units can be partitioned to meet the requirements for the hardware modules later.

Task-level Parallelism. The parallelism can be defined at a higher level such as the

entire task. Dataflow pragma is used to define parallelism at the function level. A Dataflow

pragma pipelines the functions and schedules them to start their operation as soon as the

inputs are ready. Figure 4.3 presents the task level pipelining. The overall latency to finish

two functions is 6 cycles (three for function 1 and three for function 2). When they are

pipelined, the second function can start its process after the first cycle. Thus, the overall

execution time is reduced to 4 cycles with dataflow. In pipelining the tasks, the initiation

interval is determined by the task with the highest latency.

Memory configuration. The improper memory partitioning is one of the main reasons

why the design cannot achieve the desired parallelism (II=1 for the initiation interval for

loop pipelines or the maximum unrolling factor). It is the designer’s responsibility to

choose optimal memory partitioning for the design. In addition, FPGAs often offer various

on-chip memory resources such as block-RAMs (BRAMs), LUT RAM, and Ultra RAM

(URAM). Utilizing all the available resources can help to improve the overall performance
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#pragma hls array_partition variable=V  type=cyclic factor=3

(a) Block paritioning

(b) Cyclic paritioning

Figure 4.4: Example of partitioning an array that splits a large array (V ) into multiple
smaller arrays. (a) shows a block partitioning and (b) shows a cyclic partitioning of array
V .

of the design.

Memory partitioning. Memory partitioning divides a single array of data into multiple

arrays and assigns each array to a different memory resource. Each memory module can

be accessed independently. Figure 4.4(a) demonstrates a block paritioning method where

each smaller array is created from consecutive blocks of the original array. Another way to

partition an array is cyclic partitioning that creates smaller arrays by interleaving elements

from the original array (Figure 4.4(b)).

Specifying the memory resources. The designer must be aware of the resources available

on the target FPGA. HLS tools often report the resource utilization of a design. Exhausting

the resources such as the on-chip memory can result in a timing failure or a low design

frequency. HLS tools allow the designer to request a specific resource through pragmas.
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The compiler silently ignores the designer’s request if the target FPGA does not support

the requested resource.

4.2 The Architecture of Our FPGA Accelerator for Sparse CNNs

In this section, we present the architecture of our FPGA accelerator for sparse CNNs in-

ference. Similar to our design in Chapter 3, we formulate the convolution operation as a

GEMM using an IM2COL transformation. Our design goals are three-fold: (1) to pipeline

the IM2COL operation with the GEMM computation to reduce data traffic between the

CPU and FPGA and improve the latency, (2) to exploit the sparsity in the weights and the

feature maps, and (3) to design a flexible system that can adapt to different CNN layer

shapes and sizes while scaling up or down based on FPGA resources.

First, we present the GEMM and IM2COL units. Then, we describe our sparsity-aware

design and how it is suitable for FPGAs. Finally, we explore how our design can adjust to

different layer shapes while scaling to FPGAs with varying resources.

4.2.1 The IM2COL Unit

The IM2COL transformation creates a 2-D matrix from the 3-D input feature map, which

reduces a convolution operation to a general matrix-matrix multiplication (see Section 3.2.2).

Section 3.4.1 presents the IM2COL unit design targeting ASICs. The proposed IM2COL

unit is a collection of patch units (PUs) connected via a ring network (see Figure 3.6b).

Each PU includes three local buffers. These local buffers are used to store the overlapped el-

ements among patches. As a result, expensive DRAM accesses are minimized and through-

put is increased. Since FPGAs have limited and fixed memory resources, we had no choice

but to minimize the on-chip memory resources for our IM2COL unit. In the FPGA version

of SPOTS, we reduce the memory requirement for the IM2COL unit by removing the three

local buffers that exist in PUs in the ASIC design. Accordingly, we modify our patch gen-

eration algorithm based on these changes. When the local buffers are removed, some of
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Figure 4.5: A high-level overview of IM2COL and patch units.

the elements are accessed multiple times from external memory. In addition, the IM2COL

throughput is reduced compared to the design proposed in Section 3.4.1. As our FPGA

design operates at a lower frequency than our ASIC design, the lower throughput of the

IM2COL unit has a minimal impact on the GEMM unit performance.

Figure 4.5(a) shows the overall architecture of the revised IM2COL unit. The design

consists of an input controller, multiple patch units (PUs), and an output controller. In the

new design, the PUs are not connected and thus do not communicate. The input controller

reads the elements from off-chip memory and distributes them among the PUs according

to their channel ID. The PUs create the patches for different channels. Thus, we exploit

parallelism at the channel level. The number of PUs is a design parameter. The input

controller memory bandwidth and FPGA resources should be considered when determining

the number of PUs. Finally, the output controller reorders the patches received from the

PUs and sends them to the GEMM in the correct order. Next, we will describe each unit in

detail.

Input controller unit. Figure 4.6 illustrates how the input controller reads the input fea-

ture map and distributes it among the PUs. Elements of the feature map are fetched in

chunks of size K×W , where K is the kernel size and W is the input width (Figure 4.6(b)).

The input controller distributes the chunks among the PUs based on the channel IDs in a
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Figure 4.6: (a) The 3D format of the input feature map. (b) Illustrating the input chunks
sent to each PU by the input controller (c) Illustrating the order in which the input controller
sends different chunks to the PUs. (d) Illustrating the order in which the output controller
forwards the patches received from the PUs to the GEMM unit.

round-robin fashion (Figure 4.6(c)). Each PU receives all chunks belonging to the same

channel. Different chunks may overlap horizontally, depending on the kernel and stride

sizes. The chunks overlap when the stride size is smaller than the kernel size. Unlike Sec-

tion 3.4.1, we do not save the elements in local buffers so they can be reused to build later

patches. Thus, the input controller may read some of the elements from external memory

multiple times.

Patch unit (PU). Figure 4.5(b) shows the different components of a PU unit. In each

round, the PUs receive the chunks for their assigned channels. They generate the patches
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based on the order the GEMM unit processes the patches (column-major order). Listing 4.2

shows the nested loops to build patches in the PU unit. We use the double buffering tech-

nique to overlap, fetching the chunk into local memory and building patches. The two

buffers (buffer 1 and buffer 2 in Figure 4.5(b)) need to be alternated between the module

that fetches the chunks and stores them locally and the module that generates the patches

and sends them out. Listing 4.1 demonstrates how the double buffering technique can

be realized with HLS. The load flag and send flag indicate whether the load chunk and

send patch units should be active or not. In the first iteration, the load flag is set, and in the

last iteration, the load flag is unset. The send flag is set after the first iteration and remains

active for the rest of the iterations. Besides, in the even and odd iterations the load chunk

and send patch modules access a different set of buffers. In the even iterations, load chunk

writes the chunks into the local buffer 1 and send patch reads from local buffer 2. Fi-

nally, lines 4 and 6 of Listing 4.1 also demonstrate how we utilize URAM memory instead

of the default BRAM memory for the two local buffers.

