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Abstract—Extended Berkeley Packet Filter (BPF) is a language
and run-time system that allows non-superusers to extend the
Linux and Windows operating systems by downloading user
code into the kernel. To ensure that user code is safe to run
in kernel context, BPF relies on a static analyzer that proves
properties about the code, such as bounded memory access and
the absence of operations that crash. The BPF static analyzer
checks safety using abstract interpretation with several abstract
domains. Among these, the domain of tnums (tristate numbers)
is a key domain used to reason about the bitwise uncertainty
in program values. This paper formally specifies the tnum
abstract domain and its arithmetic operators. We provide the
first proofs of soundness and optimality of the abstract arithmetic
operators for tnum addition and subtraction used in the BPF
analyzer. Further, we describe a novel sound algorithm for
multiplication of tnums that is more precise and efficient (runs
33% faster on average) than the Linux kernel’s algorithm. Our
tnum multiplication is now merged in the Linux kernel.

Index Terms—Abstract domains, Program verification, Static
analysis, Kernel extensions, eBPF

I. INTRODUCTION

Static analysis is an integral part of compilers [1, 2, 3, 4],

sandboxing technologies [5, 6, 7], and continuous integration

testing [8]. For example, static analysis may be used to prove

that the value of a program variable will always be bounded by a

known constant, allowing a compiler to eliminate dead code [9]

or a sandbox to remove an expensive run-time check [5].

Our work is motivated by static analysis in the context

of Berkeley Packet Filter (BPF), a language and run-time

system [10, 11] that enables users to extend the functionality

of the Linux and Windows operating systems without writing

kernel code. BPF is widely deployed in production systems

today [12, 13, 14, 15, 16, 17, 18]. BPF uses a static analyzer

to validate that user programs are safe before they are executed

in kernel context [11, 7]: the analyzer must be able to show

that the program does not access unpermitted memory regions,

does not leak privileged kernel data, and does not crash. If the

analyzer is unable to prove these properties, the user program

is rejected and cannot execute in kernel context.

BPF static analysis must be sound, precise, and fast.

• Soundness: Unsound analysis that accepts malicious code

may result in arbitrary read-write capabilities for users in

the kernel [19]. Unfortunately, the Linux static analyzer

has been a source of numerous such bugs in the past [20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33].

• Precision: To provide a usable system, the analyzer must

not reject safe programs due to imprecision in its analysis.

Users often need to rewrite their programs to get their

code past the analyzer [7, 34, 35].

• Speed: The analyzer must keep the time and overheads

to load a BPF program minimal [11, 36, 37]. Programs

are often used to trace systems running heavy workloads.

The BPF static analyzer employs abstract interpretation [38]

with multiple abstract domains to track the types, liveness, and

values of program variables across all executions. One of the

key abstract domains, termed tristate numbers or tnums in the

Linux kernel [39], tracks which bits of a value are known to be

0, known to be 1, or unknown (denoted µ) across executions.

For example, a 4-bit variable x abstracted to 01µ0 can take

on the binary values 0100 and 0110. The analyzer can infer

that the expression x ≤ 8 will always return true, and use this

fact later to show the safety of a memory access.

The kernel provides algorithms to implement bit-wise oper-

ations such as and (&), or (|), and shifts ( << , >>) over tnums.

The kernel also provides efficient algorithms for arithmetic

(addition, subtraction, and multiplication) over tnums. In

particular, addition and subtraction run in O(1) time over n-bit

program variables given n-bit machine arithmetic instructions.

Unfortunately, the kernel provides no formal reasoning or

proofs of soundness or precision of its algorithms. Prior works

that explored abstract domains for bit-level reasoning [40, 41,

42, 43, 3, 44] provide sound and precise abstract operators

for bit-wise operations (&, |, >>, etc.). The only arithmetic

algorithms we are aware of [42] are much slower than the

kernel’s algorithms (§II). Arithmetic operations are tricky to

reason about as they propagate uncertainty across bits in non-

obvious ways. For example, suppose a is known to be the n-bit

constant 11 · · · 1 and b is either 0 or 1 across all executions.

Only one bit is uncertain among the operands, yet all bits in

a+b are unknown, since a+b can be either 11 · · · 1 or 00 · · · 0.

This paper makes the following contributions (§III). We

provide the first proofs of soundness and optimality (i.e.,

maximal precision [3, 45]) of the kernel’s algorithms for

addition and subtraction. We believe this result is remarkable for

abstract operators exhibiting O(1) run time and reasoning about

uncertainty across bits. We were unable to prove the soundness

of the kernel’s tnum multiplication. Instead, we present a novel

multiplication algorithm that is provably sound. It is also more

precise and 32% faster than prior implementations [42, 39].
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This algorithm is now merged into the latest Linux kernels.

Our reproducible artifact is publicly available [46].

II. BACKGROUND

The BPF static analyzer in the kernel checks the safety

of BPF programs by performing abstract interpretation using

the tnum abstract domain (among others). In this section, we

provide a primer on abstract interpretation and describe the

tnum abstract domain and its operators.

A. Primer on Abstract Interpretation

Abstract interpretation [38] is a form of static analysis that

captures the values of program variables in all executions of the

program. Abstract interpretation employs abstract values and

abstract operators. Abstract values are drawn from an abstract

domain, each element of which is a concise representation

of a set of concrete values that a variable may take across

executions. For example, an abstract value from the interval

abstract domain [47] {[a, b] | a, b ∈ Z, a ≤ b} models the set

of all concrete integer values (i.e., x ∈ Z) such that a ≤ x ≤ b.

Abstraction and Concretization functions. An abstraction

function α takes a concrete set and produces an abstract value,

while a concretization function γ produces a concrete set from

an abstract value. For example, the abstraction of the set

{2, 4, 5} in the interval domain is [2, 5], which produces the

set {2, 3, 4, 5} when concretized.

Formally, the domains of the abstraction and concretization

functions are two partially-ordered sets (posets) that induce

a lattice structure. We denote the concrete poset C with the

ordering relationship among elements ⊑C. Similarly, we denote

the abstract poset A with the ordering relationship ⊑A. For

example, the interval domain employs the concrete poset C ,

2Z, the power set of Z, with the subset relation ⊆ (e.g., {1, 2} ⊆
{1, 2, 3}) as its ordering relation. The abstract poset is A ,

Z × Z with the ordering relation [a, b] ⊑A [c, d] ⇔ (c ≤
a) ∧ (d ≥ b).

A value a ∈ A is a sound abstraction of a value c ∈ C if and

only if c ⊑C γ(a). Moreover, a is an exact abstraction of c if

c = γ(a). Abstractions are often not exact, over-approximating

the concrete set to permit concise representation and efficient

analysis in the abstract domain. For example, the interval [2, 5]
is a sound but inexact abstraction of the set {2, 4, 5}.

