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Abstract. This paper proposes OMP-RACER, a dynamic apparent
data race detector for OpenMP programs. Apparent data races are those
races that manifest in a program considering the logical series-parallel
relations of the execution. By identifying apparent races, OMP-RACER
can detect races that occur not only in the observed schedule but also
in other schedules for a given input. Our key contribution is a data
structure to capture series-parallel relations between various fragments
of an OpenMP program with both structured and unstructured paral-
lelism directives, which we call the Enhanced OpenMP Series-Parallel
Graph (EOSPG). OMP-RACER maintains information about previous
accesses with each memory access and uses the EOSPG to check if they
can logically execute in parallel. OMP-RACER detects more races with
similar overheads when compared to existing state-of-the-art race detec-
tors for OpenMP programs.
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1 Introduction

Data races are common in OpenMP programs as with any multithreaded pro-
gram. Data races can cause non-determinism, make the execution dependent on
the memory model, and cause debugging issues. Two accesses are said to con-
stitute a data race if they access the same memory location, one of them is a
write, and they can execute in parallel. Data races can be classified into appar-
ent races and feasible races [17]. Data races that manifest when we consider the
computation, synchronization, and parallel constructs are termed feasible races.
Although there is a large body of work on detecting feasible races [10,20,24],
they detect races in a given schedule (i.e., interleaving). Detecting feasible races
also requires interleaving exploration either systematically or through prioriti-
zation [6,16]. In contrast, data races that occur in an execution of a program
primarily considering the parallel constructs, but without taking the actual com-
putation into account, are termed apparent races. An apparent race may not be
a feasible race in scenarios where the computation itself may change when the
parallel threads are scheduled in a different order. Every apparent race is also a
feasible race for Abelian programs [8].
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To detect apparent races, one needs a data structure that represents the
logical series-parallel relations between various fragments of the program. Fur-
ther, any race detector also needs to maintain access history metadata with
each memory location that records previous accesses to that location. Prior
work on detecting apparent races has primarily focused on task-parallel pro-
grams [9,21,22,27,30], which have structured parallelism. This paper focuses
on detecting apparent races in OpenMP programs with both work-sharing and
tasking directives.

This paper proposes OMP-RACER, an on-the-fly apparent data race detec-
tor for OpenMP programs. To encode the logical series-parallel relations between
various fragments of the execution in the presence of both structured and unstruc-
tured directives (e.g., taskwait and dependencies), we propose a new data struc-
ture that we call the Enhanced OpenMP Series-Parallel Graph (EOSPG). It
enhances the OpenMP Series-Parallel Graph (OSPG), which we previously pro-
posed for profiling serialization bottlenecks [4], with support for unstructured
directives. Specifically, the EOSPG encodes the nesting depth of the tasks that
enables it to capture the logical series-parallel relations for a larger class of
OpenMP programs than prior state-of-the-art.

The EOSPG accurately encodes logical series-parallel relations between any
two fragments of an OpenMP execution (where a fragment is the longest
sequence of serial instructions without any OpenMP directives encountered
in the dynamic execution). This logical series-parallel relation encoded by the
EOSPG is a property of the program for a given input. It enablesOMP-RACER
to detect races not just in a given schedule but also in other schedules for a
given input. It can alleviate the need for exploring schedules with race detec-
tion, which is an advance compared to per-schedule detectors based on vec-
tor clocks [10,13,24]. The EOSPG supports a large subset of directives in the
OpenMP specification. It still does not support undeferred tasks and their inter-
action with dependency clauses, which we plan to explore in future work.

Apart from constructing the EOSPG during the execution of the program,
OMP-RACER also maintains access history metadata with every memory loca-
tion. On a memory access, OMP-RACER consults the per-location access his-
tory metadata and uses the EOSPG to check if the current access can logi-
cally happen in parallel using least common ancestor (LCA) queries (see Sect. 3).
OMP-RACER provides two modes: a precise mode and a fast mode. In the pre-
cise mode, OMP-RACER detects data races when the program uses taskwait
directives with no restrictions. The metadata per-memory location is propor-
tional to the nesting level of tasks. In the fast mode, OMP-RACER performs
a quick execution to construct the EOSPG and identifies whether the program
uses taskwaits in a fully nested manner, which results in structured parallelism.
Subsequently, it performs an execution to detect races by maintaining a con-
stant amount of information per-memory location. In our experiments, the fast
mode detects all data races in the DataRaceBench suite [14] without any false
positives. The performance overhead of OMP-RACER in its fast mode is com-
parable to a single execution of Archer [2]. Further, Archer generally requires
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multiple executions of the same program with the same input to detect a given
data race while OMP-RACER does not. OMP-RACER is open source and
publicly available [5].