As opposed to the PUs in Section 3.4.1, the revised design has only two sets of local

buffers (due to the double buffering) to store the data chunks received from the input con-

troller. In the revised design, the total on-chip memory usage for all the PUs is C×K×W ,

where C, K, W are the channels, the kernel size, and the input width, respectively. The

width and the channel size are inversely proportional to each other. The layers with fewer

channels are wider than those with more channels.

Output controller unit. The output controller receives the patches from different PUs.

As the channels are distributed among the PUs in a round-robin fashion, patches should

be ordered according to their PU ID. Output controller sends the complete patches to the

GEMM unit in a column-major order (see Figure 4.6(d)). To store incoming patches, the

output controller has a separate buffer for each PU. These buffers prevent the PUs from

stalling while the output controller sends patches to other PUs.
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1 void PU (stride_size,num_patches,incoming_chunk,output_patch_stream)

2 {

3 DATA_TYPE local_buffer_1 [BUFFER_SIZE] ;

4 #pragma HLS RESOURCE variable=local_buffer_1 core=XPM_MEMORY uram

5 DATA_TYPE local_buffer_2 [BUFFER_SIZE] ;

6 #pragma HLS RESOURCE variable=local_buffer_2 core=XPM_MEMORY uram

7 for (int k=0 ; k < num_patches+1 ; k++) {

8 #pragma HLS PIPELINE II=1

9 int load_flag = (k >= 0 && k < num_patches);

10 int send_flag = (k > 0 && k <= num_patches);

11 if (k%2==0) {

12 load_chunk(load_flag,incoming_chunk,local_buffer_1,...) ;

13 send_patch(send_flag,local_buffer_2,output_patch_stream,...);

14 }

15 else {

16 load_chunk(load_flag,incoming_chunk,local_buffer_2,...) ;

17 send_patch(send_flag,local_buffer_1,output_patch_stream,...);

18 }

19 }

20 }

Listing 4.1: Demonstrating the double-buffering technique used in the PU units to overlap

loading the data chunk and generating the patches.
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1 void send_patch (flag,PU_local_buffer,output_patch_stream,...)

2 {

3 const unsigned ch_k = kernel_size * width ;

4 if (flag){

5 for (unsigned cc=0 ; cc+kernel_size-1 < width ; cc+=stride_size){

6 for (unsigned ch=0,chnl=0 ; ch < num_channel ; ch+=NUM_PU,chnl++){

7 for (unsigned rk=0 ; rk < kernel_size ; rk++) {

8 for (unsigned ck=0 ; ck < kernel_size; ck++) {

9 #pragma HLS PIPELINE II=1

10 unsigned off_r = (chnl * ch_k) + cc + rk*width ;

11 output_patch_stream << PU_local_buffer[off_r + ck] ;

12 }

13 }

14 }

15 }

16 }

17 }

Listing 4.2: The nested loops to generate the patches using the chunks received from the

input controller.

4.2.2 The GEMM Unit

We use a tall systolic array for the GEMM unit similar to the design in Chapter 3. We

explained the advantages of using a tall systolic array and how to compute matrix-matrix

multiplication with an output-stationary formulation with the systolic arrays in Chapter 3.

In this section, we discuss the changes we made to the design in Section 3.4.2 to make it

more FPGA-friendly. The primary difference between the two designs is how the process-

ing elements (PEs) are organized in the systolic array. We describe the PE organization in

the revised GEMM unit next.
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PE organization. Figure 4.7 shows a 2D and 1D grid of PEs in the systolic array of

the GEMM unit. Prior research has shown the advantages of using a 2D structure for

ASICs [60, 69]. However, we found a 1D array of PE better suits FPGAs for the following

reasons.

• Collapsing the columns of the 2D systolic array into one can reduce the design re-

source utilization. While the design still has the same number of MAC units, the

logic for managing the buffers and MAC units can be shared. The buffers can be

partitioned properly to allow parallel access to the elements. Additionally, using a

1D array of PEs reduces the number of FIFOs that connect the PEs. This can be

accomplished by using FIFOs with wider interfaces that can be used to communicate

inputs and outputs between PEs. Additionally, a 1D array reduces the routing logic

between PEs and is more suitable for FPGAs.

• To write back the result matrix, each PE sends its output to the next PE (the PE at the

bottom) after forwarding the output received from the previous PEs. We need N dif-

ferent output controller units to drain the output received from the N PEs in design in

Figure 4.7(a), where N is the width of the systolic array. Using a 1D array of PEs, we

only need one output controller unit to write the output to the external memory. Each

external memory interface requires some on-chip memory resource. Thus, using one

external memory interface reduces the overall on-chip memory utilization.

• Modern FPGAs have a hierarchical structure, including multiple-chiplet FPGAs (see

Section 4.1). Crossing between chiplets is expensive, resulting in low frequency [28].

Comparatively to a 2D grid, a 1D grid of PEs minimizes the number of crossings

between chiplets. Thus, 1D PE scales to multiple chiplets better than 2D grids.

PE architecture. Figure 4.7(c) shows the internal architecture of a PE. Each PE has three

local buffers, two for storing the incoming elements from input A and B and one for storing
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Figure 4.7: (a) A 2D structure of PEs for the GEMM unit. (b) A 1D structure of PEs for
the GEMM unit. (c) The internal architecture of a PE unit.

partial products. Similar to PU units, we use double buffering techniques to allow data

loading and computation to overlap. Each PE also has G × N MAC units. G is a design

parameter and should match the group size in the pruning step. The N is the width of

the systolic array. The input controller manages the incoming values and forwards them

to the neighbors. The output controller is responsible for managing the output buffer and

forwarding the result. Listing 4.3 shows the high-level overview of some of the operations

in each PE. In each round, the PEs load a tile of the input data into its local buffers (Lines

18,19 in Listing 4.3). In addition to the local buffers to store the incoming tiles, the MAC

units also have small buffers (listed with valA, valB, and valC in Listing 4.3). The tiles

are loaded into the MAC’s buffer before the computation (lines 21,22). All the inputs and

output buffers are fully partitioned to allow parallel access to each element (lines 8,10,12,

and 14). Similarly, the nested loop for performing multiply-accumulate (MAC) is fully

unrolled (lines 24,26). This creates N × G MAC units. Since we skip the zero columns

in A and the zero rows in B, the number of input tiles received by the PEs may vary. To

notify the PE about the last tile in a round, we use an extra input (EndStream). If the bit

(end i) is set, it indicates the end of the input stream, while a zero indicates that more inputs

are expected. Once all inputs have been processed, the output controller sends the result,
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starting with sending the result received from other PEs (OutputStreamI). Next, we will

describe how our design exploits sparsity.

4.2.3 Sparsity-aware Design

Our design utilizes sparsity in both inputs (feature map and weight). Sparsity is leveraged

in three ways. First, we decrease the storage requirements by storing the weights in a

compressed format. Second, we reduce the computation requirements by skipping compu-

tations involving zeros. Finally, we reduce the data transfers that involve zeros. Previous

sparsity-aware designs used expensive hardware units such as CAM [52], prefix sums [42],

and high fan-out memory units [30, 98]. None of these units are appropriate for FPGAs. In

contrast, our sparsity-aware design does not require any expensive hardware components.