Abstract operators are functions over abstract values which

return abstract values. An abstract operator implements an

“abstract version” of a concrete operation over concrete sets,

hence enabling a static analysis to construct the abstract results

of program execution. For example, abstract integer addition

in the interval domain (denoted +A) abstracts concrete integer

addition (denoted +C) as follows: [a1, b1]+A[a2, b2] , [a1 +C

a2, b1 +C b2]. Abstract operators typically over-approximate

the resulting concrete set to enable decidable and fast analysis

at the expense of precision. For a concrete set S ∈ C, suppose

we use the shorthand f(S) to denote the set {f(x) | x ∈ S}.
An abstract operator g : A → A is a sound abstraction of a

concrete operator f : C→ C if ∀a ∈ A : f(γ(a)) ⊑C γ(g(a)).
Further, g is exact if ∀a ∈ A : f(γ(a)) = γ(g(a)).

Galois connection. Pairs of abstraction and concretization

functions (α, γ) are said to form a Galois connection if [45]:

1) α is monotonic, i.e., x ⊑C y =⇒ α(x) ⊑A α(y)
2) γ is monotonic, a ⊑C b =⇒ γ(a) ⊑A γ(b)
3) γ ◦ α is extensive, i.e., ∀c ∈ C : c ⊑C γ(α(c))
4) α ◦ γ is reductive, i.e., ∀a ∈ A : α(γ(a)) ⊑A a

The Galois connection is denoted as (C,⊑C)−−→
α

γ

←−− (A,⊑A).
The existence of a Galois connection enables reasoning about

the soundness and the precision of any abstract operator.

Optimality. Suppose (C,⊑C)−−→
α

γ

←−− (A,⊑A) is a Galois con-

nection. Given a concrete operator f : C → C, the abstract

operator α ◦ f ◦ γ is the smallest sound abstraction of f :

that is, for any sound abstraction g : A → A of f , we have

∀a ∈ A : α(f(γ(a))) ⊑A g(a). We call α ◦ f ◦ γ the optimal,

or maximally precise abstraction, of f .

B. The Tnum Abstract Domain

Tnums enable performing bit-level analysis by abstracting

each bit of a program variable separately. Across executions,

each bit is either known to be 0, known to be 1, or uncertain,

denoted by µ. For an n-bit program variable, the abstract value

corresponding to the variable has n ternary digits, or trits. Each

trit has a value of 0, 1, or µ.

Bit-level abstract interpretation has been addressed in several

prior works using the bitfield abstract domain [40, 41, 42] and

the known bits abstract domain [43, 3, 44]. Abstraction and

concretization functions forming a Galois connection already

exist [41], as well as sound and optimal abstract operators for

bit-level operations like bit-wise-and (&), bit-wise-or (|), and

shifts ( << , >>) [3, 41]. In contrast to prior work, this paper

explores provably sound, optimal, and computationally-efficient

abstract operators corresponding to arithmetic operations such

as addition, subtraction, and multiplication. The Linux kernel

analyzer, despite heavily leveraging this domain’s abstract op-

erations, formally lays out neither the soundness nor optimality

for the abstract arithmetic operations.

Abstract and Concrete Domains. Tnums track each bit of

variables drawn from the set of n-bit integers Zn.

• The concrete poset is C , 2Zn , the power set of Zn. The

ordering relation ⊑C is the subset relation:

a ⊑C b , a ⊆ b (1)

• The abstract poset A is the set of n-trit tnums Tn (each

trit is 0, 1, or µ). Suppose we represent the trit in the ith

position of a by a[i]. The ordering relation ⊑A between

abstract elements is defined by:

P ⊑A Q , ∀i, 0 ≤ i ≤ n− 1, ∀k ∈ {0, 1} :

(P [i] = µ ⇒ Q[i] = µ) ∧ (Q[i] = k ⇒ P [i] = k)
(2)

Fig. 1 shows Hasse diagrams of the lattices induced by these

posets for integers with bit width n = 2. The concrete domain

consists of all elements of the power set of {0, 1, 2, 3} and the

abstract domain consists of tnums of the form t1t0 where each
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Fig. 1: Hasse diagrams of the lattices for (a) the concrete domain (2Zn ,⊆)
and (b) the abstract domain (Tn,⊑A) for n = 2. Below every element of
the abstract domain, we show its Linux kernel implementation using two
2-bit values (v,m). Also shown are two examples of abstraction (α, dotted
black lines) followed by concretization (γ, solid black lines). (i) Starting
with C′ = {1, 2, 3}, α(C′) gives µµ, and γ(α(C′)) gives {0, 1, 2, 3}, an
overapproximation of C′. (ii) However, starting with C′′ = {2, 3}, α(C′′)
gives 1µ, and γ(α(C′′)) gives {2, 3}, exactly equal to C′′. In both cases,
C ⊑C γ(α(C)).

ti is a trit with value 0, 1, or µ. Any of 3n abstract values can

be used to represent concrete sets of n-bit values.

Implementation of tnums in the Linux kernel. The Linux

kernel’s implementation of representing one n-trit tnum P ∈
Tn uses two n-bit values (P.v, P.m), where the ‘v’ stands for

value and the ‘m’ stands for mask. The values of the kth bits

of P.v and P.m are used to inform the value of the kth trit

of P .

(P.v[k] = 0 ∧ P.m[k] = 0) , P [k] = 0

(P.v[k] = 1 ∧ P.m[k] = 0) , P [k] = 1

(P.v[k] = 0 ∧ P.m[k] = 1) , P [k] = µ

(3)

We define the domain of abstract values Tn , Zn × Zn.

If for a tnum P , P.v[k] = P.m[k] = 1 at some position k,

we say that such a tnum is not well-formed. All such tnums

represent the abstract value ⊥ and the concrete empty set ∅.

∀P : (∃k : P.v[k] & P.m[k] = 1) ⇔ P = ⊥ (4)

A large fraction of random bit patterns (v,m) aren’t well

formed: in particular, only 3n among the 22n n-bit (v,m) bit

patterns correspond to well-formed tnums that are not ⊥.

We are now ready to define the Galois connection for

the tnum abstract domain using the above implementation

of abstract values. These take a form similar to the functions

defined in prior work [41]. In the discussion that follows we

will use the notation (&, |,
⊕

, ~, << , >>) respectively for the

bitwise and, or, exclusive-or, negation, left-shift, and right-shift

operations over n-bit bit vectors.

Galois connection. Given a concrete set C ∈ 2Zn . The

abstraction function α : 2Zn → Zn × Zn is defined as follows.