Contributions. This paper proposes EOSPG, a novel data structure, to encode
logical series-parallel relations for an OpenMP program with both structured and
unstructured directives. This paper presents mechanisms to construct and use
the EOSPG to detect data races that occur not only in the observed schedule
but also in other possible schedules for a given input.

2 Overview of OMP-RACER

This section provides an overview of race detection with OMP-RACER. We
use the program in Fig. 1(a) that uses different OpenMP directives to compute
the sum of an array in parallel to illustrate OMP-RACER. It uses worksharing
(i.e., single and for) and tasking directives (i.e., task) to add parallelism to
the program. This example has a data race due to insufficient synchronization
between child tasks and the implicit task executing the single directive (lines
12–24 in Fig. 1(a)). The thread encountering the taskwait directive only waits
for its child tasks to complete but does not wait for its descendant tasks, which
results in unstructured parallelism [19]. The dynamic execution trace with the
memory accesses generated when the program is executed on a machine with
two threads is shown in Fig. 1(b). The two accesses involved in the data race
are executed by the same thread in this schedule. However, OMP-RACER can
detect this race because it uses the logical series-parallel relation.

Enhanced OpenMP Series-Parallel Graph. OMP-RACER executes on-
the-fly with the program and constructs the EOSPG during program execution.
EOSPG is an extension of the OSPG [4]. The EOSPG is an ordered directed
acyclic graph (DAG) that captures the dynamic execution of an OpenMP pro-
gram as a set of program fragments. A fragment is the longest sequence of
instructions in the dynamic execution of the program between two OpenMP
directives. Each fragment executes serially in a thread or a task. By design, each
program fragment is a leaf node in the EOSPG. The intermediate nodes of the
EOSPG encode the series-parallel relation between the leaf nodes. EOSPG cap-
tures the logical series-parallel relations between any pair of fragments in the
program for a given input. Given any two fragments, we can identify if they may
execute in parallel by performing a least common ancestor (LCA) query between
the leaf nodes corresponding to the two fragments.

Nodes in an EOSPG. The EOSPG generated for the example program is
shown in Fig. 1(c). Each W-node represents a fragment of the execution. The
intermediate nodes can be one of the following types: S-node, P-node, or an
ST-node (see Sect. 3). The subtree under the S-node executes in series with the
siblings and their descendants to the right. Similarly, the subtree under the P-
node executes in parallel with the siblings and their descendants on the right. In
the EOSPG, ST-nodes captures the fact that the subtree under the ST-node has
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encountered a taskwait directive. As taskwait only serializes a task’s immediate
children, it is necessary to count the nesting depth of the tasks. Hence, each
ST-node and P-node maintain a value (e.g., st val) to account for the nesting
depth. Each P-node contributes a value of 1 to the nesting depth. Each ST-
node that has seen a taskwait serializes the immediate children and nullifies the
contribution of one P-node under it. Hence, the value of the ST-node starts at
0, and upon encountering a taskwait, it changes to −1.

Checking if Two Accesses can Execute in Parallel. In the absence of ST-
nodes and dependencies, two W-nodes, Wi and Wj , where Wi is to the left of
Wj , logically execute in parallel if the left child of the least common ancestor
(LCA) of Wi and Wj on the path to Wi is a P-node. In the presence of ST-nodes,
the procedure is slightly more involved (see Sect. 3). When the left child of the
LCA on the path to Wi is an ST-node, we compute the sum of the values related
to nesting depth maintained with each ST-node and P-node from Wi to the left
child of the LCA. If this sum is greater than zero, then the two nodes execute
in parallel. Otherwise they execute serially.

In Fig. 1(c), W-nodes W2 and W5 logically execute in parallel because the left
child of the LCA node S3 is the P-node P1. Intuitively, these are parallel chunks
of a dynamic for loop. A pair of W-nodes, W8 and W10, in Fig. 1(c) execute in
parallel because the left child of the LCA node (i.e., S4) is the ST-node ST1 and
the sum of st val values from W8 to ST1 is 1, indicating a logical parallel relation.
In contrast, W-nodes W9 and W10 execute in series because the left child of the
LCA node (i.e., S4) is the ST-node ST1. However, the sum of st val values from
W9 to ST1 is 0. Intuitively, the taskwait on line 22 serializes their execution.