Our sparsity-aware design has two key features that make it suitable for FPGAs. First,

the sparse format for storing weights is designed such that high-speed parallel access to the

weight elements is possible with optimizations such as memory partitioning. Second, zeros

are skipped outside the PEs and inside the GEMM input controller. As a result, the PE’s

design is simplified and unnecessary data traffic between PEs is avoided.

Sparse format for weights. Each PE in the GEMM unit receives G elements of the weight

input (see Figure 4.7(c)). Thus, we divide each column of the weight matrix into blocks of

G elements. The weights are accessed in column-major order by the GEMM unit. To keep

the PEs in the GEMM active, we need high-bandwidth access to the weight blocks. By

partitioning the weights into multiple memory units, elements can be accessed in parallel.

Moreover, to reduce the storage requirement for the pruned weight, the weights need to

be compressed. Unlike a dense representation, most standard formats are not suitable for

data partitioning. Figure 4.8 demonstrates the inefficiency of using a CSC format for data

partitioning. In this example, the elements are divided into blocks of size 2 (Figure 4.8(a)).

Each block in a column is shown with a different color. Figure 4.8(b) shows how the non-
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1 void PE (InputAStrm,InputBStrm,EndStrm,OutputStrmI,OutputStrmO,...)
2 {
3 //PE input_controller buffers
4 VECTOR_TYPE_A ABuffer [TILE_SIZE] ;
5 VECTOR_TYPE_B BBuffer [TILE_SIZE] ;
6 //MAC unit buffers
7 int16_t valA [G] ;
8 #pragma HLS ARRAY_PARTITION variable=valA complete dim=1
9 int16_t valB [N] ;

10 #pragma HLS ARRAY_PARTITION variable=valB complete dim=1
11 int32_t valC [G][N] ;
12 #pragma HLS ARRAY_PARTITION variable=valC complete dim=0
13 int32_t prev [G][N] ;
14 #pragma HLS ARRAY_PARTITION variable=prev complete dim=0
15 for (unsigned cB = 0 ; cB < numcolB ; cB += N) {
16 bool end_i = EndStrm.read() ;
17 for (unsigned iteration = 0 ; end_i < 1 ; iteration++) {
18 load_tile(InputAStrm,ABuffer);
19 load_tile(InputBStrm,BBuffer);
20 for (unsigned t = 0 ; t < TILE_SIZE ; t++) {
21 load_mac_bufferA(t,ABuffer,valA);
22 load_mac_bufferB(t,BBuffer,valB);
23 for (unsigned r = 0 ; r < G ; r++) {
24 #pragma HLS UNROLL
25 for (unsigned c = 0 ; c < N ; c++){
26 #pragma HLS UNROLL
27 #pragma HLS PIPELINE II=1
28 prev[r][c] = (iteration==0) ? 0 : valC[r][c] ;
29 const int16_t mm = (valA[r] * valB[c]);
30 valC[r][c] = mm + prev[r][c];
31 }
32 }
33 }
34 end_i = EndStrm.read() ;
35 }
36 //sending the output
37 send_output(valC,OutputStrmI,OutputStrmO);
38 }
39 }

Listing 4.3: The high-level HLS design for the PEs in the GEMM unit.
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Figure 4.8: An illustration of our sparse format in comparison to the CSC format.

zero elements are stored in a CSC format. The CSC format uses a column pointer to identify

the beginning of each column. The metadata used in a CSC format is insufficient to locate

all the non-zero blocks in a column. To provide highly parallel access to non-zero elements

and to allow compact storage of data, we developed our own custom format. Figure 4.8(c)

shows our custom sparse format for storing the weights. In our sparse format, we store

only the non-zero blocks. A block is considered zero if all the elements inside the block

are zeros. The non-zero blocks are partitioned between multiple memory banks according

to their position in a column. Each block contains one bit of metadata. A one indicates a

non-zero block, and a zero indicates a zero block. Metadata for each block is also divided

between memory banks similarly to values. We reduce metadata by encoding bitmaps in

blocks rather than as individual elements. Figure 3.9 compares our sparse format with other

sparse formats in terms of storage overhead. We apply group-wise pruning (Section 5.1) so

that the group size matches the block size in our sparse format to increase the number of

zero blocks and thus, reduce the overall storage. Finally, unlike applications in Chapter 2,

using a custom sparse format and a preprocessing step is justified for CNN’s inference since

the weights remain unchanged throughout the inference task.
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Skipping the computation and data transfers with zeros. The sparse weights do not

change during the entire inference task. Prior work used various ways to organize the

sparse weight and store them onto the FPGA on-chip memory prior to the computation.

Unlike the zeros in the weights, the zeros in the feature map appear at run-time and are

unpredictable. Hence, most FPGA designs only support sparsity for the weight input.

In Section 3.4.3, we discussed how a tall structure of PEs helps to avoid zeros by in-

creasing the probability of finding zero blocks in the input feature map. We skip the zeros

within the GEMM unit input controller rather than in the PEs. There are two advantages to

skipping zeros in one central unit (i.e., the GEMM input controller). First, we avoid some

zero-based data traffic between PEs. Second, it simplifies the PEs’ design and eliminates

unnecessary logic within each PE to detect and skip the zeros. In each step, a column of

input A (weight) and a row of input B (feature map) arrive in the input controller. If either

of the inputs (column of A or row of B) are zeros, we do not send that row and column to

the GEMM unit. As a result, no expensive logic is required on the FPGA, and the operation

can be pipelined. The major drawback of this approach for FPGAs is the high fanout of

input controller. In our approach, the input controller is connected to all the PEs on the

border of the GEMM unit.

4.2.4 Design Scalibility and Handling Various CNN Layers

In Section 3.4.4, we discussed how the dynamic reconfigurability of the GEMM unit is

essential in efficiently executing CNN layers with different features. We defined two struc-

tures for the systolic array in the GEMM unit. One is a tall array where all the PEs are

getting input from one main IM2COL unit. Alternatively, the PEs can be configured as

multiple smaller GEMM units where each GEMM unit has its own IM2COL unit. The

main IM2COL unit is used for the tall array configuration. For the other configuration, all

IM2COL units are being used.

In addition to adapting to different CNN features, it is important that an FPGA design
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Figure 4.9: A demonstration of our design’s flexibility in supporting CNN layers with a
variety of filters. The variables F , M , N , and G indicate the number of filters, the systolic
array height, the systolic array width, and the number of elements per PE, respectively.

be scalable (up or down) to suit FPGAs with different available resources. We can scale

our design in two ways. First, the number of PEs in the GEMM unit can be chosen based

on the available resources and the features of the layers in a CNN. Second, the available

configuration for the GEMM unit can also be selected based on the FPGA resources. In our

design in Chapter 3, the GEMM unit can be configured as four smaller arrays. This requires

four IM2COL units for each smaller array. Due to the limited resources on the FPGA

compared to ASIC, we use only two IM2COL units in our FPGA prototype. Figure 4.9(a-

b) shows the two possible configurations for the GEMM unit in our FPGA design. If there

are few filters in a CNN layer, using fewer IM2COL units may result in lower PE utilization.