α&(C) , &
{

c | c ∈ C
}

α|(C) , |
{

c | c ∈ C
}

α(C) , ( α&(C), α&(C)
⊕
α|(C) )

(5)

This abstraction function is sound. However, it is not exact, as

easily seen from the fact that there are 22
n

elements in C but

only 3n well-formed tnums in Tn. Many concrete sets will be

over-approximated. However, α is a composition of functions

that abstract the domain exactly when each bit is considered

separately [48, 3]. Informally, given a concrete set C ∈ C and

x, y ∈ C, α(C) contains an uncertain trit at position k iff C

contains x and y with bits differing at k.

∀b ∈ {0, 1} : α(C)[k] = b ⇔ ∀x ∈ C : x[k] = b

α(C)[k] = µ ⇔ ∃x, y ∈ C : x[k] = 0 ∧ y[k] = 1
(6)

This abstraction function α is bitwise exact.

Further, consider a tnum P ∈ Tn implemented as

(P.v, P.m) ∈ Zn × Zn. Then the concretization function

γ : Zn × Zn → 2Zn is defined as:

γ(P ) = γ((P.v, P.m)) ,
{

c ∈ Z | c & ~P.m = P.v
}

γ(⊥) , ∅
(7)

Then α and γ form a Galois connection. Informally, the tnum

obtained from applying α on a set of concrete values always

soundly over-approximates the original set if concretized.

An illustration of this fact can be seen in Fig. 1. Please

refer to the extended technical report [49] for the (standard)

proof. The existence of the Galois connection enables, in

principle, constructing sound and optimal abstract operators

over tnums. The abstraction of the concrete set {1, 2, 3} soundly

overapproximates it: {1, 2, 3} ⊑C γ(α({1, 2, 3})).

Abstract operators on tnums. The BPF instruction set sup-

ports the following (typical) concrete operations over 64-

bit registers: add, sub, mul, div, or, and, lsh, rsh,

neg, mod, xor and arsh. To soundly analyze general BPF

programs, the BPF static analyzer requires abstract operators

corresponding to all the above concrete operations. For some

operators, notably div and mod, defining a precise abstract

operator is challenging. In such cases, the BPF static analyzer

conservatively and soundly sets all the output trits to unknown.

Challenges. Despite enjoying a Galois connection, constructing

efficient optimal abstractions for arithmetic operators is non-

trivial. Given a concrete operator f , the optimal abstract

operator α◦f◦γ is infeasible to compute in practice [50, 51, 52].

For example, if f is a concrete operator of arity 2, there may

be 22n computations of f after the first concretization γ(.) in

the worst case (the average case is not much better).

Prior work on the bitfield domain [41], a domain similar

to tnums (2Zn−−→
α

γ

←−− Zn × Zn), presents abstract operators for

bitwise or, and, exclusive-or, left and right shift operations that

are optimal. However, most prior works on the bitfield and

known bits abstract domains [43, 3, 44, 40, 41] fail to provide
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abstract arithmetic operators for addition, subtraction, and

multiplication. To our knowledge, Regehr and Duongsaa [42]

provide the only known abstract operators for arithmetic in

this domain, based on ripple-carry logic and composition of

abstract operators. These operators are sound but not optimal.

Further, they have a runtime of O(n) for n-bit abstract addition

and subtraction, and O(n2) for abstract multiplication.

In the next section, we present proofs of soundness and

optimality for abstract operators for addition and subtraction

originally developed (without formal proof) in the Linux

kernel. These operators run in O(1) time given n-bit machine

arithmetic instructions (n = 64 in the kernel). Such efficiency

is remarkable, given that in general addition and subtraction

use ripple-carry operations creating dependencies between the

bits. We also present an abstract multiplication operator that is

provably sound, empirically more precise, and faster than the

abstract multiplication in [42] and the Linux kernel. Notably,

none of the algorithms in this paper use the composition

structure α ◦ f ◦ γ or “merely” compose existing sound

abstract operators. This motivated us to develop dedicated

proof techniques.

III. SOUNDNESS AND OPTIMALITY OF ABSTRACT

ARITHMETIC OVER TNUMS

We explore the soundness and optimality of tnum arithmetic

operators, specifically addition, subtraction, and multiplication.

The kernel proposes abstract operators for each of them, but

lacks any proof of soundness. Hence, we perform an automated

(bounded bitwidth) verification of the soundness of the kernel’s

tnum abstract operators (§III-A) using SMT solvers. We were

able to prove the soundness of the kernel’s abstract addition,

subtraction, and all other bitwise operators up to 64-bits, and

soundness of the kernel’s multiplication up to 8-bits. Motivated

by these results, we undertook an analytical study of these

algorithms, which led us to paper-and-pen proofs of both

soundness and optimality of the kernel’s abstract operators

for addition and subtraction over unbounded bitwidths (§III-B).

We were unable to analytically prove the soundness of the

kernel’s tnum multiplication for unbounded bitwidths. Hence,

we developed a new algorithm for tnum multiplication that is

provably sound for unbounded bitwidths, and empirically more

precise and faster than all prior implementations (§III-C).

A. Automatic Bounded Verification of Kernel Tnum Arithmetic

We encode verification conditions corresponding to the

soundness of tnum abstract arithmetic operators in first order

logic and discharge them to a solver. We use the theory of

bitvectors. Our verification conditions are specific to a particular

bitwidth (n). We use 64-bit bitvectors to encode the tnum

operations wherever feasible (n = 64 in the kernel). For a

tnum P drawn from the set of n-trit tnums Tn, we denote its

kernel implementation by (P.v, P.m) ∈ Zn × Zn.

Soundness of 2-ary operators. Recall from Section §II the

notion of soundness of an abstract operator. We can generalize

this notion to 2-ary operators op
T

: Tn × Tn → Tn and

op
C
: Zn × Zn → Zn. We say that op

T
is a sound abstraction

of op
C

iff the following condition (Eqn. 8) holds.

∀P,Q ∈ Tn :
{

op
C
(x, y) | x ∈ γ(P ), y ∈ γ(Q)

}

⊑C γ(op
T
(P,Q))

(8)

To encode (8) in first-order logic, recall that the concrete

order ⊑C is just the subset relationship between the two sets

⊆. At a high level, the subset relationship S1 ⊆ S2 in (8) can

be encoded by universally quantifying over the members of

S1 and writing down the query ∀x ∈ Zn : x ∈ S1 ⇒ x ∈ S2.

The formula x ∈ S1 is easy to encode given the left-hand

side of (8). To encode x ∈ S2 from the right-hand side of

(8), we define a membership predicate. This predicate asserts

that x ∈ γ(R) where R , op
T
(P,Q). Finally, we ensure that

the universally quantified tnums P and Q are non-empty, and

encode the action of the concrete and abstract operators op
C

and op
T

in logic. The details follow.