Metadata for Data Race Detection. To detect races, OMP-RACER main-
tains access history metadata with each memory location. To store access his-
tories, it has two modes: a fast mode and a precise mode. In the fast mode, it
performs a complete execution of the program to first check if all taskwaits are
fully nested (i.e., they create a taskgroup, where each parent task waits for its
child tasks with a taskwait), and there are no critical sections. In such cases,
it treats all ST-nodes as S-nodes and maintains two parallel reads and a write
with each memory location. In precise mode, OMP-RACER maintains addi-
tional information about two reads and writes with each ST-node that is present
on the path from the W-node to the root of the EOSPG. The execution has
an apparent race if the current operation happens in parallel with the previous
conflicting operations to the same memory location in the access history meta-
data associated with the root node or the access history metadata associated
with each of the ST-nodes on the path from the current node to the root of the
EOSPG.

Illustration of Race Detection. Figure 1(b) provides the dynamic execution
trace and the updates to the access history metadata for each memory loca-
tion using the precise mode for the example program in Fig. 1(a). The write
operation to psum[1] at line 18 of the example program corresponds to the
W-node, W8. Upon this write operation, the metadata associated with psum[1]
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(a) Example OpenMP Program

(c) Program’s EOSPG

(b) Program Trace
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1 int main(){
2 int a[4];
3 int psum[2];
4 int sum;
5 #pragma omp parallel num_threads(2)
6 {
7 #pragma omp for schedule(dynamic, 1)
8 for (int i=0; i < 4; ++i)
9 {
10 a[i] = i;
11 }
12 #pragma omp single
13 {
14 #pragma omp task
15 {
16 #pragma omp task
17 {
18 psum[1] = a[2] + a[3];
19 }
20 psum[0] = a[0] + a[1];
21 }
22 #pragma omp taskwait
23 sum = psum[1] + psum[0];
24 }      
25 }
26 printf(“sum = %d\n”, sum);
27 return 0;
28 }

Time Observed Trace
(Tid, Type, Addr, Node)

Access History
(Node, W, R1, R2)

1 (0,Wr,a[0],W2) (S1,W2,-,-)

2 (1,Wr,a[2],W3) (S1,W3,-,-)

3 (1,Wr,a[3],W5) (S1,W5,-,-)

4 (0,Wr,a[1],W4) (S1,W4,-,-)

5 (0,Rd,a[3],W8) (S1,W4,W8,-)(ST1,-,W8,-)(ST2,-,W8,-)

6 (0,Rd,a[2],W8) (S1,W3,W8,-)(ST1,-,W8,-)(ST2,-,W8,-)

7 (0,Wr,psum[1],W8) (S1,W8,-,-)(ST1,W8,-,-)(ST2,W8,-,-)

8 (1,Rd,a[1],W9) (S1,W4,W9,-)(ST1,-,W9,-)(ST2,-,W9,-)

9 (1,Rd,a[0],W9) (S1,W2,W9,-)(ST1,-,W9,-)(ST2,-,W9,-)

10 (1,Wr,psum[0],W9) (S1,W9,-,-)(ST1,W9,-,-)(ST2,W9,-,-)

11 (0,Rd,psum[0],W10) (S1,W9,W10,-)(ST1,W9,-,-)(ST2,W9,-,-)

12 (0,Rd,psum[1],W10) (S1,W8,W10,-)(ST1,W8,-,-)(ST2,W8,-,-)