Figure 4.9(c-f) shows how different modes can be applied to layers with different numbers

of filters. In this example, the systolic array can be used as a one tall array (Figure 4.9(a))
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or two smaller arrays (Figure 4.9(b)). The value F indicates the number of filters in a CNN

layer. The PEs in the arrays are fully or partially utilized depending on the value of F and

the size of the systolic array.

4.3 Related Work on FPGA Accelerators for CNNs

In Section 3.5, we reviewed the ASIC design for accelerating sparse neural networks. Here,

we primarily focus on FPGA accelerators for CNNs.

Sparsity-awareness design for FPGAs. There is a plethora of work on designing

FPGA-based inference engines for dense CNNs [74, 75, 87, 96, 110, 132, 134]. Dense

accelerators achieve near-perfect DPS efficiency (more than 95%) but in recent years, the

focus has shifted towards developing sparse CNN accelerators. At a high level, sparse

FPGA accelerators can be divided into two categories, one approach supports random

pruning [85] and the other approach uses a structured pruning technique [64, 78, 151].

Random pruning has reduced the required MAC operations without compromising net-

work accuracy [48], but they introduce irregularity that results in complex hardware, which

is unsuitable for FPGAs with limited resources. Thus, the majority of FPGA accelerators

use different variations of a structured pruning technique that suit their proposed dataflow

and PE structure [75, 129]. Like our design, various studies present a hardware-software

co-design framework that addresses irregular memory access issues for sparse computa-

tions on FPGAs [73, 75, 96]. They perform a regularization step in the software to enable

high parallelism and data reusability for the FPGA. Orthogonal to these approaches, recent

work generates a compressed model representation of the weights using orthogonal vari-

able spreading factor (OVSF) binary codes during training which helps them to generate

the weight on-the-fly during inference [73, 129].

Despite numerous ways of exploiting sparsity in weights, little research has been ex-

plored utilizing sparsity in the feature map. We learned in Section 3.5 that many ASIC de-

signs have shown a significant potential for using sparsity in the feature map [30, 42, 98].
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Most of these ASIC designs support the sparsity in both weights and feature map (dual-

side sparsity) by introducing expensive hardware components such as a prefix sum for

SparTen [42] and content addressable memory for ExTensor [52]). Thus, the proposed

methods can not be directly used by an FPGA due to architecture-layout mismatch.

Supporting different CNN layers. CNNs have diverse layer shapes and sizes. The va-

riety in CNN architecture highlights the need for flexibility when designing an accelerator.

The flexibility can concern (1) functionally supporting different CNN layers with distinct

features and (2) maintaining high efficiency across various layers in a CNN [124].

[99] and [37] suggest a weight stationery dataflow that requires all weights to be stored

completely on the FPGA’s on-chip memory. If the weight exceeds the on-chip resources of

one FPGA, multiple FPGAs are deployed [37]. While some designs can support any CNN

layer regardless of the on-chip memory resources of an FPGA, they may not perform well

for certain layer shapes and sizes [78, 129]. To achieve high efficiency for various layers’

features, [111] propose a flexible compilation framework to schedule matrix multiply and

convolution operations of CNNs inference on the FPGA overlay. Similarly, [105] propose

the cascaded interconnections that can achieve a very high-frequency design on FPGAs

(650 MHz). The drawback of their method is that the FPGA must be reconfigured for each

layer.

DNN accelerator generation for FPGAs. FPGA/ASIC-based DNN accelerators are

in high demand, which led to the creation of automated DNN accelerator generation. For

example, The DeepBurning [133] design automation tool uses pre-configured RTL mod-

ules to build DNN accelerators with customized design parameters. DNNBuilder [146]

and FPDNN [44] provide end-to-end tools to automatically generate optimized FPGA-

based accelerators from high-level DNN symbolic descriptions within Caffe/Tensorflow

frameworks. Caffeine [143] is another automation tool to generate efficient FPGA design

for CNNs. The tool takes into account the FPGA hardware parameters and generates the

design based on the CNN layers. All these automation tools work only on a dense neu-
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ral network. Incorporating sparse inputs increases the complexity of automatic hardware

generation.

4.4 Summary

This chapter presents the FPGA version of our accelerator (SPOTS) for sparse CNN infer-

ence. Similar to the design in Chapter 2, we formulate the convolution as GEMM operation

using an IM2COL operation. By offloading both IM2COL and GEMM units to the FPGA,

we pipeline the two executions and avoid large data transfers between the CPU and the

FPGA. Our design reduces the on-chip memory requirements for the IM2COL and GEMM

units to better suit the FPGA with rather limited on-chip memory resources. On top of

that, unlike most FPGA designs for sparse CNNs, we exploit the sparsity in both weights

and feature maps. We do this without introducing any expensive hardware. The underly-

ing principle of our sparsity-aware design is to use a group-wise pruning technique along

with a processing step in software that allows us to store weights in a compressed format

while allowing for highly parallel access to those weights. Finally, our design can scale

up or down depending on the available resources on a target FPGA. This is in addition to

our flexible design that can be configured based on the layers’ features to achieve high PE

utilization for various CNN layers. We evaluate our FPGA design along with the ASIC

implementation in Chapter 5.
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CHAPTER 5

EXPERIMENTAL EVALUATION OF OUR ASIC AND FPGA ACCELERATORS

FOR SPARSE CONVOLUTIONAL NEURAL NETWORKS

Chapter 3 and Chapter 4 described a hardware/software solution for sparse convolutional

neural networks designed for ASICs and FPGAs, respectively. This chapter evaluates both

designs and compares them with general purpose architectures and other hardware accel-

erators in terms of performance and energy efficiency. Our analysis highlights some of the

key aspects of both designs. In the first section of this chapter, we describe our experimental

setup, including the systems we used for our evaluation, the benchmarks we used, and the

features of the hardware we compared our design with (Section 5.1). Then, in Section 5.2,

we evaluate different features of our FPGA and ASIC designs for sparse CNNs inference.

5.1 Experimental Methodology

SPOTS ASIC Prototype. A prototype of our design has been built in Verilog and syn-

thesized using the FreePDK 45nm technology from Synopsys Design Compiler [121]. We

achieve a frequency of 500 MHz with our design. There are no SRAM cells in FreePDK

45. Thus, we separately model the area and power of all the SRAM/DRAM using Cacti

7.0 [12]. Table 5.1 provides the parameters of the SPOTS prototype and the area break-

down for different components. We perform a cycle-accurate simulation of the RTL model

of SPOTS in Verilog using Verilator. Using Synopsys’s PowerPrime tool, we calculated

the power usage of our design based on the traces from the RTL simulation. We ran our

simulation for each layer individually. Weights are preprocessed and provided in our pro-

posed sparse format. For the input feature map, we extracted each layer’s data from the

models in Caffe. Additionally, we developed an infrastructure to perform fast design space

exploration and collect statistics.
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Table 5.1: SPOTS ASIC design parameters and area.