Membership predicate x ∈ γ(P ). Consider a concrete value

x that is contained in the concretization of tnum P . Using the

definition of the concretization function in (7), we write down

the predicate member:

member(x, P ) , x & ~P.m = P.v (9)

Quantifying over well-formed tnums. To ensure that (8)

only quantifies over non-empty tnums, we encode one more

predicate, wellformed, based on (4):

wellformed(P ) , P.v &P.m = 0 (10)

Putting it all together. The soundness predicate for a given

pair of abstract and concrete operators op
T
, op

C
is

∀P,Q ∈ Tn, x, y ∈ Zn :

wellformed(P ) ∧ wellformed(Q) ∧member(x, P )

∧member(y,Q) ∧ z = op
C
(x, y) ∧R = op

T
(P,Q)

⇒ member(z,R)

(11)

An SMT solver can show the validity of this formula by

proving that the negation of this formula is unsatisfiable.

Example: encoding abstract tnum addition. We show how to

encode the soundness of the abstract addition operator over

tnums. The kernel uses the algorithm tnum_add from Listing

1 to perform abstract addition over two tnums. The predicate

add below captures the result of abstract addition of P and Q

into R.

add(P,Q,R) ,

(sv = P.v + Q.v) ∧ (sm = P.m + Q.m) ∧ (Σ = sv + sm)

∧ (χ = Σ
⊕
sv) ∧ (η = χ |P.m |Q.m) ∧ (R.v = sv & ~ η)

∧ (R.m = η)
(12)

We can plug in the add predicate in place of op
T

in Eqn.

11. The function op
C

is just n-bit bitvector addition.
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1 def tnum_add(tnum P, tnum Q):
2

3 u64 sv := P.v + Q.v
4 u64 sm := P.m + Q.m
5 u64 Σ := sv + sm
6 u64 χ := Σ

⊕
sv

7 u64 η := χ | P.m | Q.m
8 tnum R := tnum(sv & ~η, η)
9 return R

Listing 1: Linux kernel’s implementation of tnum addition (tnum_add)

1 def kern_mul(tnum P, tnum Q)
2

3 tnum π := tnum(P.v * Q.v, 0)
4 tnum ACC := hma(π, P.m, Q.m | Q.v)
5 tnum R:= hma(ACC, Q.m, P.v)
6 return R
7

8 def hma(tnum ACC, u64 x, u64 y)
9

10 while (y):
11 if (y[0] == 1)
12 ACC := tnum_add(ACC, tnum(0, x))
13 y := y >> 1
14 x := x << 1
15 return ACC

Listing 2: Linux kernel’s implementation of tnum multiplication (kern_mul)

Observations from bounded verification. We encoded the first-

order logic formulas to perform bounded verification of the

soundness of the following tnum operators defined in the

Linux kernel: addition, subtraction, multiplication, bitwise or,

bitwise and, bitwise exclusive-or, left-shift, right-shift, and

arithmetic right-shift. We have spot-checked the correctness

of our encodings with respect to the kernel source code using

randomly-drawn tnum inputs; the details of this testing harness

are in our extended technical report [49].

For all operators except multiplication, verification succeeded

for bitvectors of width 64 in just a few seconds. In contrast,

verification of multiplication (kern_mul), shown in Listing 2,

succeeds quickly at bitwidth n = 8, but does not complete

even after 24 hours with bitwidth n = 16. This is due to the

presence of non-linear operations and large unrolled loops. This

observation motivated us to develop a new, provably sound

algorithm for tnum multiplication (§III-C).

Further, our bounded verification efforts helped us uncover

non-obvious properties of tnum arithmetic: (1) tnum addition is

not associative, (2) tnum addition and subtraction are not inverse

operations, and (3) tnum multiplication is not commutative.

B. Soundness and Optimality of Tnum Abstract Addition

We present an analytical proof of the soundness and opti-

mality of the kernel’s abstract addition operator for unbounded

bitwidths. The proof for subtraction, which is very similar in

structure, is in our extended technical report [49].

An example. The source code for abstract addition (tnum_add)

is shown in Listing 1. Figure 2 illustrates tnum addition with an

10μμ1

tnum P : 10μ0 (1000, 0010)                 
tnum Q : 10μ1 (1001, 0010)

𝛾(P) : {8, 10}
𝛾(Q) : {9, 11}

(a) Tnum addition by hand

⠀ sm := P.m + Q.m = 00100

⠀ sv := P.v + Q.v = 10001

⠀ Σ := sv + sm = 10101

⠀ χ := Σ ⊕ sv = 00100

⠀ η := χ | P.m | Q.m = 00110

Result := (sv & ~η, η) = (10001,00110) = 10μμ1

Input tnums

10μ0    (P)
10μ1    (Q)+ 𝛾(R) : 

{17, 19, 21, 23}

1  μ        (carry)     

svc := 10000

⠀ Σc  := 10100     

⠀ svc ⊕ Σc := 00100

⠀ ηc := svc ⊕ Σc | P.m | Q.m = 00110

(c) Carry sequence from tnum 
     addition proof

(b) Kernel tnum addition

Fig. 2: Illustration of tnum addition. We provide a side by side comparison of
(a) tnum addition by hand and (b) the kernel algorithm for tnum addition as
well as (c) the carry sequence in the operation as discussed in the proof of
tnum addition.

example. In particular, adding two tnums “by hand”, as shown

in Fig. 2(a), propagates uncertainty explicitly in the carries,

rippling the carry bits through the tnums one bit position at a

time. However, as seen in Fig. 2(b), tnum_add does not use

any such ripple-carry structure in its computations. Yet, as we

show later (and illustrated in Fig. 2(c)), tnum_add implicitly

reasons about the unknown bits in the sequence of carries

produced during the addition.

Definition 1. Full adder equations. When adding two con-

crete binary numbers p and q, each bit of the addition result r

is set according to the following:

r[i] = p[i]
⊕
q[i]

⊕
cin[i]

where
⊕

is the exclusive-or operation and cin[i] = cout[i− 1]
and cout[i−1] is the carry-out from the addition in bit position

i− 1. The carry-out bit at the ith position is given by

cout[i] = (p[i] & q[i]) | (cin[i] & (p[i]
⊕
q[i]))

Key proof technique. We show the soundness and optimality of

tnum_add by reasoning about the set of all possible concrete

outputs, i.e., the results of executions of concrete additions

over elements of the input tnums P,Q ∈ T. If we denote

by + the concrete addition operator over Zn, this is the set

{p + q | p ∈ γ(P ) ∧ q ∈ γ(Q)} or +(γ(P ), γ(Q)) in short.

The proof proceeds by finding bit positions in the concrete

output set that can be shown to be either a 1 or a 0 in all

members of that set (respectively lemmas 2 and 3). Every other

bit position is such that there are elements in the concrete

output set that differ at that bit position. Lemma 4 invokes the

bitwise-exactness (Eqn. 6) of the abstraction function α, and

along with Lemma 5, shows that tnum_add is a sound and

optimal abstraction for + (i.e., the same as α ◦ + ◦ γ).