Fig. 1. (a) Example OpenMP program with a write-read apparent data race on vari-
able psum[1] at lines 18 and 23. (b) The execution trace of the example program when
executed with two threads. The first column specifies the ordering of the observed trace.
The second column specifies the memory access as a 4-tuple comprised of thread id,
memory access type, memory access location, and the W-node performing the access.
The third column illustrates the access history maintained by OMP-RACER for the
corresponding memory access as a 4-tuple with the node identifier, W-node correspond-
ing to the latest write, and two W-nodes corresponding to two parallel read accesses (-
denotes the empty set). (c) The program’s EOSPG. The code fragment each W-node
represents is shown below it. The square boxes next to some EOSPG nodes represent
the value indicating the nesting depth in the presence of taskwaits.
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is updated to include W8. The path from the root of the EOSPG to W8 has two
ST-nodes: ST1 and ST2. In addition, the metadata corresponding to psum[1]
is also updated to include W8 for each ST-node on the path to the root node,
resulting in three entries for psum[1] in the access history (as illustrated at time
7 in Fig. 1(b)). Eventually, the program execution reaches the taskwait directive
at line 22 in Fig. 1(a). OMP-RACER updates the st val of node ST1 from 0 to
−1 to record the presence of a taskwait. Later, when the implicit task executing
the single directive performs a read operation on psum[1] at line 23 in Fig. 1(a),
the W-node representing the current read is W10. OMP-RACER retrieves the
metadata for psum[1], which includes access histories corresponding to the root
node of the EOSPG and ST-nodes ST1 and ST2. Since the path from W10 to
the root node of the EOSPG does not contain any ST-nodes, only the metadata
entry corresponding to the root node of the EOSPG, S1, is updated to include
the current read access (time 12 in Fig. 1(b)). Next, OMP-RACER looks for
possible data races by checking if the current read operation happens in parallel
with any previous write accesses recorded in the access history metadata. In our
example, OMP-RACER checks if the current read access may happen in par-
allel with the previously recorded write operation corresponding to W-node W8.
In this case, the LCA of W8 and W10 is S4. The left child of S4 on the path to W8
is an ST-node ST1. Next, OMP-RACER computes the sum of the st val values
from W8 to ST1, which evaluates to 1. Thus, W8 and W10 may execute in parallel,
and one of the operations is a write operation, which results in OMP-RACER
reporting an apparent race on the memory access to psum[1].

3 OMP-RACER Approach

The goal of OMP-RACER is to detect apparent data races that manifest not
just in a given schedule but also in other schedules for a given input. OMP-
RACER constructs the Enhanced OpenMP Series-Parallel Graph (EOSPG) to
represent series-parallel relations, maintains access history metadata with each
memory location, and checks them to catch races.

Enhanced OpenMP Series-Parallel Graph. EOSPG is a data structure that
captures series-parallel relations between various fragments of an OpenMP exe-
cution in the presence of both structured and unstructured directives. It builds
on our prior work, the OpenMP Series-Parallel Graph (OSPG) [4]. Specifically,
the OSPG assumed that taskwaits are fully nested. According to the OpenMP
specification [19], the taskwait directives need not be fully nested. EOSPG is
an enhancement of OSPG to handle directives that can result in unstructured
parallelism such as taskwaits and other features such as dependencies.

Definition. EOSPG is a directed acyclic graph (DAG), G = (V,E), where the
set V consists of four types of nodes, W-nodes, S-nodes, P-nodes, and ST-nodes.
Thus, V = Vw∪Vp∪Vs∪Vst. The set of edges, E = Epc∪Edep, where Epc denotes
the parent-child edges between nodes and Edep denotes the dependency edges.
The EOSPG has a root S-node which has a unique directed path consisting
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of only Epc edges to all other nodes. A node’s depth is defined as the number
of edges on the path consisting of Epc edges from the root node to it. Nodes
with the same parent are referred to as sibling nodes. Edep edges are between
two sibling nodes. Thus an Epc edge between a pair nodes, (v1, v2), establishes
a parent-child relation between the two nodes, where v1 is the parent node of
v2. Moreover, sibling nodes in an EOSPG are ordered from left to right, which
corresponds to the logical ordering of operations in the program.

In contrast to the OSPG, the EOSPG has a new type of node (ST-nodes).
Further, each P-node and ST-node maintains additional information to encode
the nesting depth that is required to correctly identify series-parallel relations in
the presence of the taskwait directive. The state is maintained with each node
is called st val, which is an integer in {−1, 0, 1}.

W-node. Similar to the OSPG, a W-node represents a serial fragment of
dynamic execution in the program. By construction, a W-node is always a leaf
node in the EOSPG. A fragment either starts from the beginning of the program
or when the execution encounters an OpenMP directive. The fragment continues
until the program ends, or it reaches another OpenMP directive. In the absence
of any OpenMP directives in the program’s execution, the entire program is seri-
ally executed. Hence, the EOSPG of a sequential program consists of a single
W-node that is a direct child of the root S-node. A W-node has an st val of zero.

