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ABSTRACT
Posit is a recently proposed representation for approximating real
numbers using a finite number of bits. In contrast to the floating
point (FP) representation, posit provides variable precision with a
fixed number of total bits (i.e., tapered accuracy). Posit can represent
a set of numbers with higher precision than FP and has garnered sig-
nificant interest in various domains. The posit ecosystem currently
does not have a native general-purpose math library.

This paper presents our results in developing a math library for
posits using the CORDIC method. CORDIC is an iterative algorithm
to approximate trigonometric functions by rotating a vector with
different angles in each iteration. This paper proposes two exten-
sions to the CORDIC algorithm to account for tapered accuracy
with posits that improves precision: (1) fast-forwarding of iterations
to start the CORDIC algorithm at a later iteration and (2) the use of
a wide accumulator (i.e., the quire data type) to minimize precision
loss with accumulation. Our results show that a 32-bit posit imple-
mentation of trigonometric functions with our extensions is more
accurate than a 32-bit FP implementation.
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1 INTRODUCTION
Approximating real numbers is essential for almost all domains in
computing. Floating point (FP) [2, 18] is a widely used approxima-
tion of real numbers with a finite number of bits. An FP number is
abstractly represented as F × 2e where F ∈ [1, 2) and it uses a fixed
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number of bits to represent the exponent and the significand. Due
to its wide usage, there are numerous tools and math libraries for
FP [9–11, 14, 17]. Given the need for more performance, there are
numerous efforts to explore alternatives to FP [3, 19, 23, 24, 33].

Posit [20, 21], which was recently proposed by John Gustafson,
is one such alternative to FP that provides variable precision. A
⟨n, es⟩-posit is an n-bit representation consisting of one sign bit,
a flexible number of regime bits, a regime guard bit, up to es bits
for the exponent, and the remaining bits for the fraction (Section 2
provides more details on posits). Depending on the value, some
of the regime bits can be re-purposed for fraction, which provides
tapered accuracy. In the posit representation, values near 1 have
the most precision. In contrast to FP of the same bit-width, posit
can provide more precision for a range of values. For example, a
⟨32, 2⟩-posit provides four additional precision bits than 32-bit float
for values between [ 1

16 , 16]. Posit can also represent more distinct
values than FP because it has one bit-pattern for zero and one
bit-pattern for representing exceptions (32-bit float has two zeros
and 224 − 2 NaNs). Given this tapered accuracy, there is a growing
interest in posits [4, 5, 13, 24, 25, 29, 37].

The posit ecosystem does not have a general-purpose math
library, yet. The only available math library is limited to 16-bit
posit [30]. Math libraries are used in many real-world applications
to approximate commonly used elementary functions. In the ab-
sence of posit math libraries, developers use existing FP libraries
by casting a posit value to an FP number and subsequently cast-
ing the FP result back to a posit value. Although a good stop-gap
measure, there are two reasons why using FP math libraries for
approximating elementary functions for posits is undesirable. First,
depending on the choice of the FP type, not all posit values may be
representable. Any general-purpose representation should have a
default math library. Second, FP math libraries are developed for
approximating FP values accurately. Because FP has fixed precision
regardless of the magnitude of the value, the goal of its math library
is to provide the same amount of precision for all values. On the con-
trary, posit values have the most precision near 1 and less precision
as the value increases (or decreases). Therefore, an accurate posit
math library must approximate values near 1 precisely compared
to FP. However, very small and large values can be approximated
less precisely compared to FP.

CORDIC method for posits. This paper makes a case for ex-
ploring the CORDIC method with posits. The Coordinate Rotation
Digital Computer (CORDIC) algorithm [44] is an iterative algo-
rithm to compute trigonometric functions. Intuitively, CORDIC
rotates a vector [x ,y]T by a decreasing amount of angles θi =
atan(2−i ) for i ≥ 0 to compute trigonometric functions of the
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desired angle (Section 2.2 provides a detailed background). The
CORDIC algorithm is known for its simplicity. It has been used
in the Lunar Rover’s vehicle navigation system [1] and calcula-
tors [8, 43]. Extensions to the CORDIC algorithm are available
to approximate hyperbolic functions and a wide range of other
elementary functions [45].

This paper. This paper describes our effort in building a math
library for posits using the CORDIC method. We address the issue
of cancellation of bits and loss of precision when using the CORDIC
algorithm with posits. To mitigate these issues, we propose two
extensions to the CORDIC algorithm. First, instead of starting the
CORDICmethod from the first iteration, we propose to fast-forward
the iterations to a later iteration depending on the magnitude of
the input value. We provide a closed form solution to identify the
latest iteration at which one can accurately compute the final re-
sult. Second, we propose to perform certain computations using
a high-precision accumulator, which is called a quire in the posit
ecosystem. We have implemented these techniques and compared
them against a CORDIC algorithm implemented using floats. The
CORDIC method with posits produces results that are more accu-
rate than the corresponding FP versions. Our CORDIC library for
posits is 5× faster and produces reasonably accurate results when
compared to a high-precision library (i.e., with GNU MPFR) that
uses 1024 bits of precision.

Contributions. In summary, this paper makes the following
contributions.

• Makes a case for using the CORDIC method with posits for
developing a general purpose math library.

• Proposes two extensions to the CORDIC method to account
for tapered accuracy with posits: fast-forwarding of itera-
tions and use of a high-precision accumulator.

• Demonstrates that CORDIC for posits can produce results
that are more accurate than the FP implementation.

2 BACKGROUND
We provide a background on the posit representation and the
CORDIC method for approximating trigonometric functions.

2.1 Posits
Posit is a representation for approximating real numbers with a
finite number of bits, which is intended to be a stand-in-replacement
for FP. Given the same number of bits, posit can provide better
precision than FP for a range of values via tapered accuracy.

A posit bit-pattern. A ⟨n, es⟩-posit environment has n bits in
total and at most es bits are used to represent the exponent. The
first bit represents the sign bit (s), where s = 0 represents a positive
value and s = 1 represents a negative value. If s = 1, then the
two’s complement of the rest of the bit-pattern is computed before
decoding other bits. The next consecutive bits of 0’s or 1’s are called
regime bits (r ) and represents the super exponent. The number of
regime bits are bounded by 1 ≤ |r | ≤ n − 1. If |r | < n − 1, then the
regime bits are terminated by the opposite bit (1 or 0, respectively)
known as the regime guard bit, r . The regime is a super exponent.
When the regime bits are not needed to represent a number, these
can be re-purposed to provide precision, which provides tapered
accuracy.