Consider the addition that occurs “by hand” in Fig. 2(a).

Intuitively, at a given bit position of the output tnum, the result
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will be unknown if either of the operand bits p[i] or q[i] is

unknown, or if the carry-in bit cin[i] (generated from less-

significant bit positions) is unknown. Note that these three bits

may be (un)known independent of each other since they depend

on different parts of the input tnums. The crux of the proof lies

in identifying which carry-in bit positions vary across different

concrete additions. This is done by distinguishing the carries

generated due to the unknown bits in the operands from the

carries that will be present or absent in any concrete addition

drawn from the input tnums. In the example in Fig. 2(a), the

sequence of carries is 10µ00, with the middle carry-in bit being

uncertain and all others known to be 0s or 1s in all concrete

additions from the input tnums.

Suppose p and q are two concrete values in tnum P and

tnum Q, respectively, i.e., p ∈ γ(P ), q ∈ γ(Q).

Lemma 2. Minimum carries lemma. The addition sv = P.v+
Q.v will produce a sequence of carry bits that has the least

number of 1s out of all possible additions p+ q.

The consequence of this lemma is that any concrete addition

p + q will produce a sequence of carry bits with 1s in at least

those positions where the sv addition produced carry bits set

to 1 (the extended technical report provides a proof of this

lemma). Fig. 2(c) shows the set of carries produced in sv (i.e.,

svc , 10000). Any addition p+ q will produce a 1-bit carry

in the same positions as the 1 bits in svc.

Lemma 3. Maximum carries lemma. The addition Σ =
(P.v + P.m) + (Q.v + Q.m) will produce the sequence of

carry bits with the most number of 1s out of all possible

additions p + q.

The consequence of this lemma is that any concrete addition

p + q will produce a sequence of carry bits with 0s in at least

those positions where the Σ addition produced carry bits set to

0 (proof is available in our extended technical report). Fig. 2(c)

shows the set of carries produced in Σ (i.e., Σc , 10100). Any

addition p+ q will produce a 0-bit carry in the same positions

as the 0 bits in Σc.

Lemma 4. Capture uncertainty lemma. Let svc and Σc be

the sequence of carry-in bits from the additions in sv and

Σ, respectively. Suppose χc , svc
⊕
Σc. The bit positions k

where χc[k] = 0 have carry bits fixed in all concrete additions

p+ q from +(γ(P ), γ(Q)). The bit positions k where χc[k] =
1 vary depending on the concrete addition: i.e., ∃p1, p2 ∈
γ(P ), q1, q2 ∈ γ(Q) such that p1 + q1 has its carry bit set at

position k but p2 + q2 has that bit unset.

Intuitively, from the minimum carries lemma, any carry bit

that is set in svc must be set in the sequence of carry bits in any

concrete addition p+ q. Similarly, from the maximum carries

lemma, any carry bit that is unset in Σc must be unset in the

sequence of carry bits in any concrete addition p+ q. Hence,

svc
⊕
Σc represents the carries that may arise purely from the

uncertainty in the concrete operands picked from P and Q.

Further, these carries do in fact differ in two concrete additions

sv and Σ. From the bitwise-exactness of the tnum abstraction

function α (Eqn. 6), it follows that these are precisely the bits

that must be unknown in the resulting tnum due to the carries.

See the extended technical report for a detailed proof.

Hence, the mask in the resulting tnum must be

(svc
⊕

Σc) |P.m |Q.m. However, tnum_add uses the final

mask (sv
⊕
Σ) |P.m |Q.m (see Listing 1). Lemma 5 shows

that these two quantities are, in fact, always the same.

Lemma 5. Equivalence of mask expressions. The expressions

(sv
⊕
Σ) |P.m |Q.m and (svc

⊕
Σc) |P.m |Q.m compute

the same result.

We prove this lemma using the rules of propositional logic

in our extended technical report. Together, these lemmas allow

us to show the soundness and optimality of tnum_add below.

Theorem 6. Soundness and optimality of tnum_add The

algorithm tnum_add shown in Listing 1 is a sound and

optimal abstraction of concrete addition over n-bit bitvectors

for unbounded n.

C. Sound and Efficient Tnum Abstract Multiplication

This section describes a novel algorithm for tnum mul-

tiplication and a proof that it is a sound abstraction of

multiplication of n-bit concrete values for unbounded n. Our

algorithm has O(n) run time. It is not an optimal abstraction

of concrete multiplication. However, as we show later (§IV),

our algorithm is empirically more precise and faster than all

known prior implementations of multiplication in this abstract

domain. We were able to contribute our algorithm to the tnum

implementation in the latest Linux kernel.

1 def our_mul_simplified(tnum P, tnum Q):
2

3 ACCv := tnum(0, 0)
4 ACCm := tnum(0, 0)
5

6 # loop runs bitwidth times

7 for i in range(0, bitwidth):
8 # LSB of tnum P is a certain 1

9 if (P.v[0] == 1) and (P.m[0] == 0):
10 ACCv := tnum_add(ACCv, tnum(Q.v, 0))
11 ACCm := tnum_add(ACCm, tnum(0, Q.m))
12 # LSB of tnum P is uncertain

13 else if (P.m[0] == 1):
14 ACCm := tnum_add(ACCm, tnum(0, Q.v|Q.m))
15 # Note: no case for LSB is certain 0

16 P := tnum_rshift(P, 1)
17 Q := tnum_lshift(Q, 1)
18

19 tnum R := tnum_add(ACCv, ACCm)
20 return R

Listing 3: A simplified implementation of our tnum multiplication algorithm
(our_mul_simplified).

Our algorithm our_mul through an example. Our tnum

abstract multiplication algorithm is shown in Listing 4. The

algorithm in Listing 3 is semantically equivalent to it, but

easier to understand, so we explain the algorithm and its proof

primarily using the algorithm in Listing 3.

Similar to the prior multiplication algorithms proposed in

bit-level reasoning domains [42, 39], our algorithm is inspired
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by the long multiplication method to generate the product of

two binary values. The algorithm proceeds in a single loop

iterating over the bitwidth of the input tnums. Our_mul takes

two input tnums P and Q, and returns a result R.

Fig. 3(a) shows an example. Suppose we are given tnums

P = µ01 (P.v = 001, P.m = 100) and Q = µ10 (Q.v =
010, Q.m = 100) to multiply. Two fully concrete n-bit binary

numbers may be multiplied in two steps: (i) by computing the

products of each bit in the multiplier (P ) with the multiplicand

(Q), to generate n partial products, and (ii) adding the n partial

products after appropriately bit-shifting them. To generalize

long multiplication to n-bit tnums which contain unknown (µ)

trits, we add new rules: 0 ∗ µ = 0; 1 ∗ µ = µ; and µ ∗ µ = µ.