S-node and P-node. These nodes encode the logical series-parallel relations
between W-nodes. An S-node establishes a serial relation (whereas a P-node
establishes a parallel relation) between all its descendant W-nodes and all right
siblings and their descendant W-nodes. A P-node and an S-node have an st val of
one and zero, respectively. The st val of a P-node is one because a P-node creates
a parallel strand of execution and contributes a level to nested parallelism.

ST-node. This node also encodes the logical series-parallel relations between
W-nodes. Unlike S-nodes or P-nodes, the logical series-parallel relation between
W-nodes in the subtree under an ST-node and its right siblings and their descen-
dants depends on whether there has been a taskwait and the nesting depth of
the node. Effectively, for an ST-node, its descendant W-nodes are partitioned
into two subsets. First, W-nodes that execute serially with all right siblings and
the descendants of the ST-node. Second, W-nodes that run in parallel relative
to the right siblings and their descendants of the ST-node. The OSPG did not
have any ST-nodes [4]. We added this node to the OSPG to enable capturing
the logical series-parallel relations in the presence of OpenMP directives that do
not fall under structured parallelism. ST-nodes are used whenever creating a P-
node or an S-node is not sufficient to capture the logical series-parallel relations
between program fragments.

Construction of the EOSPG. A program’s EOSPG is constructed incremen-
tally and in parallel during program execution. Each executing thread adds nodes
to a subtree of the EOSPG. Different threads will operate on different subtrees
of the EOSPG and updates can be done with limited use of synchronization.
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Fig. 2. EOSPG construction for different OpenMP directives. The nodes before encoun-
tering a directive are greyed out after the EOSPG is updated.

Except for the handling of the ST-nodes, the construction of the EOSPG is sim-
ilar to the construction of the OSPG [4]. Here, we highlight the changes to the
construction algorithm to capture the logical series-parallel relation that were
not supported in the original OSPG design. Figure 1(c) illustrates the EOSPG
for the program in Fig. 1(a) after the program completes execution.

Handling Task Synchronization Directives in the EOSPG. OpenMP
supports task-based parallelism using the task directive. During program execu-
tion, when the currently running task, whether implicit or explicit, encounters
a task directive, the current task creates a new child task, becoming its parent
task. The child task may execute in parallel with the continuation of the parent
task. Moreover, OpenMP provides several options to synchronize task execution.
These options include the taskgroup directive, the taskwait directive, and task
dependencies.

Taskgroup Directive. A taskgroup directive enforces a serial ordering between
the structured block associated with the taskgroup and the code fragments that
execute after the taskgroup. Namely, the code following the taskgroup waits for
the completion of all created tasks and their descendants within the taskgroup’s
structured block. As illustrated in Fig. 2(a), the EOSPG captures this serial rela-
tion by adding an S-node, S2, when the program trace encounters the beginning
of a taskgroup. All the fragments in the taskgroup are contained in the sub-
tree rooted at node S2. Moreover, the fragment executing after the taskgroup
will be the right siblings of newly created S-node, depicted as W-node W3 in
Fig. 2(a). Therefore, creating the S-node S2 captures the serial relation between
all fragments executing within the taskgroup and all the fragments executing
after it.

Taskwait Directive. A taskwait directive specifies a serial ordering between the
task encountering the directive and its children. However, unlike the taskgroup
directive, a taskwait does not enforce a serial ordering with the parent task and
its grandchildren and descendant tasks. While fully nested taskwaits produce a
behavior similar to that of a taskgroup, it becomes more challenging to correctly
capture series-parallel relations when taskwaits are not fully nested.

To capture the series-parallel relations induced by the taskwait directive cor-
rectly, we also need to take the nesting level into account. Further, during the
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dynamic execution, we do not know whether the execution will see a taskwait
directive in the future. Hence, whenever a parent task encounters a task direc-
tive and creates its first child task in the program or spawns a new task after a
taskwait, we add an ST-node, followed by a P-node to the program’s EOSPG
as illustrated in Fig. 2(b). We create an ST-node at this point in the execution
because we do not know a priori the nesting level of the newly created child
task and whether at each nesting level, including the current one, the execution
will encounter a taskwait directive. The subsequent P-node captures the parallel
relation between the newly created child task and its sibling tasks, if any.