Unit Size Area (mm2)
#PE units 512

Multiplier width 16 bits
GEMM Accumulator width 24 bits 2.048

Systolic array one (128×4)
configurations four (32×4)

PE’s local buffers 2 KB
#PU units 4

IM2COL Reserved buffers 32 KB 1.137
Other SRAM buffers 2 MB

On-chip Filter SRAM 1 MB 5.426
memory Fmap SRAM 512 KB

SPOTS total 8.611

Table 5.2: The CPU, GPU and FPGA configurations for SPOTS evaluation.

Platform Compute units Memory units Technology
Intel Xeon E5-V3 4 cores, 3GHz 10 MB Smart Cache 22nm

32GB DDR4 (2666 Mhz)
Titan X Pascal 3584 cores, 1.53GHz 24GB of GDDR5 16nm

SPOTS FPGA Prototype. We built an end-to-end FPGA prototype of SPOTS (Chap-

ter 4) using the Xilinx HLS tool and ran it on Alveo U200 card from Xilinx. Table 5.3

shows the FPGA specification. On Alveo U200, our FPGA design reaches a frequency of

154 MHz after place and route. Table 5.4 provides details on resource usage for two pro-

totypes of FPGA design. One design only uses the GEMM unit as one large tall array with

one IM2COL unit. The other design uses two IM2COL units that allow the GEMM unit to

be configured as either a large tall array or two smaller GEMM units.

CPUs, GPUs used for our evaluation. We compare our design to CPUs and GPUs.

In Table 5.2, we list the CPU and GPU we used for the evaluation. In our experiments, we

used CPUs and GPUs manufactured with 22 nm and 16 nm cell technology, as opposed

to SPOTS’ 45 nm technology. We use Caffe to evaluate a variety of CNN architectures

on a modern CPU and GPU. The Caffe framework uses IntelMKL for CPU computation

and Nvidia’s CUDA library, cuSparse, for GPU computation. Caffe also uses IM2COL +
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Table 5.3: The FPGA configurations for SPOTS evaluation.

Platform Compute units Memory units
Xilinx Alveo-U200 1,182K logic elements 64 GB DDR4,

2280 DSP blocks 25-Mbits BRAM

Table 5.4: FPGA resource utilization and operating frequency for two versions of SPOTS
on Alveo U200.

Application Frequency LUT BRAM URAM FF DSP
SPOTS-with-one-IM2COL 165Mhz 11% 24% 0% 10% 16%
SPOTS-with-two-IM2COL 154Mhz 35% 30% 3% 12% 24%

GEMM for its convolution layers, as we did. The energy consumed by the XEON CPU

was measured using the Processor Counter Monitor (PCM). We measured GPU power

consumption with NVIDIA System Management Interface (NVIDIA-SMI), which uses

built-in sensors to query power consumption. According to NVIDIA, the reported data is

accurate (i.e., within ± 5 Watt).

ASICs used for our evaluation. We evaluated the performance and energy efficiency

of SPOTS in comparison with other ASIC designs. Some designs support sparse inputs

while others do not.

Eyeriss. For comparison, we use Eyeriss [21], an ASIC designed for accelerating sparse

CNNs. The performance of Eyeriss was measured using the publicly available simula-

tor [39]. An Eyeriss chip operates at a 200 MHz clock frequency and is fabricated at 65nm

CMOS. Because we used a different cell technology (i.e., 45 nm) for SPOTS, we assume

that the frequency of Eyeriss will be exactly equal to the frequency of SPOTS when report-

ing the execution time. Eyeriss was also configured to use the same number of MAC units

and on-chip memory as SPOTS.

Gemmini. Gemmini [40] is a recent open-source full-stack DNN accelerator generator.

Gemmini features a systolic array of processing elements (PEs), similar to SPOTS. Each

PE performs dot products and accumulations. The PEs read the data from a local, explicitly
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Table 5.5: Network characteristics, the top1, and top5 result accuracy, and the overall
sparsity for the original (with no pruning), random pruning, and our structured pruning
using the imagenet dataset. Weights and activations assume a data-type size of two bytes.

Model #conv Baseline Random pruning Our structured pruning
Layer Top1(%) Top5(%) Top1(%) Top5(%) Sparsity(%) Top1(%) Top5(%) Sparsity(%)

AlexNet [68] 5 56.81 79.95 56.75 79.28 63.1 55.25 78.62 56.81
VGGNet [113] 13 68.27 88.36 68.21 88.25 62.8 67.18 88.16 27.48

GoogleNet [125] 57 68.92 89.14 68.42 88.85 68.25 66.22 87.53 25.12
ResNet [50] 53 72.71 90.66 72.4 90.58 60.51 69.71 89.30 31.45

managed scratch-pad of banked SRAMs. We were unable to create a design with an exact

number of PEs as SPOTS. We used tiles with 32× 32 PEs for Gemmini, resulting in 1024

MAC units, which is 2× more than our prototype. Gemmini’s on-chip memory has been

set to match SPOTS’s on-chip memory.

Sparse-PE. Sparse-PE [102] is a recent hardware accelerator that supports sparse input

for both feature maps and weights. This accelerator consists of multiple cores. Each core

reads the inputs in a compressed form and performs three operations (i.e., selection, com-

putation and, accumulation) to generate the final result. We model their accelerator using

the cycle counts and sparsity ratios reported in their paper. Their design natively supports

CNN layers with a kernel size of 3. They perform kernel factorization on other kernel

sizes. Besides, they only report the sparsity of the layers in AlexNet and VGGNet. Thus,

our comparison is thus limited to those two networks. We used the same number of multi-

ply units for SPOTS and Sparse-PE. Sparse-PE has an advantage since its design requires

additional units for accumulation.

CNN architectures and pruning. We used four widely used CNN architectures:

AlexNet [68], VGGNet-16 [113], GoogleNet [125], and Resnet-50 [50] to evaluate our

prototype. We refer to VGGNet-16 and ResNet-50 as VGGNet and ResNet, respectively,

throughout this section. Each of these CNN architectures is different in terms of layers,

layer types, and sizes, as illustrated in Table 5.5. In all of our experiments, we used a

batch size of one, which is the standard for an inference task. To train the networks, we

used the input images from the Imagenet [31] dataset, a widely used dataset for image
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Figure 5.1: Sparsity in the filters and input feature maps for AlexNet, VGGNet, ResNet,
and GoogleNet. The ? marker indicates the percentage of zeros in the output of the
IM2COL transformation that is skipped on-the-fly by our design.
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classification tasks. All four networks were pruned using the pruning algorithm based on

Structure Sparsity Learning (SSL) [135]. SSL is generic and can be applied on different

levels, including filters, channels, and shapes. We applied SSL at the shape level. Be-

cause our hardware exploits sparsity on a much finer granularity than shapes, we optimize

SSL by pruning in a more fine-grained manner. Specifically, we zeroed the weights of el-

ements of a shape that are below the threshold in some but not all cases. This generates

zero blocks of a certain size (i.e., the number of filters in the group). Figure 3.4(d) shows

our group-wise pruning. Figure 5.1 displays the sparsity of the weights and input feature

map for the layers of various CNN architectures. The sparsity varies between layers and

networks. Lastly, we retrained the pruned network to regain its accuracy, which is the

norm with pruning. Table 5.5 summarizes the accuracy and overall sparsity percentage for

baseline (with no pruning), random pruning [49], and our structured pruning method. For

accuracy results, we report the top-1 (i.e., the first prediction is correct) and the top-5 (i.e.,

the correct outcome is within the first 5 predicted values). Our pruned networks are within

1%-2% accuracy of the original model without pruning. Using structured pruning, one

can achieve the same accuracy as a randomly pruned network with about 2× less sparsity.