Since the partial products themselves contain unknown trits,

the addition of the partial products must occur through the

abstract addition operator tnum_add.

1 def our_mul(tnum P, tnum Q):
2

3 ACCv := tnum(P.v * Q.v, 0)
4 ACCm := tnum(0, 0)
5

6 while P.value or P.mask:
7 # LSB of tnum P is a certain 1

8 if (P.v[0] == 1) and (P.m[0] == 0):
9 ACCm := tnum_add(ACCm, tnum(0, Q.m))

10 # LSB of tnum P is uncertain

11 else if (P.m[0] == 1):
12 ACCm := tnum_add(ACCm, tnum(0, Q.v|Q.m))
13 # Note: no case for LSB is certain 0

14 P := tnum_rshift(P, 1)
15 Q := tnum_lshift(Q, 1)
16

17 tnum R := tnum_add(ACCv, ACCm)
18 return R

Listing 4: Our final tnum multiplication algorithm (our_mul).

Our tnum multiplication algorithm for the same pair of

inputs is illustrated in Fig. 3(b). The algorithm uses two tnums,

ACCV and ACCM , which are initialized (v,m) , (0, 0). The

tnums ACCV and ACCM accumulate abstract partial products

generated in each iteration using tnum abstract additions

(tnum_add). The algorithm proceeds as follows:

1) If the least significant bit of any concrete value x ∈ γ(P )
is known to be 1, then ACCV (resp. ACCM ) accumulates

the known bits (resp. unknown bits) in Q (e.g., iteration 1);

2) If the least significant bit of any x ∈ γ(P ) is known to be

0, ACCV and ACCM remain unchanged (e.g., iteration 2);

3) If the least significant bit of P is unknown (µ), then ACCV

is unchanged, but ACCM accumulates a tnum with a mask

such that all possible bits that may be set in any x ∈ γ(P )
are also set in the mask (e.g., iteration 3).

At the end of each iteration, P (resp. Q) is bit-shifted to the

right (resp. left) by 1 position to ensure that the next partial

product is appropriately shifted before addition. The specific

methods of updating ACCV and ACCM in each iteration make

our_mul distinct from prior multiplication algorithms [42, 39].

In particular, our_mul decomposes the accumulation of partial

μ10

tnum P : μ01 (010, 100)                    
tnum Q : μ10 (001, 100) 

𝛾(P) : {1, 5}
𝛾(Q) : {2, 6}

(a) Tnum multiplication by hand

⠀ Iteration 1 

(p0 is certain 1)

⠀ ACCV := (00010, 0)

⠀ ACCM := (0,00100)

⠀ P := 00μ0

⠀ Q := μ100

μ10  

Final result

Result := (ACCV + ACCM) = (00010, 11100) = μμμ10

(b) Our tnum multiplication algorithm    (* denotes unchanged value)

Input tnums
μ10    (Q)

 μ01    (P)

0000
μμ000

μμμ10 (R)

x

⠀ Iteration 2 

(p0 is certain 0) 

⠀ ACCV := (00010, 0) *

⠀ ACCM := (0, 00100) *

⠀ P := 0000μ

⠀ Q := μ1000

μ10 + 0000

𝛾(R) : 

{2, 6, 10, 14, 18, 
22, 26, 30}

Iteration 3 

(p0 is uncertain)

⠀ ACCV := (00010, 0) *

⠀ ACCM := (0, 11100)

⠀ P := 000000

⠀ Q := μ10000

μ10 + 0000 + μμ000

Fig. 3: Illustration of our tnum multiplication. We provide a side by side
comparison of (a) tnum multiplication by hand and (b) our improved algorithm
for tnum multiplication.

products into two tnums and uses just a single loop over the

bitwidth. These modifications are crucial to the precision and

efficiency of our_mul (§IV).

Key proof techniques. Recall that a (unary) abstract operator

g is a sound abstraction of a concrete operator f if ∀a ∈ A :
f(γ(a)) ⊑C γ(g(a)). We show that our abstract multiplication

algorithm our_mul is sound by showing that {x ∗ y | x ∈
γ(P ) ∧ y ∈ γ(Q)} ⊑C γ(our_mul(P,Q)) for any tnums

P,Q ∈ Tn. We denote the former set ∗(γ(P ), γ(Q)) in short.

The ∗ is the concrete multiplication over n-bit bitvectors.

All the known abstract multiplication algorithms in this

domain are composed of abstract additions and abstract shifts.

A typical approach to prove soundness of such operators is

to invoke the result that when sound abstract operators are

composed soundly, i.e., in the same way as the corresponding

concrete operators are composed, the result is a sound abstrac-

tion of the composed concrete operator [45, Theorem 2.6].

The soundness of the abstract multiplication from Regehr and

Duongsaa [42] may be proved as a special case of this general

result. However, this approach is not applicable to proving

the soundness of our_mul, since our_mul’s composition does

not mirror any composition of (concrete) additions and shifts

to produce a product. Instead, we are forced to develop a

proof specifically for our_mul by observing, through two

intermediate lemmas (Lemma 9 and Lemma 8) that the concrete

products in ∗(γ(P ), γ(Q)) ∈ γ(our_mul(P,Q)).
Below, we show a sketch of the proof of the soundness of

our_mul_simplified, and argue (Lemma 11) that our_mul

is equivalent to our_mul_simplified.

Observation 7. For two concrete bitvectors x and y of width

n bits, the result of multiplication y ∗ x is just

y ∗ x =

n−1
∑

k=0

x[k] ∗ (y << k)
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We call each term x[k] ∗ (y << k) a partial product.

Lemma 8. Tnum set union with zero. Given a non-empty

tnum P ∈ Zn × Zn, define Q , tnum(0, P.v | P.m). Then,

(i) x ∈ γ(P )⇒ x ∈ γ(Q), and (ii) 0 ∈ γ(Q).

Intuitively, any tnum (0,m) when concretized contains the

value 0. Further, building a new tnum Q whose mask has set all

the bits corresponding to the set value or mask bits of P ensures

that γ(P ) ⊑C γ(Q). The full proof is in our extended technical

report [49]. For example, given P = 0µ1 = (001, 010) and

Q , (0, 011), we have γ(P ) ⊑C γ(Q) and 0 ∈ γ(Q).
For the next lemma, we define a variable-arity version

of tnum_add as follows: tnum_addn−1
j=0 (Tj) is evaluated by

folding the tnum_add operator over the list of tnum operands

T0, T1, · · · , Tn−1 from left to right.

Lemma 9. Value-mask-decomposed tnum summations.