An ST-node partitions the W-nodes under its subtree into two subsets
because a taskwait does not serialize all the W-nodes in the subtree. (1) W-nodes
that execute serially with all right siblings of the ST-node and their descendants.
(2) W-nodes that run in parallel relative to the right siblings of the ST-node
and their descendants. To determine if a W-node is a member of the first or
the second subset, we use the nodes’ st val values on the path to the ST-node.
Intuitively, st val values on the path to the ST-node, capture the nesting level
and the number of encountered taskwaits. Whenever an ST-node is created, its
st val is initially set to zero (Fig. 2(b)). If later during the execution, the task
that created the ST-node encounters a taskwait, we capture this information by
setting the st val of the corresponding ST-node to −1 (Fig. 2(c)). To capture
the nesting level under an ST-node’s subtree, the newly created P-node, which
is the immediate child of the ST-node, will have an st val of one.

Key Invariant in the Presence of ST-nodes. For a pair of W-nodes, (Wi,
Wj), where Wi is under the subtree of ST-node STk and Wj is either a right
sibling or a descendant of a right sibling of STk, the pair of W-nodes execute in
parallel if the sum of the st val values of the EOSPG nodes on the path from
STk to Wi is a positive integer. Otherwise, the two W-nodes execute in series.

Task Dependencies. In OpenMP, sibling tasks logically execute in paral-
lel. However, with task dependencies, OpenMP supports user-defined ordering
between sibling tasks. We capture the serial ordering produced by task depen-
dencies in the EOSPG by adding Edp edges between P-nodes that correspond
to dependent tasks. For example, consider two sibling tasks t1 and t2 where
t2 is dependent on t1. The EOSPG captures this task dependency as follows.
By construction, each task has a corresponding P-node in the EOSPG, labeled
as P1 and P2 in Fig. 2(d). The Edp edge, (p1, p2), captures the underlying task
dependency. The dependency of two sibling tasks can be checked by looking for
a path comprised of Edp edges between the corresponding P-nodes.

To check if a pair of W-nodes, (W2, W4) in Fig. 2(d), execute in series due to
a task dependency, we first check if they are sibling tasks. This is accomplished
by computing the LCA. If the LCA node is not an ST-node, then they are not
sibling tasks, and the dependency edges are ignored. A task dependency only
serializes the sibling tasks, which does not imply the serialization of its nested
descendants. If the LCA is a ST-node, then we identify the corresponding P-
nodes to check the if pair of W-nodes are at the same nesting level; we use the
sum of the st val values of EOSPG nodes on the path from W2 to the LCA.
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The pair of W-nodes execute in series if this sum equals to 1, and there exists a
directed path comprised of Edp edges between the two sibling P-nodes.

Checking Series-Parallel Relations. Using the EOSPG, we can check if two
W-nodes logically execute in parallel. Given a pair of W-nodes, Wl and Wr

where Wl is to the left of Wr, this procedure is as follows. (1) Compute the least
common ancestor (LCA) of the two nodes Wl and Wr. (2) Identify the left child
of the LCA on the path to Wl. If this left child is a S-node or a W-node, then the
two nodes logically execute in series. (3) If the left child of the LCA on the path
to Wl is a P-node, check if the two W-nodes under consideration are serialized
by dependency edges. Identify the child of the LCA on the path to Wr. If there
is a directed path between these two P-nodes and are at the same nesting level,
they execute in series. Otherwise, they logically execute in parallel. (4) If the
left child of the LCA on the path to Wl is a ST-node, check if the two nodes are
serialized by fully nested taskwaits. Determine the count of the st val values on
the path from Wl to the child of the LCA. If this count is greater than 0, then
two nodes execute in parallel. Otherwise, they execute in series.

Metadata.OMP-RACERmaintains access history metadata with each shared
memory address. In the fast mode when the taskwait directives are properly
nested and the program does not use locks, then OMP-RACER maintains three
W-nodes corresponding to the previous write and two previous reads (R1 and
R2) per-memory location similar to prior work [22,30]. The invariant maintained
by OMP-RACER is that if any future memory access is involved in a data race
with prior n reads to the same memory location R1..n, then it will also have a
data race with R1 or R2. This invariant is maintained by choosing (R1, R2) such
that, L = LCA(R1, R2), is closer to the root node than L′ = LCA(R1, RK) or
L′′ = LCA(R2, RK) for any RK ∈ R1..n.