(b)

(a)

0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0
sign regime regime 

guard
exp fraction

rs r0 r1 … r|r|-1 e0 ... ees-1 f0  f1… f|f|-1
fractionexpregime

guard
regimesign

Figure 1: (a) The posit representation. A posit bit-pattern
contains a sign bit, regime bits consisting of consecutive 0’s
or 1’s, followed by an opposite bit for the regime guard, expo-
nent bits, and fraction bits. (b) In ⟨16, 1⟩-posits, the bit-string
0x7700 represents the value 42 × 21 × 1.75 = 56.

If |r |+2 < n, the nextmin(es,n−r−2) bits represent the exponent
bits e , where 0 ≤ |e | ≤ es . When |e | < es , then the exponent bits
are padded with es − |e | number of 0 bits to the right. Finally, if
|r | + 2 + es < n, the remaining bits represent the fraction bits, f .

Interpreting a posit bit-pattern. First, the regime bits are used
to compute the magnitude of the super exponent,

useedm where m =

{
|r | − 1 i f r = 11 . . . 1
−|r | i f r = 00 . . . 0

where useed = 22es . The exponent bits are treated as an unsigned
integer to encode the exponent component, 2e . The maximum
value representable by the exponent component is 22es−1 = useed

2 .
Thus, regime bits extend the range of the exponent component
while providing tapered accuracy. The fraction bits are interpreted
similar to the normalized values in FP,

F = 1 + f

2 |f |
where f is interpreted as an unsigned integer and | f | represents
the number of bits used for the fractional part. Finally, the value
represented by posit bit-pattern is:

(−1)s × useedm × 2e × (1 + f

2 |f |
)

As an example, consider the bit-pattern 0x7700 in the posit
environment ⟨16, 1⟩ (see Figure 1(b)). Here, useed = 221 = 4. The
value represented by this bit-pattern is (−1)0×4(3−1)×21×1.75 = 56.

Special values. There are two special values: the posit bit-
pattern of all 0’s represents zero and the posit bit-pattern of a
1 followed by all zeros represents Not a Real (NaR), which is an
exception.

Rounding mode. When a value cannot be exactly represented,
the posit standard requires the value to be rounded to the nearest
representable value with ties going to even.

Additionally, there are no overflows or underflows with posits.
All real values p greater than maximum representable value, p ≥
maxpos = (22es )n−2, are rounded tomaxpos . Likewise, all values
less than minimum representable value excluding 0, 0 < p ≤
minpos = (22es )−(n−2), are rounded tominpos .

The quire data type. The posit standard also specifies a quire
data type, which is a high precision accumulator that supports
accurate computation of a series of multiply-add operations [26,
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27]. The quire is required to provide enough bits to express both
maxpos2 andminpos2.

Advantages of posits. First, posit can represent more unique
values than FP for a given bit-width because posit has a single
bit-pattern representing NaR whereas FP has multiple bit-patterns
for NaNs. Second, posit can provide more precision than FP for
a certain range of values due to tapered accuracy. For example,
in a ⟨32, 3⟩-posit configuration, a posit value p ∈ [2−8, 28) has 26
fraction bits, where as a 32-bit float has 23 fraction bits. All posit
values p ∈ [2−32, 232) have equal or more fraction bits compared to
FP32, yet the dynamic range of ⟨32, 3⟩ spans [2−240, 2240] compared
to [2−149, 2127) for a 32-bit float. The posit standard defines ⟨32, 2⟩
environment as the default representation for 32 bit. It provides up
to 27 fraction bits for values x ∈ [2−4, 24), equal or more fraction
bits compared to a 32-bit float for values x ∈ [2−20, 220) (known as
the golden zone) and has a dynamic range of [2−120, 2120].

2.2 The CORDIC Method
Coordinate Rotation Digital Computer (CORDIC) [44] is a variant
of iterative add-shift algorithms for approximating trigonometric
functions. While not the most efficient, CORDIC is popular for its
simplicity (in hardware) and can be easily extended to compute
other elementary functions.

The idea behind CORDIC. The key idea behind CORDIC is
to compute the value of a trigonometric function through a series
of rotations of a 2-dimensional vector. When we want to compute
the trigonometric function for an angle θ , the angle θ is decom-
posed into a series of small decreasing angles that satisfies certain
properties (described below). Subsequently, a suitably initialized
vector is rotated through these angles in each iteration. At the end
of this process, the components of this vector or the accumulated
θ ’s represent the value of trigonometric functions.

Vector rotation. When a vector [x ,y]T is rotated by θ , the re-
sulting vector [x ′,y′]T is given by:[

x ′
y′
]
=

[
cos(θ ) −sin(θ )
sin(θ ) cos(θ )

] [
x
y

]

If [1, 0]T is rotated by angle θ , the resulting vector is equivalent
to [cos(θ ), sin(θ )]T . After simplification, we can express the above
formula for vector rotation as:[

x ′
y′
]
=

1√
1 + tan2(θ )

[
1 −tan(θ )

tan(θ ) 1

] [
x
y

]

Now if we choose angle θi such that tan(θi ) = 2−i , where i ≥ 0 is
a non-negative integer, the above matrix multiplication operations
can be calculated using only addition, multiplication by 2−i (shifts),
and a square root operation.[

x ′
y′
]
=

1√
1 + 2−2i

[
1 −2−i
2−i 1

] [
x
y

]

The next step is to decompose the angle θ into a series of de-
creasing angles θi such that tan(θi ) = 2−i using the non-restoring
decomposition property.