However, as was shown in Chapters 3 and 4, our structured pruning method simplifies the

sparsity-awareness design significantly. Additionally, our sparse format outperforms the

sparse format used by designs with random pruning (see Figure 3.9).

5.2 Experimental Evaluation of SPOTS

We begin by evaluating the ASIC and FPGA prototypes of SPOTS compared to general-

purpose CPU and GPU implementations. We then compare our ASIC design with other

ASIC designs for CNNs, including Eyeriss, Gemmini, Sparse-PE.
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Figure 5.2: (a) Speedup with SPOTS, GPU, and GPU implementations with the normalized number
of MAC units over the CPU implementation as the baseline. (b) The energy efficiency of SPOTS
and GPU implementations compared to a CPU baseline.

5.2.1 Comparing the Speedup of SPOTS ASIC and FPGA Prototypes with CPUs

and GPUs

We compare the performance and energy efficiency of FPGA and ASIC prototypes of

SPOTS to CPU and GPU executions. Figure 5.2a shows the speedup of SPOTS when

compared with the CPU implementation. SPOTS ASIC implementation is 5×, 20×, 6×,

and 8× faster than the CPU implementations using Intel MKL for AlexNet, VGGNet,

GoogleNet, and ResNet, respectively. SPOTS achieves this speedup while operating at

almost 6× less frequency than the CPU. For all networks except AlexNet, the FPGA pro-

totype of SPOTS performs slightly better than the CPU implementation. Our FPGA proto-

type operates at 150 Mhz frequency, which is almost 20× less than the CPU’s frequency.

Figure 5.2a also shows the speedup of GPUs for the convolution layers over the CPU im-

plementation. In comparison with GPUs, SPOTS’ ASIC prototype is about 2× slower than

GPU for AlexNet and VGGNet. However, it performs slightly better or is similar to GPU
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for GoogleNet and ResNet. VGGNet and AlexNet layers are relatively larger than the other

two networks, creating larger matrices that favor GPUs with abundant MAC units, as op-

posed to SPOTS, which is designed for devices with limited power budgets. The first bar

Figure 5.2a(a) shows the GPU performance when its number of MAC units is normalized

to the number of MAC units in SPOTS. For the normalized number of MAC units, SPOTS

outperforms the GPU on average by 6×. Finally, some prior work observed that the perfor-

mance degrades for CPUs and GPUs when the sparse features are used when the networks

are pruned randomly. We observed, however, that structured pruning helped CPU and GPU

implementations achieve higher overall performance when using sparse linear algebra ker-

nels.

5.2.2 Comparing the Energy Efficiency of SPOTS ASIC and FPGA Prototypes with

CPUs and GPUs

Figure 5.2b demonstrates the energy efficiency of the FPGA and ASIC prototypes of SPOTS

and GPU implementations when compared to a CPU baseline for four CNNs. We did not

include Gemmini energy results since their tool does not report the power consumption.

The energy results include the off-chip memory accesses in this data. SPOTS ASIC imple-

mentation consumes 78×, 12×, and 1.4× lesser energy than a CPU, a GPU, and Eyeriss,

respectively. Compared to the CPU and GPU implementation, SPOTS’ FPGA implemen-

tation is on average 9.3× and 1.5× more energy efficient, while it is less energy efficient

than the two ASICs (SPOTS-ASIC and Eyeriss).

5.2.3 Comparing the Speedup of SPOTS ASIC Prototypes with Other ASIC Designs

Figure 5.3 shows the speedup of SPOTS ASIC design, Eyeriss, and Sparse-PE relative

to Gemmini for all four CNN architectures. Except for Gemmini, all other accelerators

support sparse inputs. As some CNNs have many layers, only some of the layers are shown

in the figures. Depending on where they appear in the network (top, middle, or bottom), the
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Figure 5.3: Speedup with SPOTS, Sparse-PE, and Eyeriss over Gemmini for four CNNs:
AlexNet, VGGNet, ResNet, and GoogleNet. The figures show the speedup for selected
layers from the top, middle, and bottom layers and the overall speedup (the last bar in each
figure). For Sparse-PE, we only compare the speedup for AlexNet and VGGNet and layers
with a kernel size of 3.
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Table 5.6: Comparing the performance and efficiency of SPOTS ASIC design with different
ASIC designs for sparse CNNs. All designs are scaled to 45nm technology.

Accelerator SCNN [98] NullHop [4] SparTen [42] SPOTS
Prunning Method Random N/A Random Structured

Bitwidth 16 16 16 16
Number of Multipliers 1024 1024 1024 512

Clock Frequency (MHz) 800 400 800 500
Core Area (mm2) 22.21 10.12 24.51 8.61

Throughput (Inference/s) VGGNet 37.55 10.96 60.09 15.21
AlexNet 479.92 N/A 767.88 249.79

Normalized Throughput (Inference/s) VGGNet 2.93 6.85 3.75 15.21
AlexNet 149.97 N/A 239.96 249.79

Power Efficiency (GOPS/Watt) VGGNet N/A 1357.51 440.84 469.33
AlexNet N/A N/A 326.62 446.91

Area Efficiency (Inference/s/mm2) VGGNet 1.69 1.08 2.45 1.76
AlexNet 21.61 N/A 31.32 29.01

layers are sorted for each CNN architecture. Figure 5.3(a) shows the speedup for all layers

in AlexNet. SPOTS ASIC design is nearly 2× faster than Eyeriss and Gemmini on average.

For the layers in the middle, where the sparsity ratio in the two inputs (/eg, weights and

feature maps) is higher, SPOTS is nearly 4× faster than Eyeriss and Gemmini. Besides the

sparsity awareness that gives SPOTS an edge over Eyeriss and Gemmini, the bottom and

middle layers have more filters that favor a tall systolic array. For Sparse-PE, we measure

only the layers with a kernel size of 3 (see Section 5.1). For the measured layers, SPOTS

is 1.8× times faster than Sparse-PE.

Figure 5.3(b) reports the speedup for VGGNet. SPOTS ASIC design is, on average,

1.85× and 1.86× faster than Eyeriss and Gemmini. Similar to AlexNet, SPOTS achieves

higher speedup with layers with more sparsity. SPOTS is slightly worse than Eyeriss in

the first two layers since there are relatively few filters and the inputs are dense. We will

demonstrate later in this section how the number of filters in a layer impacts PE utilization.

SPOTS is, on average, 1.6× faster than Sparse-PE. Because SPOTS uses data-reuse strate-

gies and skips zero elements without requiring zero insertion and selection operations, it is

more efficient than Sparse-PE.