Given n non-empty tnums T0, T1, . . . , Tn−1 ∈ Tn. Suppose

we pick n values z0, z1, z2, . . . , zn−1 ∈ Zn such that ∀ 0 ≤
j ≤ n− 1 : zj ∈ γ(Tj). Define tnum

S , tnum_add(tnum_addn−1
j=0 (tnum(Tj .v, 0)),

tnum_add
n−1
j=0 (tnum(0, Tj .m)))

where tnum_add
(·)
(·) is a variable-arity version of tnum_add

defined above. Then,
∑n−1

j=0 zj ∈ γ(S).

Intuitively, suppose we had n tnums Ti, 0 ≤ i ≤ n− 1 and

we seek to construct a new tnum S whose concretization γ(S)
contains all possible concrete sums from the Ti, i.e., such that

{
∑n−1

j=0 xj | xi ∈ γ(Ti)} ⊑C γ(S). The most natural method

to construct such a tnum S is to use the sound abstract addition

operator tnum_add over the Ti, i.e., tnum_addn−1
j=0 (Tj). This

lemma provides another method of constructing such a tnum

S: decompose the tnums Ti each into two tnums, consisting

of the values and the masks separately. Use tnum_add to

separately add the value tnums, add the mask tnums, and

finally add the two resulting tnums from the value-sum and

mask-sum to produce S. Then S contains all concrete sums.

The full proof of this lemma is in the extended technical

report. For example, suppose T1 = 1µ0 = (100, 010), T2 =
01µ = (010, 001). Then ∀x1 ∈ γ(T1), x2 ∈ γ(T2) : x1+x2 ∈
γ(tnum_add((110, 0), (0, 011))).

Theorem 10. Soundness of our_mul. ∀x ∈ γ(P ), y ∈ γ(Q)
the result R returned by our_mul_simplified (Listing 3)

is such that x ∗ y ∈ γ(R), assuming that abstract tnum

addition (tnum_add) and abstract tnum shifts (tnum_lshift,

tnum_rshift) are sound.

We prove this theorem by showing three properties, whose

full proofs are in the extended technical report. Below, Pin

and Qin are the formal parameters to our_mul.

Property P1. P and Q are bit-shifted versions of Pin and

Qin. This property follows naturally from the algorithm, which

only updates the tnums P and Q in the code using tnum bit-

shift operations (tnum_lshift, tnum_rshift).

Property P2. ACCV and ACCM are value-mask-

decomposed summations of partial products. There exist

tnums T0, T1, . . . , Tn−1 such that (i) any concrete jth partial

product, zj , x[j] * (y << j) ∈ γ(Tj), for 0 ≤ j ≤ n − 1;

(ii) at the end of the kth iteration of the loop, ACCV =
tnum_addk−1

j=0 (tnum(Tj .v, 0)), and (iii) at the end of the kth it-

eration of the loop, ACCM = tnum_addk−1
j=0 (tnum(0, Tj .m)).

At a high level, this property states that there is a set of tnums

Tj , where γ(Tj) contains all possible concrete values of the jth

partial product term zj , x[j] * (y << j) (Observation 7). In the

example in Fig. 3(b), T0 = µ10, T1 = 0000, T2 = µµ000. In

the case where P [0] is µ, we use Lemma 8 to show that the Tj

constructed by our_mul_simplified is such that γ(Q) ⊑C

γ(Tj) and 0 ∈ γ(Tj). We also show that ACCV is the value-

sum of the Tj (see Lemma 9) while ACCM is the mask-

sum. In Fig. 3(b), ACCV , tnum_add(010, 0000, 00000) and

ACCM , tnum_add(µ00, 0000, µµ000).
Property P3. (Product containment)

∑n−1
j=0 zj ∈

γ(tnum_add(ACCV , ACCM )). That is, ∀x ∈ γ(P ), y ∈
γ(Q) : x ∗ y ∈ γ(tnum_add(ACCV , ACCM )).

This result follows from property P2 and Lemma 9. Property

P3 concludes a proof of soundness of our_mul_simplified:

∀x ∈ γ(P ), y ∈ γ(Q) : x ∗ y ∈ γ(R).

Lemma 11. Correctness of strength reductions. Our_mul

(Listing 4) is equivalent to our_mul_simplified (Listing

3) in terms of its input-output behavior.

The existence of two accumulating tnums ACCV and

ACCM in our_mul_simplified allows us to use Lemma 9

to prove soundness. However, it is unnecessary to construct

ACCV iteration by iteration. We observe that ACCV is merely

accumulating (Q.v, 0) whenever P [0] is known to be 1. All

bits in each tnum accumulated into ACCV are known. When

tnum_add is used to add n tnums (vi, 0), 0 ≤ i ≤ n− 1 it is

easy to see that the result is (
∑n−1

i=0 vi, 0). Using Observation 7,

we see that at end of the loop, ACCV = tnum(P.v ∗Q.v, 0).
As an added optimization, our_mul soundly terminates the

loop early if P = (0, 0) at the beginning of any iteration. Since

our_mul and our_mul_simplified are equivalent, our_mul

is also a sound abstraction of ∗.
While our_mul is sound, it is not optimal. Key questions

remain in designing a sound and optimal algorithm with O(n)
or faster run time. (1) How can we incorporate correlation in

unknown bits across partial products? For example, multiplying

P = 11, Q = µ1 produces the partial products T1 = 11, T2 =
µµ0. However, the two µ trits in T2 are concretely either both

0 or both 1, resulting from the same µ trit in Q. Failing to

consider this in the addition makes the result imprecise. (2) Can

we design a sound, precise, and fast tnum addition operator

of arity n? (3) Eschewing long multiplication, is it possible to

use concrete multiplication (∗) over tnum masks to determine

the unknown bits in the result?

IV. EXPERIMENTAL EVALUATION

Tnum operations are only one component of the Linux ker-

nel’s BPF analyzer. To keep our measurement and contributions

focused, our evaluation focuses on the precision and speed of

our tnum multiplication operation relative to prior algorithms.
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Prior algorithms for abstract multiplication. Apart from

Linux kernel’s multiplication [39], Regehr and Duongsaa

[42] also provide an algorithm for abstract multiplication

in a domain similar to tnums, which is called the bitwise

domain. Listing 5 presents their multiplication algorithm,

which we call bitwise_mul. We experimentally compare the

precision and performance of our tnum multiplication with

both bitwise_mul and the Linux kernel version (kern_mul).

We have performed bounded verification of the soundness of

both kern_mul and bitwise_mul at bitwidth n = 8.

Similar to our_mul, bitwise_mul is also inspired from

long multiplication. It generates partial products that are

subsequently added after appropriately bit-shifting them. We

observed that bitwise_mul needs to be carefully implemented

with machine arithmetic operations to have reasonable perfor-

mance. In bitwise_mul, the function multiply_bit modifies

the second operand Q based on the ith trit of the first operand

P . If the ith trit of P is µ, this modification is done in a trit-by-

trit fashion (i.e., by iterating over the n trits of Q and setting

them to µ). To improve bitwise_mul’s performance with

tnums, we substituted this loop with a single tnum operation

in our implementation: when P is µ, we construct a new

tnum (0, Q.mask | Q.value), which has the same effect

as individually setting the trits of Q to µ.