Non-restoring decomposition property. The non-restoring
decomposition property states that if an ordered sequence of values
(ω0,ω1,ω2, ...) are strictly decreasing, ωi > 0 for all i ≥ 0,

∑∞
i=0 ωi

converges, and

∀i ωi ≤
∞∑

k=i+1
ωk

then any value t ∈ [−∑∞
i=0 ωi ,

∑∞
i=0 ωi ] can be computed as t =∑∞

i=0 diωi where di ∈ {1,−1}.
The sequence (θ0,θ1,θ2, ...) where θi = atan(2−i ) satisfies the

above property. Any value of θ ∈ [−∑∞
i=0 θi ,

∑∞
i=0 θi ] can be com-

puted as θ =
∑∞
i=0 diθi . In the context of CORDIC, this prop-

erty asserts that it is possible to compute sin(θ ) and cos(θ ) for
θ ∈ [−1.74328..., 1.74328...] (superset of [− π

2 ,
π
2 ]) by iteratively

rotating the vector [1, 0]T with θi .
Summary. The general CORDIC method, which is also known

as the rotation mode, iteratively rotates [1, 0]T by θi ,

x0 = 1, y0 = 0, z0 = θ

xi+1 = Ki (xi − diyi2−i )
yi+1 = Ki (yi + dixi2−i )
zi+1 = zi − diatan(2−i )

Ki =
1√

1 + 2−2i
, di =

{
1 i f zi ≥ 0
−1 otherwise

The value Ki is known as the scaling factor, as it normalizes the
length of the vector [xi − diyi2−i ,yi + dixi2−i ]T . In each iteration,
xi = cos(θ − zi ) and yi = cos(θ − zi ), and zi = θ −∑i−1

k=0 diθi . Intu-
itively, the goal of CORDIC algorithm is to reduce zi , the difference
between θ and the accumulated angle of rotation, to 0. As such,
x∞ = cos(θ ), y∞ = sin(θ ), and z∞ = 0.

Optimized CORDIC algorithm. The above algorithm still re-
quires the computation of Ki and θi . It can be further optimized by
factoring out Ki such that K =

∏n−1
i=0 Ki , and directly multiplied to

the initial x0 andy0 if the number of iterations, n, is known ahead of
time. Hence, K and θi can be precomputed in a table. The optimized
algorithm is as follows:

x0 = K , y0 = 0, z0 = θ

xi+1 = (xi − diyi2−i )
yi+1 = (yi + dixi2−i )

zi+1 = zi − diθi

di =

{
1 i f zi ≥ 0
−1 otherwise

Computing atan.TheCORDICmethod used to computeatan(yx )
for x > 0, which is also known as vectoring mode, rotates the initial
vector [x ,y]T towards [

√
x2 + y2, 0]T and accumulates the angle in

the process. Optimized vectoring mode algorithm is as follows:

x0 = x , y0 = y, z0 = 0

xi+1 = xi + diyi2−i

yi+1 = yi − dixi2−i

zi+1 = zi + diθi

di =

{
1 i f yi ≥ 0
−1 otherwise

Consequently, x∞ = K
√
x2 + y2, y∞ = 0, and z∞ = atan(yx ).
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3 NAIVE CORDIC USING POSITS
The goal of our approach is to use the CORDIC method to generate
approximations of trigonometric functions using posits. The avail-
ability of additional precision bits as a result of tapered accuracy
with posits makes it an attractive candidate for the CORDIC algo-
rithm. However, tapered accuracy with posits also makes it lose
precision bits with small and large numbers. A naive straightfor-
ward implementation with posits using the method described in
Section 2.2 can cause errors for the following reasons: (1) rounding
errors with the computed K and θi values, (2) cancellation error
that occurs during subtraction operations while computing xi , yi ,
and zi , and (3) loss of precision bits in the computation of xi2−i
and yi2−i due to tapered accuracy.

Rounding errors with K and θi . A large number of precision
bits may be needed to accurately compute the values of K . They
have to be rounded when maintained in the posit representation,
which can lead to imprecise intermediate and final results. In our
CORDIC implementation, we precompute these values for K using
higher precision (i.e., MPFR [14]) and then round them to the nearest
value, which still introduces some rounding errors.

Similar to K , θi may also need a large number of precision bits.
Moreover, θi becomes progressively smaller as i increases. Thus,
the rounded posit value of precomputed θi can have small number
of precision bits, which magnifies the rounding error.

Cancellation errors. Cancellation error occurs when two inex-
act (i.e., rounded) values of similar magnitude are subtracted. When
two values are similar, the significant bits of the fractional part are
identical and get canceled. If the remaining bits are all influenced by
rounding error, then the subtraction has catastrophic cancellation.
Here, all bits in the result are influenced by rounding error.

A major contributing factor to error with the posit version of
CORDIC is in the computation of xi ,yi , and zi . The subtraction that
produces these values incurs cancellation. The cancellation error
of zi can even evaluate zi ≥ 0 incorrectly compared to a CORDIC
version with real numbers (e.g., MPFR), which leads to divergence
of the program execution path compared to the ideal execution.

Example. We show an illustration of cancellation with the
CORDIC method using ⟨32, 2⟩-posit when we are computing sin(0)
and cos(0) (i.e., θ = 0). The computation of zi+1 and yi+1 has a
large number of subtraction operations. While this does not cause
cancellation error in every iteration, it increases the likelihood. We
observe that with posits, there are enough occurrences of cancella-
tion error such that the result of yi and zi has no correct fraction
bits after a number of iterations. Table 1 highlights the intermediate
result of xi , yi , zi , and di for some iterations i . The inexact digits
are in bold font. With cancellation, some values have fraction bits
to be inexact and others can have even the exponent and the sign
to be inexact. Table 1 shows that by the 27th iteration, both y27
and z27 experience cancellation error such that none of the fraction
digits are computed correctly. By the 31st iteration, the sign of z31
is computed incorrectly and causes wrong evaluation of z31 ≥ 0.
This causes the implementation to incorrectly compute d31, which
eventually leads to inaccurate results.