Figure 5.3(c) shows the speedup of SPOTS ASIC design over Eyeriss and Gemmini
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Figure 5.4: (a) MAC utilization (i.e., active cycles) for different filter sizes. (b) Comparing
PE utilization of SPOTS and Tall systolic array (i.e., active PEs) for different filter sizes.
(c) Comparing PE utilization of FPGA and ASIC prototypes for differnt CNNs.

for ResNet. On average, SPOTS is 1.77× and 2.66× faster than Eyeriss and Gemmini for

ResNet. For layers where the weight and feature map sparsity are high, SPOTS is up to

8× and 13× faster than Eyeriss and Gemmini. As with VGGNet, SPOTS performs slightly

worse than Eyeriss for the first eight layers in ResNet. This is because each layer in ResNet

has a few filters. Hence, PEs are underutilized compared to layers in the middle or at the

end of the network.

Figure 5.3(d) shows for GoogleNet, SPOTS ASIC design is 1.38× and 1.91× faster

than Eyeriss and Gemmini, respectively. GoogleNet has more convolution layers with a
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Figure 5.5: (a) The reduction in energy consumption for the IM2COL unit of SPOTS over
the baseline design. (b) Speedup with SPOTS over the software-based IM2COL as the
baseline IM2COL design with no data reuse. (c) Fraction of the work performed by the
IM2COL unit when compared to GEMM (i.e., GEMM bar is 100%). We report the average
and the median for the IM2COL’s work. When the mean exceeds the median, there will be
instances where the IM2COL does more work compared to GEMM for some layers.
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small number of filters that are not suitable for our tall array, in contrast to other CNN

architectures. Overall, SPOTS provides less speedup for GoogleNet than the other three

networks.

In Table 5.6, SPOTS ASIC design is compared with some of the prior sparse CNN ac-

celerators in terms of its throughput, area, and power efficiency. All the accelerators are

scaled to 45nm technology. We reported the exact number of multipliers that were reported

in each paper. All three designs have twice as many multipliers as the SPOTS ASIC pro-

totype. SCNN and NullHop clock frequencies are scaled to 45nm as in prior work [67].

For each design, the theoretical throughput varies depending on the clock frequency and

the number of MAC units. The number of inference tasks completed per second is used to

compare throughput. Table 5.6 shows the achieved throughput as well as the normalized

throughput for each design. When the throughput is normalized (to have the same theoret-

ical throughput as SPOTS), SPOTS outperforms all the other three accelerators. The Giga

operations per second (GOPS) per Watt was used to compare power efficiency. SCNN does

not report its power consumption. SPOTS ASIC design outperforms SparTen in power ef-

ficiency for both AlexNet and VGGNet. NullHop achieves the highest power efficiency

while delivering lower throughput than SPOTS. Finally, SPOTS is comparable to SparTen

and better than SCNN and NullHop in terms of area efficiency.

5.2.4 Performance Sensitivity to Different Layers’ Shapes

The number and dimensions of filters differ for each layer of a CNN. SPOTS’ dynamic

reconfigurability allows the GEMM unit to be used either as a tall systolic array or as

multiple small systolic arrays, adapting to a variety of shapes and filter sizes.

When there are a few filters (less than 128), the GEMM is configured with multiple

small systolic arrays, each using a different IM2COL unit. All the PEs in the systolic array

are active 100% of the time for all filter sizes other than 16 (see Figure 5.4b). By contrast,

a tall systolic array without the enhancement we propose in Section 3.4.4 fails to achieve
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Figure 5.6: The load imbalance percentage in the pruned weights for AlexNet, VGGNet,
ResNet, and GoogleNet are based on the metric defined in Equation 3.1.

full PE utilization for smaller filter sizes, as illustrated in Figure 5.4b. Figure 5.4a shows

the utilization of the multiply-accumulate units in the PEs of the systolic array (i.e., active

cycles) when the layer has a specified number of filters (i.e., x-axis reports the size of the

filter). As the filter size increases, we assign more rows to a PE, which can fetch up to four

elements per read. Therefore, there are more opportunities to keep multiply-accumulate

units active in the PE (i.e., almost 80% active cycles).

Comparing the PE Utilization for ASIC and FPGA Implementations FPGAs have

limited resources, so a limited number of IM2COL units can be accommodated. As a result,

the number of possible configurations is limited in the FPGA design compared to an ASIC

implementation. Figure 5.4c illustrates the PE usage for ASIC and FPGA implementations

for all four CNNs. The difference between PE utilization in the ASIC and FPGA imple-

mentations is less for AlexNet and VGGNet. In both networks, most layers have enough

filters to allow the PEs to operate at full capacity with a tall configuration. Googlenet, on

the other hand, has some layers with a limited number of filters in them that benefit from

multiple smaller arrays with independent IM2COL units. As a result, the FPGA imple-

mentation with only two IM2COL units achieves a lower overall utilization than the ASIC

design with four IM2COL units.
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5.2.5 Performance and Energy Characterization of IM2COL Unit

Amount of work performed by IM2COL and GEMM units in SPOTS. As the IM2COL

and the GEMM units are pipelined in SPOTS, ideally, the work done by the IM2COL

unit and the GEMM unit should be balanced. Figure 5.5c shows the relative percentage

of cycles where the IM2COL and GEMM units are active relative to the GEMM unit for

each CNN architecture. As we report the active cycles relative to the GEMM unit, the bar

for the GEMM unit is 100%. For AlexNet and ResNet, the average work performed by

the IM2COL unit and the GEMM unit is almost identical (i.e., the work is balanced). In

contrast, the total work in VGGNet is dominated by GEMM. The data suggest that adding

more PEs to the GEMM unit may improve the overall VGGNet execution time. As the

IM2COL unit is inactive because of the low bandwidth for AlexNet and ResNet, adding

more PEs without increasing the bandwidth will not improve performance.

Energy efficiency from data reuse in the IM2COL unit. One of the key ideas in

IM2COL’s patch unit is to read the input feature map only once from the SRAM and reuse

the data with local buffers. Figure 5.5a compares the reduction in energy consumption

in our proposed IM2COL to a naive version of IM2COL that repeatedly accesses SRAMs

without reusing data. Our mechanisms for reusing the input feature map in patch units

result in an average of 60% less energy consumption in the IM2COL unit than the IM2COL

unit without such a mechanism.

Comparing SPOTS IM2COL unit with a software IM2COL implementation. SPOTS

has a hardware IM2COL unit that performs the IM2COL transformation on-the-fly. Fig-

ure 5.5b compares the speedup of using a hardware IM2COL unit compared to a software-

based IM2COL as the baseline. In the baseline system, the hardware only performs GEMM

while the CPU executes IM2COL. The figure also illustrates an ideal situation in which the

software IM2COL and hardware GEMM computations overlap. Even when we provide

an ideal scenario for the software IM2COL, SPOTS outperforms the ideal software-based

IM2COL. SPOTS outperforms the baseline software IM2COL on average by 2.3×, show-
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ing the benefits of our hardware IM2COL.