In the precise mode, OMP-RACER stores a number of W-nodes per shared
memory location that increases proportionally to the size of the lockset and the
number of active ST-nodes in the program. When the EOSPG has ST-nodes,
maintaining only two read accesses for the entire program to detect the first
data race is no longer sufficient. Consider two parallel reads, (R1, R2) that occur
in tasks that are at an outer nesting level of the program and a parallel read that
occurs in a task at an inner nesting level, R3. Maintaining the earlier invariant
results in keeping (R1, R2) in the access history. Leading to potentially missing
data races that involve R3. For example, this could happen if the outer nesting
level is synchronized with a taskwait that does not synchronize the inner nesting
level, as depicted in Fig. 1(a) (lines 14–23). Hence, OMP-RACER maintains
two additional reads and one write for each active ST-node in the program. To
detect data races in the presence of locks, OMP-RACER tracks the set of locks
held before an access (i.e., lockset [8]) and maintains up to two W-nodes for
prior parallel reads (R1, R2) and up to two W-nodes for prior parallel writes
(W1,W2) for each lockset per memory location [22,30].

Metadata Updates and Checks on Each Access. On every memory access,
the metadata for that memory location is retrieved, checked for races, and is
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updated. In the precise mode, the metadata is a list of access history entries. Each
entry is uniquely identified by the lockset and a node of the EOSPG (i.e., either
root node or a ST-node). Each entry consists of a lockset, a node of the OSPG
(i.e., a root or an ST-node), two reads, and two write operations. On a memory
access with a lockset (lc) in a W-node Wc, the metadata is checked as follows.
OMP-RACER iterates over the list of access histories to retrieve a 6-tuple
(lockset, node, R1, R2, W1, W2). For every entry, if the intersection of the lockset
of the access history and lc is non-empty, OMP-RACER checks if the current
node Wc and previous reads/writes in the access history are conflicting and can
logically execute in parallel. If so, it reports an apparent race. Subsequently, the
metadata is updated as follows. Starting from Wc, traverse the EOSPG to the
root node and identify all ST-nodes on the path to the root node. For every
ST-node encountered and the root node, OMP-RACER creates or retrieves a
new entry from the list of access history entries that corresponds to the current
lockset. This entry contains four W-nodes. If the LCA of Wc and one of the
existing nodes is closer to the root than the existing LCA of the nodes, then
Wc is added to the access history. Otherwise, information about Wc is already
subsumed by the existing information in the access history.

In the fast mode, OMP-RACER runs the program once to construct the
EOSPG and to identify whether the program uses locks and uses taskwaits in
a properly nested manner. During the construction of the EOSPG, when an
ST-node completes execution, if the st val of the all ST-nodes is −1, then the
program contains properly nested taskwait directives. In the subsequent race
detection execution, the access history per-memory location contains two reads
and a write operation. A current access is an apparent data race if it is conflicting
with the prior access in the access history and can happen in parallel.

Scaling to Long Running Applications. Our approach can scale to long
running applications because it is not necessary to maintain the entire EOSPG
in memory. The EOSPG and the access history metadata can be cleared at the
end of the parallel directive. Further, any EOSPG node can be deallocated even
before the end of the parallel directive when it does not have any reference in
the access history metadata space.

4 Experimental Evaluation

Prototype. OMP-RACER prototype supports C/C++ OpenMP programs.
It uses LLVM-10’s OpenMP runtime and the OMPT interface to construct the
EOSPG. It also includes an LLVM pass to instrument memory accesses. OMP-
RACER constructs a program’s EOSPG and performs data race detection on-
the-fly during execution. OMP-RACER has two modes: a precise and a fast
mode. The precise mode detects data races even when the program uses locks
and imposes no restriction on how taskwaits are used in the program, which
can have significant overheads. In the fast mode, OMP-RACER first checks
if the program has fully nested taskwaits. If so, it uses a constant amount of
metadata per memory location in the subsequent execution for race detection.
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Fig. 3. small Performance slowdown of OMP-RACER and Archer with various PBBS,
BOTS, and Coral application suites.

It is significantly faster. We report all evaluation results with the fast mode.
OMP-RACER prototype is publicly available [5].