Precision loss frommultiplication.Multiplication by 2−i can
increase the relative error of any ⟨32, 2⟩-posit value if themagnitude
of the value reduces enough to require more regime bits to represent

Table 1: Intermediate values of xi , yi , zi , and di from the
CORDIC algorithmwith ⟨32, 2⟩-posits forθ = 0. Each column
show the iteration number, xi , yi , zi , and di for a number of
iterations. The sign, digit, and the exponent for each value
in bold font indicates that it is inexact. In the 27th iteration,
both y28 and z28 experience catastrophic cancellation. In the
31st iteration, the incorrect result of z31 causes divergence of
d31 from the ideal value, causing the program execution to
diverge from the ideal execution.

i xi yi zi di
0 0.6072529... 0 0 1
1 0.6072529... 0.6072529... -0.7853981... -1
... ... ... ... ...
26 1.000000... 1.899752...E-8 -1.706939...E-8 -1
27 1.000000... 4.096364...E-9 -2.168235...E-9 -1
28 1.000000... -3.354216...E-9 5.282345...E-9 1
... ... ... ... ...
31 1.000000... 1.302396...E-9 +6.257323...E-10 1
... ... ... ... ...

the value. In the CORDIC method, yi2−i (resp. xi2−i ) can have less
precision than yi (resp. xi ) for i ≥ 1. This loss of precision can
contribute to increased error in yi2−i . In contrast to posits, this loss
of precision with multiplication does not occur with FP because
every normalized value has fixed precision bits.

With respect to the final result, the amount of error arising from
precision loss with multiplication may not be as significant as the
cancellation error. Consider the operation xi+1 = xi − yi2−i . If xi
(resp. yi ) is considerably larger than yi2−i (resp. yi2−i ), then the
error ofyi2−i does not contribute much to the result of xi+1. Ifyi2−i
is considerably larger than xi , then xi+1 has as many precision bits
asyi2−i . Otherwise, cancellation error contributes more to the error
of the final result.

4 OUR CORDIC METHOD FOR POSITS
To address the challenges described in the previous section, we
propose two novel modifications to the CORDIC algorithm with
posits. These techniques reduce cancellation error with subtraction
operations. To minimize the number of subtraction operations that
can experience cancellation, we propose to start the CORDIC algo-
rithm at the last feasible iteration (l) that can accurately compute
the result rather than with the first iteration. Even when θ is small,
the naive CORDIC algorithm starts with the 0th iteration (rotation
by π

4 ), which requires a lot of subtractions. Our technique reduces
the number of subtraction operations. The first executing iteration
with our technique approximates θ more closely than the first it-
eration of the naive CORDIC method. To improve the precision
of zi , we propose to compute zi using the quire data type. The
quire datatype with posits provides enough precision bits to avoid
rounding error in the intermediate result of zi .

4.1 Fast-Forwarded Iterations
The CORDIC algorithm uses a number of subtraction operations
when approximating sin(θ ) and cos(θ ) for small θ , which can cause
cancellation error. Consider an example where we use the CORDIC
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algorithm to approximate sin(θ ) when θ = 0.12 radian. CORDIC ro-
tates the initial vector with a sequence of (θ0,−θ1,−θ2,θ3,−θ4, ...).
The sequence of di in the CORDIC algorithm is (1,−1,−1, 1,−1, ...).
Consequently, there are a number of subtractions while computing
xi , yi , and zi , where cancellation errors can occur. The computa-
tion of yi is more susceptible to cancellation error because y0 = 0
and results in subtractions with values of similar magnitude. Since
x0 = K and z0 = θ , xi and zi are less susceptible to cancellation
error.

Our key idea is to fast-forward the iterations to approximate
the angle under consideration more quickly. For example, it is
possible to approximate 0.12 radian with θi ’s if we start at iteration
4: θ4+θ5+θ6+θ7+θ8.... This eliminates the subtraction operations
in the first few iterations. The sequence of di ’s after starting at
iteration 4 is (1, 1, 1, 1, 1, ...). In this case, the computation of y5,
y6, ... y9 all involve additions. Any subsequent yi computation can
involve subtraction, but xi2−i will be a value substantially smaller
than yi to cause cancellation error. Similarly, computation of xi is
less likely to experience cancellation error since yi2−i for i ≥ 4 is
much smaller than the value of xi for i ≥ 4.

The key task in fast-forwarding iterations is to identify an iter-
ation where we can still approximate the angle of interest. In the
above example, we need to be careful because if we start at itera-
tion 5, then we cannot approximate 0.12 radian. More specifically,
0.12 < [−∑∞

i=5 θi ,
∑∞
i=5 θi ]. Therefore, it is not possible to correctly

approximate 0.12 radian if we start at iteration 5.
Our goal is to start at the latest possible iteration l such that we

minimize the number of subtraction operations while also ensuring
that we can correctly compute θ by starting at l . More specifically,
we have to ensure that θ ∈ [−∑∞

i=l θi ,
∑∞
i=l θi ]

RevisitingNon-restoring decompositionproperty.The non-
restoring decomposition property of θi ’s guarantee that any |θ | ≤∑∞
i=0 θi can be computed using θ =

∑∞
i=0 diθi . This property also

applies to all consecutive infinite sequences, (θl ,θl+1,θl+2, . . . ),
l > 0. Any |θ | ≤ ∑∞

i=l θi can be computed using t =
∑∞
i=l diθi

because the sequence satisfies the necessary conditions for using
the non-restoring decomposition property. Hence, CORDIC can
correctly compute θ at iteration l as long as |θ | ≤ ∑∞

i=l θi .
Modified CORDIC algorithm. We modify the CORDIC al-

gorithm to start at a later iteration depending on the value of
θ . More specifically, we start the algorithm at iteration l , where
l =max{k | k ≥ 0, |θ | ≤ ∑∞

j=k θ j }. The initial values xl , yl , and zl
also change accordingly. Our modified algorithm is:

xl = K ′ =
l+n−1∏
k=l

Kk , yl = 0, zl = θ

xi+1 = (xi − diyi2−i )
yi+1 = (yi + dixi2−i )

zi+1 = zi − diθi

di =

{
1 i f zi ≥ 0
−1 otherwise

l =max{k | k ≥ 0, |θ | ≤
∞∑
j=k

θ j }

where n > 0 is the total number of iterations executed.

The value K ′ depends on both the starting iteration l and the
number of iterations n. We precompute a table for K ′. In a ⟨32, 2⟩-
posit, K ′ rounds to 1.0 for l > 14 and K ′ rounds to a constant value
for all 0 ≤ l ≤ 14 as long as n ≥ 17. Using this observation, the
size of the precomputed table for K ′ is just 16 entries as long as the
number of iterations n is greater than or equal to 17.