5.2.6 Load Imbalance in SPOTS

The non-uniform distribution of zero blocks in pruned weights causes a load imbalance in

SPOTS. We quantified the load imbalance percentage among the PEs for the four studied

sparse CNNs using the metric defined in Equation 3.1. For our analysis, we discarded all

layers with sparsity ratios below 5%. A lower imbalance percentage indicates that PEs are

idle less often due to the uneven distribution of non-zero blocks. All CNNs experience a

very low load imbalance (less than 20%). Load imbalances are as low as 4% for VGGNet

and GoogleNet, which shows that SPOTS load balancing strategies have been effective.
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CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

This dissertation presents a few hardware-software techniques to improve the performance

and energy efficiency of two sparse linear algebra kernels (SpMV and SpGEMM) and a

sparse convolutional neural network inference task. The general idea behind our approach

is to utilize the software to reformat sparse data into a format that enables the hardware to

perform the computation with a high degree of parallelism. First, we summarize the key

contributions made by this dissertation, followed by directions for future research.

6.1 Dissertation Summary

As Moore’s law approaches its end, specialized hardware is needed to continue improv-

ing computing performance and energy efficiency. Sparse computation is one of the areas

where general purpose architectures fail to provide good performance. Due to the irreg-

ularity of memory accesses in sparse computation, a significant performance gap exists

between dense and sparse kernels on CPUs and GPUs. In this dissertation, we present

software-hardware solutions to some of the most important sparse problems, including two

sparse linear algebra kernels (SpMV and SpGEMM) and sparse convolutional neural net-

works.

First, we make a case for a synergistic solution involving a CPU and an FPGA to accel-

erate sparse linear algebra kernels, including SpMV and SpGEMM. The CPU preprocesses

the data and regularizes the memory accesses for the FPGA to perform the computation

with a high degree of parallelism. We develop an intermediate representation that allows

the software to communicate regularized data and scheduling decisions to the hardware.

Decoupling the work done by the CPU and the FPGA in a coarse-grained fashion enables

us to overlap their execution for higher performance. With an intermediate representation
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and software preprocessing, we can support a wide range of sparse formats and data preci-

sions. The speedups over mainstream libraries with our end-to-end system demonstrate that

it is possible to achieve performance with FPGAs while being flexible to adapt to various

formats.

Second, we propose an ASIC accelerator for sparse CNNs with a GEMM formulation

of convolution using an IM2COL transformation. Both IM2COL and GEMM computations

are performed in hardware and pipelined. Our proposed IM2COL unit avoids reading the

feature map elements from external memory multiple times when the patches overlap. We

add flexibility to the systolic array in the GEMM unit that allows us to achieve high PE

utilization for CNN layers of varying shapes and sizes. Our design exploits sparsity in the

input feature map and weights. We apply a group-wise pruning followed by a preprocess-

ing step that transforms the pruned weights into a hardware-friendly compressed format.

Using our structured pruning and sparse format, our sparsity-aware design does not require

any expensive hardware unit to skip computations on zeros. Our design is faster and more

energy efficient than state-of-the-art systolic array-based ASICs, CPU, and GPU imple-

mentations for sparse CNNs.

Finally, we present an FPGA design for accelerating sparse CNNs. Designing and man-

ufacturing ASICs can take a long time and cost thousands of dollars. Instead, FPGAs are an

alternative solution widely available in many data centers. We revised some components in

our ASIC design, including the GEMM and IM2COL units, to adapt them to FPGAs. The

key feature of our FPGA design for CNNs is that it can scale across different FPGAs with

varying resource constraints. Furthermore, unlike many prior FPGA designs, our design

exploits sparsity both in feature maps and weight inputs without requiring expensive hard-

ware. Our FPGA design is more energy efficient than the CPU and GPU implementations

for sparse CNN inference tasks.
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6.2 Directions for Future Work

This dissertation makes a case for co-designing hardware and software to improve the

performance and energy efficiency of some of the sparse computations, including SpMV,

SpGEMM, and sparse CNNs. The ideas presented in this dissertation can be used to explore

a variety of research directions. First, the ideas presented in REAP can be extended to other

sparse linear algebra kernels. Another potential research direction is to explore methods to

improve the programming productivity of our proposed design. There are two ways to

do this. One approach is to develop an automation tool for generating software-hardware

codes for various sparse formats and input precisions based on high-level specifications.

Another approach for improving the programmability of FPGAs is to use other program-

ming paradigms for HLS that better match the FPGA logic. Next, we discuss each of these

potential directions.

6.2.1 Extending REAP to other Sparse Linear Algebra Kernels

The dissertation illustrates our software-hardware approach to accelerating sparse linear

algebra kernels by demonstrating a design for SpMV and SpGEMM. REPA can be applied

to other sparse linear algebra kernels, like sparse Cholesky factorization, which has many

applications but has not been explored as widely as SpMV and SpGEMM. Sparse problems

such as Cholesky factorization have different features than SpMV and SpGEMM kernels.

For example, in Cholesky factorization, there are dependencies between different stages of

computation. This means the computation of column K of the output cannot begin until all

the dependencies from previous columns are resolved. This is in contrast to SpGEMM and

SpMV kernels, where the result matrix can be computed independently and in any order.

Another important difference between Cholesky factorization and SpGEMM is that the po-

sitions of non-zero elements are not fixed for all inputs as opposed to SpGEMM, where

the non-zeros locations are known prior to the computation. Hence, Cholesky factoriza-



126

tion is more complicated than SpMV and SpGEMM kernels. Thus, accelerating Cholesky

factorization requires new abstractions and new designs.

6.2.2 Synthesizing Hardware Accelerators for Sparse Problems

One of the key goals of our proposal was to support various sparse formats and data preci-

sions by using software to process input with different sparse formats and then transform it

into an intermediate format for the FPGA to perform the computation. We demonstrate the

versatility of our design by supporting three sparse formats (CSR, ELL, and DIA) and three

different data precisions (Float, Int16, Int8). A potential future work is to build a frame-

work that can automatically synthesize software and hardware codes for different sparse

formats and data precisions using high-level specifications. Some of the abstractions pro-

posed by REAP can be used to simplify the task. Using an intermediate representation

between the CPU and the FPGA can minimize the FPGA design. Thus, the main challenge

is synthesizing the CPU’s software side to generate the preprocessing task automatically.

6.2.3 Exploring New Programming Languages for Sparse Kernels on FPGAs

We used Xilinx HLS tool to build our FPGA designs. In Xilinx HLS, the programmer ex-

presses the design using the C++ programming language with additional directives (prag-

mas). Mapping imperative code onto hardware structures requires complex heuristics. The

irregularity introduced by the sparse problem exacerbates the problem of designing FPGA

accelerators. One research direction is to explore other programming models that fit FP-

GAs better. One potential example of such a programming model is the Communicating

Sequential Processes (CSP). The regularization step in REAP, which is done in software,

allows computations to be regularized on the FPGA. FPGA design in REAP consists of a

number of processing elements that are interconnected and communicate a stream of data

through the channels. This model of design can be expressed very well using a CSP model.
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