Benchmarks. We evaluate the detection abilities of OMP-RACER with
DataRaceBench1.2.0 [14]. OMP-RACER does not support the target directive
and SIMD parallelization, yet. Out of 116 programs, 106 do not contain these
directives. To measure performance overheads, we use a suite of 26 OpenMP
applications from Coral, BOTS, and PBBS benchmarks suites. We performed
all experiments on a Ubuntu 16.04 machine with a 16-core Xeon 6130 processor
running at 2.1GHz and with 32 GB of memory. We use the latest version of
Archer [2] with LLVM-10, which is the state-of-the-art for OpenMP programs,
to compare the detection abilities and overheads with OMP-RACER.

Detection Ability. We compare OMP-RACER and Archer’s effectiveness in
detecting races using DataRaceBench. OMP-RACER detects data races in all
the 106 programs from a single execution and does not produce any false posi-
tives (i.e., 100% detection rate). As we detect apparent races, OMP-RACER
detects races that do not manifest in a particular schedule. Archer did not detect
many of the races in a single execution. When we ran Archer with multiple
threads and multiple times, it detected 95% of the races. We observed that
Archer misses races in some programs (e.g., DRB013) when executed with a low
number of threads. Archer does not precisely capture the semantics of task syn-
chronization and task dependency, which results in false negatives. In summary,
OMP-RACER is more effective in detecting races compared to Archer.

Performance Overheads. Figure 3 reports the performance overhead of OMP-
RACER and Archer with our performance applications. The runtime overhead
of OMP-RACER in its fast mode, on average, is 20×. The overhead of Archer
is 21×. When the program performs significant recursive decomposition (e.g.,
with Strassen and SparseLU), OMP-RACER has higher runtime overhead
compared to Archer. The height of the EOSPG is proportional to the nesting
level of the program. An increase in height can increase the cost of performing
LCA queries, which results in higher overheads.

We also measured the impact of increasing the number of threads and the
costs of EOSPG creation. The overhead of OMP-RACER decreases with the
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increase in the number of threads with scalable applications as the instrumenta-
tion code is executed in parallel. The average cost of constructing the EOSPG
is 1.12× on average compared to the baseline program without any instrumenta-
tion. Hence, performing an initial execution to check if the taskwaits are properly
nested in the fast mode is inexpensive compared to the cost of overall race detec-
tion.

5 Related Work

Race detection has been widely studied for parallel programs. These include
both approaches that rely on static analysis [3,7,26] and dynamic analysis
[9–12,15,18,21–25,30]. Static analysis tools can detect races for all inputs. How-
ever, they report false positives due to conservative analyses. Among dynamic
analysis tools, Eraser [23] uses locksets to identify data races. Subsequent
approaches have used happens-before relation with vector clocks [13] to detect
races [10,24]. ThreadSanitizer [24] makes numerous trade-offs to scale vector-
clocks to large applications.

Our work is inspired by prior approaches that use logical series-parallel rela-
tions for fork-join programs, which include labeling [11,15,18] and construction
of series-parallel graphs [1,9,21,22,25,28–30]. OMP-RACER proposes a novel
series-parallel graph (i.e., EOSPG) to accurately capture series-parallel relations
induced by the directives according to the OpenMP specification.

Among OpenMP tools for dynamic race detection, ROMP [11] and Archer [2]
are closely related. ROMP [11] expands upon offset-span labeling to support
OpenMP directives, including tasking and task synchronization. Asymptotically,
the operations in the EOSPG are comparable to ROMP’s offset-span labeling
since the length of labels and the depth of the EOSPG grow proportional to
the nesting level of the program. However, the public prototype of ROMP is not
mature to run with large applications. Archer [2] builds upon ThreadSanitizer by
extending it to support OpenMP semantics. As Archer is a per-schedule detector,
it is necessary to run an application with Archer multiple times and with multiple
thread counts to detect races. Compared to Archer, OMP-RACER is able to
detect more races that not only occur in the observed schedule but also in other
possible schedules for a given input from a single execution.

6 Conclusion

This paper makes a case for detecting apparent races in OpenMP programs using
logical series-parallel relations. The Enhanced OpenMP Series-Parallel Graph
precisely models logical series-parallel relations for a significant portion of the
OpenMP specification, which makes it useful for building numerous performance
analysis and debugging tools. It supports both work-sharing and tasking direc-
tives. The ability to detect races not only in the observed schedule but also
in other possible schedules for a given input with OMP-RACER can alleviate
the need for repeated executions and interleaving exploration. Our preliminary
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results with OMP-RACER are promising and we plan to support more features
from the OpenMP specification in the future.
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