Identifying the starting iteration. Identifying the correct l
is compute intensive even if we store

∑∞
j=k θ j for k ≥ 0 in a

precomputed table. Instead, we approximate l using the formula
l = max{0,−eθ − 1}, where eθ is the exponent of θ in the posit
representation, i.e. |θ | = Fθ × 2eθ and Fθ ∈ [1, 2). This formula
guarantees that the CORDIC algorithm starting at iteration l can
compute the result for θ correctly.

Sketch of the proof for identifying the iteration. To prove
that l =max{0,−eθ −1} is sufficient to identify the correct iteration
for fast-forwarding, we must identify l in terms of eθ such that,

|θ | = Fθ × 2eθ < 2eθ+1 ≤
∞∑
i=l

θi

Observe that atan(0) = 0 and datan(x )
dx ≥ 1

2 for 0 ≤ x ≤ 1. This
implies that θi = atan(2−i ) ≥ 2−i−1 for i ≥ 0. Then,

∞∑
i=l

θi =
∞∑
i=l

atan(2−i ) ≥
∞∑
i=l

2−i−1 = 2−l

Consequently, any l that satisfies 2eθ+1 ≤ 2−l also satisfies |θ | <∑∞
i=l θi . It follows that l ≤ −eθ − 1.
Computing atan with vectoring mode. The vectoring mode,

which computesatan, can also start at a later iteration l if |atan(yx )| ≤∑∞
i=l θi . To efficiently compute l , observe that

|atan(y
x
)| = |atan( Fy × 2ey

Fx × 2ex )| < |atan(2ey−ex+1)|

where y = Fy × 2ey , x = Fx × 2ex , and Fy , Fx ∈ [1, 2). It follows
that

|atan(2−(ex−ey−1))| ≤
∞∑

i=ex−ey
θi

from the non-restoring decomposition property of θi . Therefore, it
is sufficient to start at iteration l =max{0, ex − ey }.

Advantages of fast-forwarding iterations. There are several
advantages that can be gained by starting at a later iteration, l ,
instead of always starting at iteration 0. First, it reduces the number
of subtraction operations in the first few iterations that are executed.
Second, when θ is a small value, the θl is a closer approximation to
θ than θ0. In the above example, 0.12 radian is closer to θ4 ≈ 0.0624
radian than θ0 ≈ 0.7854 radian. Because the first angle of rotation
θl is a closer approximation to θ , the intermediate result of the
first iteration is a closer approximation to the correct final result.
This technique also prevents addition and subtraction of θ0 ... θl−1,
which have rounding error.

4.2 Accumulation using Quires
The precision of zi is also important in the CORDIC algorithm. It
keeps track of the difference between θ and the accumulated angle,∑i−1
j=0 di j × θ j . The value of zi determines the orientation of the

rotation for the next iteration. Since the goal of CORDIC algorithm
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is to minimize |zi |, ideally to 0, |zi | decreases each iteration and
gradually loses available number of fraction bits with posits to
represent the value. This loss of precision increases the chance of
zi experiencing catastrophic cancellation and resulting in wrong
di . To provide sufficient number of fraction bits even for small zi ,
we propose to compute zi using the quire datatype.

Accuracy of θi values. One of the sources of imprecision for zi
stems from the rounding error of θi . Since we use quire to compute
zi , it is also necessary to increase the precision for θi . The table
stored value for θi can have as low as 24 fraction bits.

To provide the maximum precision for θi during zi computation,
we store the value of θi as a pair of two posit values, Bθi and Sθi ,
such that θi = Bθi ∗Sθi . Intuitively, Bθi stores the fractional part of
θi , and Sθi stores the exponent part of θi . Hence, Sθi = RN (2−i ) and
Bθi = RN ( θiSθi ) where RN (x) correctly rounds x to a ⟨32, 2⟩-posit
value. Now, Bθi has 27 fraction bits for i ≥ 0 since Bθi ∈ [2−4, 24).

This representation has several advantages. First, we can provide
up to 27 fraction bits for θi when computing zi+1 = zi + Bθi × Sθi
with the quire operation. Second, the table stored values for Sθi =
2−i can be used for the computation of xi+1 and yi+1 and eliminate
the need to explicitly compute 2−i .

Reason for not computing xi and yi using quire. Unlike zi ,
we do not use quires for xi and yi as the computation of xi and yi
does not benefit from quire. Specifically, the computation of xi (resp.
yi ) requires an addition of ±yi−12−i+1 (resp. ±xi−12−i+1). Quires
support only the multiply-add operations with two posit values.
Hence, ±yi−1 (resp. ±xi−1) must be rounded to the nearest posit
value before it is used in a quire operation, losing the benefit of the
quire representation.

5 EXPERIMENTAL EVALUATION
This section describes our prototype, our methodology, and the ex-
perimental evaluation to understand the accuracy and performance
of our prototype of the CORDIC method.

Prototype.Webuilt a prototypemath library for posits using the
CORDIC method. The library is implemented using our CORDIC
method in C++. Because commercial hardware support for posits is
limited, we used the SoftPosit [29] library, a software library that
implements posit operations and supports quires.We used the 32-bit
posit prescribed in the standard, i.e., ⟨32, 2⟩-posit. We precomputed
the table values (i.e., K , K ′, and θi ) using GNU Multiple Precision
Floating-Point (MPFR) library [14] with 3000 precision bits and
correctly rounded the result to posit. Our prototype is publicly
available [31].

Methodology. To assess the accuracy of our CORDIC imple-
mentation with posits, we computed sin(θ ) and cos(θ ) for θ ∈ [0, π2 ]
using the rotation mode and atan(y1 ) for y ∈ [0,maxpos] using the
vectoring mode. We measured the absolute error (maximum, mini-
mum, and average), unit in the last place (ULP) error (maximum,
minimum, and average), and the number of results with 0 ULP
error for all inputs. To measure the absolute error, we computed
the correct (i.e., real number) result using the MPFR math library
with 128 precision bits, rounded both the posit and the MPFR result
back to double, and computed the absolute difference. As double
has 52 faction bits, it can represent all values that are representable
with ⟨32, 2⟩-posits, which only has 27 precision bits. The ULP error

Table 2: Details about the accuracy of the results with (a) our
CORDIC method implemented with ⟨32, 2⟩-posit and (b) the
naive CORDIC method implemented with 32-bit float. Each
sub-divided columns provides details for sin(θ ), cos(θ ), and
atan(y). The rows show the maximum, minimum, and aver-
age absolute error, maximum, minimum, and average ULP
error, the number of results with 0 ULP error, and the total
number of input values. All decimal values are rounded to 2
decimal places.

(a) our CORDIC (posit) (b) naive CORDIC (float)
sin cos atan sin cos atan

max abs 3.04E-8 2.96E-8 3.26E-1 4.14E-7 4.12E-7 3.26E-1
min abs 0 0 0 6.62E-24 0 0
avg abs 1.56E-9 3.74E-9 5.13E-9 2.44E-8 5.80E-9 8.84E-4
max ulp 10 1.02E6 4.38E7 1.71E9 2.87E6 8.52E8
min ulp 0 0 0 0 0 0
avg ulp 1.18 1.10 7.20E-1 1.02E9 1.25E-1 1.70E8
# 0 ulp 3.20E8 3.87E8 1.68E9 8.39E6 9.98E8 9.18E7
# input 1.15E9 1.15E9 2.15E9 1.07E9 1.07E9 2.14E9

is defined as the number of distinct posit (or floating point) values
between the correctly rounded real value and the computed posit
(or floating point) value. If a value has 0 ULP error, then the value
is equal to the correctly rounded real value.

Evaluation Objective. There are two questions that we want
to answer in our evaluation. First, how accurate is our CORDIC
implementation with respect to the real answer (i.e. computed using
MPFR math library) and how does it compare to the floating point
implementation of CORDIC? Second, how much does each of our
techniques improve the accuracy of the result compared to the
naive CORDIC algorithm? Next, we describe the evaluation of our
prototype to answer the above questions.

5.1 Accuracy of Our CORDICMethod for Posits
Table 2 provides details on the accuracy of our CORDIC method
for posits and the naive CORDIC method implemented with a 32-
bit float. In summary, our CORDIC method for posits outperforms
naive CORDICwith floats for sin(θ ) andatan(θ ) in every dimension:
(1) it has a larger number of values with zero ULP error, (2) more
than 10× lower average absolute error, (3) more than 108× lower
average ULP error, and (4) overall, more accurate results.

Our evaluation shows that even the naive ⟨32, 2⟩-posit imple-
mentation of CORDIC (see Table 3(b)) is more accurate compared
to the float implementation. This shows that posit is more suitable
for the CORDIC method than FP.

In the domain of scientific computing where accuracy is impor-
tant, our CORDIC method for posits has 1.18, 1.10, and 0.72 ULP
error on average for sin(θ ), cos(θ ), and atan(y), respectively. Our
results show that our method can approximate trigonometric func-
tions for all inputs very accurately. More importantly, our CORDIC
can approximate sin(θ ) accurately to within 10 ULP error for all
inputs of interest. On the contrary, we observed high ULP error for
cos(θ ) for θ near π

2 and atan(y) for y nearmaxpos . We conjecture
that the reason for high ULP error for cos(θ ) is due to the cancella-
tion error of xi computation because the fast-forwarded iteration
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Figure 2: Graphs showing the result of (a) sin(θ ), (b) cos(θ ), and (c) atan(y) approximation for our CORDIC methods with ⟨32, 2⟩-
posit (black star) and the naive CORDIC with 32-bit floats (blue ×) for a range of inputs that output small values. The gray
circle represents the correct real result computed with the MPFR library.

technique still started at iteration 0. Although the absolute error in
this case is less than 3× 10−8, the error is relatively large compared
to the real value of the result, which is near 0. The cause of high ULP
error for atan(y) is due to the small number of available precision
bits for large values.

On average, our CORDIC implementation has an absolute er-
ror of 1.56 × 10−9, 3.74 × 10−9, and 5.13 × 10−9 for sin(θ ), cos(θ ),
and atan(y), respectively. It can also be observed that for sin(θ )
and cos(θ ), the maximum absolute error is within a factor of 10
compared to the average absolute error.

Compared to the float implementation of the CORDIC method,
the absolute error of our method is lower by 10× on average for
sin(θ ) and atan(y) while the average ULP error is 108× lower on
average. In contrast to sin and atan, the float implementation of the
CORDIC method for cos(θ ) produces results that have comparable
average absolute error and roughly 10× lower average ULP error.
This discrepancy is due to the different distribution of values in the
FP and the posit representation. It does not signify that the float
implementation of the CORDIC method is more accurate.

In a 32-bit float, cos(θ ) = 1.0 for 0 ≤ θ ≤ 10−4 and the CORDIC
method produces 1.0 for these inputs as well. However, roughly
89.8% of the float values in [0, π2 ] are less than 10−4. This means that
89.8% of the float inputs in our experiment produced cos(θ ) = 1.0
with 0 ULP error and minimal amount of absolute error, substan-
tially lowering the overall error. Comparatively, only 9.7% of the
posit values in [0, π2 ] are less than 10−4.

To more accurately analyze the accuracy of our CORDIC method
compared to the float implementation, we restricted the input range
to [10−4, π2 ]. On average, our method has an absolute error of
4.07×10−9 and 1.21ULP error while the float implementation has an
absolute error of 5.29×10−8 and 1.14 ULP error. Thus, our CORDIC
method with posits can approximate cos(θ ) more accurately than
the float implementation.

Figure 2 provides a comparison between our CORDIC method
and the naive CORDIC with floats for a range of inputs that have
small outputs. It can be observed that for all three trigonometric
functions, our implementation produces a value that is much more
accurate. In some cases, naive CORDIC for floats even flips the sign.
The sin(θ ) approximation of the float implementation outputs a
negative result when the correct result should be small positive
values for positive θ near zero.

Table 3: Table that shows the ULP error of sin(θ ), cos(θ ), and
atan(y) when computed with ⟨32, 2⟩-posit implementation
of (a) our CORDIC method with both techniques, (b) naive
CORDIC method, (c) CORDIC method that only starts at a
later iteration, and (d) CORDIC method implemented with
quire for computing zi . In each table, we show themaximum
and average ULP error as well as the number of outputs with
0 ULP error.

(a) Our CORDIC (b) Naive CORDIC
sin cos atan sin cos atan

max abs 3.04E-8 2.96E-8 3.26E-1 3.04E-8 2.96E-8 3.26E-1
avg abs 1.56E-9 3.74E-9 5.13E-9 2.92E-9 3.73E-9 7.68E-9
max ulp 10 1.02E6 4.38E7 7.38E6 1.02E6 4.38E7
avg ulp 1.18 1.10 7.20E-1 2.94E4 1.10 3.75E4
# 0 ulp 3.20E8 3.87E8 1.68E9 8.34E7 3.84E8 5.09E8

(c) Fast-Forwarded Iter. (d) Compute zi With Quire
sin cos atan sin cos atan

max abs 3.04E-8 2.96E-8 3.26E-1 3.04E-8 2.96E-8 3.26E-1
avg abs 1.56E-9 3.74E-9 7.22E-9 2.90E-9 3.73E-9 5.69E-9
max ulp 10 1.02E6 4.38E7 7.38E6 1.02E6 4.38E7
avg ulp 1.19 1.10 1.28 3.06E4 1.10 3.75E4
# 0 ulp 3.12E8 3.87E8 7.91E8 6.62E7 3.84E8 1.05E9

5.2 Sensitivity Experiments
To analyze the contribution of each of our techniques in improv-
ing the accuracy of various functions, we measured the ULP error
and the absolute error produced by the ⟨32, 2⟩-posit implementa-
tion of (1) our CORDIC method with both enhancements, (2) the
naive CORDIC, (3) CORDIC with fast-forwarded iteration, and (4)
CORDIC with quire computation. Table 3 provides details on this
experiment.

The fast-forwarded iteration technique improves the average
ULP error significantly for sin(θ ) and atan(y). Specifically, our ex-
periments show that this technique improves the accuracy of the
CORDIC implementation for small input values. The naive CORDIC
implementation produced results with high ULP error when ap-
proximating sin(θ ) for θ near 0 and atan(y) for y near 0. The fast-
forwarded iteration technique produces accurate results for sin(θ )
such that there are at most 10 ULP error for all θ ∈ [0, π2 ]. In the
case of atan(y), fast-forwarded iteration technique produces values
with at most 5 ULP error for 0 ≤ y ≤ 8.38×106. The fast-forwarded
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iteration technique contributed the most in reducing the ULP error
of our CORDIC method.

The use of quires produces better results for atan(y) but does not
significantly improve the result for sin(θ ) and cos(θ ). In the case of
atan(y), the inaccuracy of the intermediate zi values was attributed
to the rounding error in the computation of zi + diθi . The quire
prevented this rounding error and improved atan(y). In contrast,
the values of sin(θ ) and cos(θ ) are determined by xi and yi . The
improvement in the accuracy of zi did not affect the accuracy of xi
and yi significantly.

Performance experiments.To test the efficiency of our CORDIC
method, we developed a test harness that runs various functions
with different inputs a large number of times. We measured the
total time it took in cycles using hardware performance counters.
Our CORDIC method is on average 5.06× faster than the MPFR
version of the CORDIC method with 1024 bits of precision. The
naive CORDIC method that produces inaccurate results is 6.47×
faster than the MPFR version of the CORDIC method. Our use of
the quire data type to improve precision is the reason for this small
speedup loss. Overall, our CORDIC method provides reasonably
accurate results with speedup over an MPFR execution.

6 RELATEDWORK
Posits. Posit [20, 21] is a recently proposed representation as a
replacement for FP. Many software implementations of posit arith-
metic are available [29, 37]. The tapered accuracy with the posit
representation has generated interest and many applications such
as neural networks [4, 5, 13] and weather simulation [25] are using
it. We have developed PositDebug [7], a debugger to detect numer-
ical errors with posit applications that helped design the proposed
math library.

CORDIC Algorithm Since the first proposal of CORDIC [44],
a wide range of improvements to CORDIC have been proposed. A
detailed overview of prior research on the CORDIC method is avail-
able in the survey [36]. Here, we list some notable enhancements
to CORDIC.

Walther [45] proposed a generalized CORDIC algorithm that
can approximate hyperbolic functions. The generalized algorithm
combined with mathematical properties can be used to approximate
a wide range of other elementary functions including logarithm
and exponential functions. Hsiao et al. [40] further generalized
CORDIC by proposing a multi-dimensional CORDIC algorithm.

Prior research has also improved various aspects of the CORDIC
algorithm using various techniques including parallelization [16,
39, 42], pipelining [12] for increased throughput of the hardware
implementation, angle recoding [6, 22] for increased efficiency and
accuracy, and coarse-fine rotation [46] for decreasing number of
computations. Among these techniques, angle recoding is the most
related to our work. The goal of angle recoding is to reduce the
number of matrix multiplications and zi accumulation by not ro-
tating for some of the θi . In other words, the CORDIC method is
extended with di ∈ {−1, 0, 1}. Our fast-forwarded iteration tech-
nique can be interpreted similarly as not rotating the vector for the
first l iterations. We specifically chose to not rotate the vector with
θ0, ..., θl−1 to be able to precompute the values of K ′. If an arbitrary
angle θi is not rotated in the CORDIC algorithm, then K cannot be

precomputed and each Ki has to be multiplied in each iteration. We
also provide an efficient algorithm to identify the starting iteration
l such that the CORDIC algorithm is mathematically guaranteed to
compute the desired θ .

Redundant CORDIC algorithm [41] presents a technique that
allows an iteration to not rotate the vector and does not require
individual multiplication of Ki in each iteration, thus keeping the
value ofK constant. Abstractly, this technique modifies the rotation
matrix such that the intermediate vector accounts for the scaling
factor even when the vector is not to be rotated. Thus the number
of matrix multiplication operations stays constant but the number
of zi accumulation operations is reduced. Maharatna et al. propose
scaling free technique [34, 35] for sufficiently small rotation angle,
i.e., sin(θi ) ≈ 2−i . This technique modifies the rotation matrix
to not require the multiplication of the scaling factor. CORDIC
II [15] combines both redundant CORDIC algorithm and scaling free
technique to compute a set of angles that can be used to calculate
trigonometric functions to within ≈ 4.88 × 10−4rad .

Math Libraries As the posit representation is relatively recent,
there is no general-purpose math library for posits, yet. There is
only one posit math library available that supports a limited num-
ber of 16-bit posit elementary functions [30]. In contrast, there
are a number of FP math libraries. GLIBC [17] is the most widely
used math library, which supports a wide range of elementary
functions. GLIBC provides implementations that balance efficiency
and low computation error. Crlibm [9, 11] provides implementa-
tions that produce the correctly rounded double precision result
for many elementary functions. MPFR [14], a multi-precision FP
library, also provides a math library of elementary functions that
produce correctly rounded multi-precision results. Metalibm [28]
aims to generate an efficient implementation of elementary func-
tions given an acceptable error bound provided by the user. In
contrast to prior work, this paper explores a set of techniques to
design a math library for posits using the CORDIC method.

7 CONCLUSION
Posit is a new representation for approximating real numbers. It
is intended to be a drop-in replacement for the floating point rep-
resentation. Posits have gained interest in many domains such as
neural networks because they provide tapered accuracy. It currently
lacks math libraries. We propose the use of the CORDIC method
for designing math libraries for posits. We propose two extensions,
fast-forwarded iterations and use of quires, to the CORDIC method
that improve the accuracy of the results with posits. Our experi-
ments indicate that posits provide better results than FP with the
CORDIC method. Our CORDIC method for posits provides reason-
ably accurate results and can serve as a baseline for future research
on math libraries for posits.
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A ARTIFACT APPENDIX
A.1 Abstract
Our Cordic implementation using posit [38] and the artifact [32] is
open source and publicly available. We also provide our implemen-
tation and the artifact in an archival link. The artifact contains the
source code and scripts to automatically run experiments and repro-
duce our results. To ease installation effort, a prebuilt docker image
containing the required software and the artifact is also available.

A.2 Artifact check-list (meta-information)
• Algorithm: Cordic Algorithm.
• Program: C++, Python3, and SoftPosit
• Compilation: g++
• Run-time environment: Experiments were performed on ubuntu
18.04 and confirmed to work on macOS Catalina.

• Hardware: Modern machines with at least 2.3GHz processors and
8GB memory should be sufficient.

• Metrics: The artifact contains the expected results.
• Experiments: Download and run docker image, run the test scripts,
and observe the results.

• Howmuch time is needed to prepareworkflow (approximately)?:
Preparation should take less than 30 minutes

• Howmuch time is needed to complete experiments (approx-
imately)?: All experiments may take more than 6 days depending
on parallelization option. Therefore, we provide parallelization op-
tion as well as a shorter version of the experiments which will take
roughly 1.5 hours at most.

• Publicly available?: Yes.

A.3 Description
A.3.1 How to access. The artifact can be downloaded from the archive at
http://doi.org/10.5281/zenodo.3774064 or use the prebuilt docker image.

A.3.2 Software dependencies. Our implementation is written in C++ and
uses SoftPosit library. The experiment scripts are written in Python3 and
uses numpy and matplotlib. All softwares are installed in the docker image.

A.4 Installation
A.4.1 Using docker image. Install Docker by going to https://docs.docker.
com/get-docker/ and selecting the installation file for the corresponding
OS and follow the instructions. Then, pull the docker image and run it.

$ docker run −it jpl169/cordicwithposit

A.4.2 Manual installation with Ubuntu 18.04. To evaluate the artifact with-
out using Docker, install required packages:

$ sudo apt−get update
$ sudo apt−get install −yq −−no−install−recommends apt−utils
$ sudo apt−get install −yq build−essential python3 python3−pip \
libgmp3−dev libmpfr−dev git
$ python3 −m pip install numpy matplotlib

Next, download and build the SoftPosit library:

$ git clone https://gitlab.com/cerlane/SoftPosit.git
$ cd SoftPosit/build/Linux−x86_64−GCC/
$ make
$ cd ../../..

Finally, untar the artifact and build the code:
$ export SOFTPOSITPATH=<path to SoftPosit directory>
$ tar −xvf CordicWithPosit.tar.gz
$ cd CordicWithPosit && make

A.5 Experiment workflow
This artifact provides scripts to automatically conduct experiments de-
scribed in Section 5.

Graph Generation. This experiment creates three graphs presented in
Section 5. To run the experiment, use the command:

$ python3 runGraphGeneration.py

This script generates three graphs, sin.pdf, cos.pdf, and atan.pdf in
graph directory, which can be compared against the reference graph in
expected directory. To copy pdf files (for example sin.pdf) from docker
container to the host machine, use the command

$ exit
$ docker cp <container id>:/home/CordicWithPosit/graph/sin.pdf .
$ docker start <container id> && docker attach <container id>

Accuracy Experiment (Full). The full accuracy evaluation can be run
using the command:

$ python3 runAccAnalysis.py <optional: # of parallelization>
$ python3 GenerateTableForAcc.py

By default, the first python script without parallelization argument runs
4 experiments in parallel. You can use the argument to specify how many
experiments to run in parallel. The script runs a total of 10 individual
experiments which can take up to 20 hours each. Without parallelization,
these experiments can take up to 6 days. This experiment automatically
compares the output (table/table2table3.txt) to the reference result
(expected/table2table3.txt) and checks whether they are the same.

Accuracy Experiment (Fast). Instead of the full accuracy evaluation script
above, you can run a simplified evaluation script that uses 0.01× of the total
input space. To run this experiment, use the command:

$ python3 runSimplifiedAccAnalysis.py <optional: # of parallelization>
$ python3 GenerateTableForSimplifiedAcc.py

This experiment should take 1 to 1.5 hours even without parallization. The
script automatically compares the output (table/simpleTable2table3.txt)
to the expected result (expected/simpleTable2table3.txt) and checks
whether they are exactly the same or not in the terminal.

A.6 Evaluation and expected result
The generated graphs should be compared against the the graphs found
in expected directory with the same file name. The accuracy experiment
automatically compares the result against the expected result.

A.7 Experiment customization
Our Cordic implementation is built as a static library which can be found in
lib/lib_cordic.a and the header file can be found in include/cordic.h.
We have provided an example program in the example directory. Use the
following command to test the example:

$ cd example && make && ./example
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