1 def bitwise_mul(tnum P, tnum Q):
2

3 tnum sum = tnum(0, 0)
4 # loop runs bitwidth times

5 for i in range(0, bitwidth):
6 tnum product = multiply_bit(P, Q, i)
7 sum = tnum_add(sum, tnum_lshift(product, i))
8 return sum
9

10 def multiply_bit(tnum P, tnum Q, u8 i):
11

12 # Bit position i of tnum P is a certain 0

13 if (P.v[i] == 0 and P.m[i] == 0):
14 return tnum(0, 0)
15 # Bit position i of tnum P is a certain 1

16 elif (P.v[i] == 1 and P.m[i] == 0):
17 return Q
18 # Bit position i of tnum P is uncertain

19 else:
20 # "kill" all bits of Q that are a certain 1,

21 # i.e. set them to uncertain

22 for j in range(0, bitwidth):
23 if (Q.v[j] == 1 and Q.m[j] == 0) :
24 Q.v[j] = 0
25 Q.m[j] = 1
26 return Q

Listing 5: Bitwise multiplication (i.e., bitwise_mul) by Regehr et al. [42]

Setup. We performed all our experiments on the Cloudlab [53]

testbed. We used two 10-core Intel Skylake CPUs running at

2.20 GHz for a total of 20 cores, with 192GB of memory.

A. Evaluation of Precision of our_mul

We evaluate the precision of our_mul compared to

bitwise_mul and kern_mul by exhaustively evaluating all

pairs of tnum inputs at a given bitwidth n. We set n = 8 to

keep the running times tractable.

Consider two abstract tnum multiplication operations op1
and op2. Given two tnums P and Q, suppose R1 , op1(P,Q)
and R2 , op2(P,Q). For fixed P and Q, op1 is more precise

than op2 if R1 6= R2∧R1 ⊑A R2, or equivalently, R1 6= R2∧
γ(R1) ⊑C γ(R2), where⊑C is the subset relation⊆. In general,

two such output tnums R1 and R2 need not be comparable

using the abstract order ⊑A. For example, at bitwidth n = 9,

with input tnums P = 000000011, Q = 011µ011µµ, the

kern_mul algorithm produces R1 = µµµµ0µµµµ whereas

our_mul produces R2 = 0µµµµµµµµ. However, empirically,

for tnums of width n = 8, outputs R1 and R2 turn out to be

always comparable using ⊑A. That is, at n = 8, R1 6= R2 ⇒
R1 ⊑A R2 ∨ R2 ⊑A R1. Hence, we can simply compare the

cardinalities of γ(R1) and γ(R2) as a measure of the relative

precision of op1 and op2, for given input tnum pair (P,Q).

Figure 4 compares the cardinalities of γ(R1) and γ(R2)
when enumerating every possible input tnum pair (P,Q) of

width 8, and only considering cases where R1 6= R2 . Note

that R1 6= R2 only when R1 (similarly R2) is a tnum with

a larger number of unknown trits (µ) than R2 (similarly R1).

We use a log2 scale for the x-axis: each tick on the x-axis to

the right of 0 is a point where our_mul produces a tnum that

is more precise in exactly one trit position when compared to

the multiplication algorithm it is pitted against. We observe

that for around 80% of the cases, our_mul produces a more

precise tnum than both kern_mul and bitwise_mul (the data

to the right of 0 in Figure 4). In summary, our multiplication

is more precise than kern_mul and bitwise_mul.

Note that our_mul and kern_mul produce the same result

(R1 = R2) for 99.92% of all possible 8-trit input tnum pairs.

We evaluate how the relative precision between these algorithms

varies with increasing bitwidth by enumerating the trends from

bitwidth n = 5 to n = 10. We observe that (1) the fraction of

inputs where R1 = R2 decreases, and (2) our_mul produces

more precise results than kern_mul for a higher fraction of

those inputs where the outputs differ (R1 6= R2) but are

comparable (R1 ⊑A R2 ∨ R2 ⊑A R1). The full results are

in the extended technical report [49].

Due to the non-associativity of tnum addition (§III-A), some

orders of adding tnums are more precise than others, while

increasing the number of tnums added makes the result less

precise. Hence, the order and number of tnums added is

significant to the precision of each multiplication algorithm.

In general, our_mul is more precise than both kern_mul

and bitwise_mul due to its value-mask decomposition. Both

kern_mul and bitwise_mul add tnums each of which con-

tains both certain and uncertain trits. Due to the value-mask

decomposition, our_mul postpones such an addition until the

very last step of the algorithm. Further, our_mul is more

precise than kern_mul with increasing bitwidth (n), since

our_mul has fewer additions (n+ 1) than kern_mul (2n).
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Fig. 4: Cumulative distribution of the ratio of set sizes of the tnums (after
concretization) produced by (a) kern_mul to our_mul, and (b) bitwise_mul
to our_mul, for cases where the output from our_mul is different. Results
presented in log scale (log2). The input tnums pairs are drawn from the set
of all possible tnum pairs of bitwidth 8.

Fig. 5: Cumulative distribution of the minimum number of CPU cycles taken
by bitwise_mul, kern_mul, and our_mul for 40 million randomly sampled
64-bit input tnum pairs.

B. Performance Evaluation of our_mul

We compare the performance (in CPU cycles measured

using the RDTSC time stamp counter) of all the tnum multi-

plication algorithms discussed in this paper: kern_mul [39],

bitwise_mul [42], and our new algorithm our_mul. We

perform the experiment using 40 million randomly sampled

tnum pairs (64-bit), repeating each input pair 10 times and

measuring the minimum number of cycles across these trials.

Figure 5 reports the cumulative distribution of this cycle count

across all the sampled inputs. All multiplication algorithms

have a loop, and for some algorithms, the number of iterations

of the loop depend on number of unknown bits in the input

operands. Hence, the number of cycles varies across inputs.

We observe that our_mul is faster (i.e., fewer CPU cycles

taken) than all the other versions of tnum multiplication. On

average, kern_mul takes around 393 cycles, our optimized

version of bitwise_mul takes 387 cycles, and our_mul takes

262 cycles (when we take the average of the minimum of

10 trials for each input tnum pair). Our optimizations to

bitwise_mul to use machine arithmetic were important as

it improved the performance significantly (i.e., from 4921

cycles to 387 cycles). In summary, efficient use of machine

arithmetic and the novel computation and summation of partial

products makes our_mul 33% (resp. 32%) faster on average

than kern_mul (resp. our optimized version of bitwise_mul).

V. RELATED WORK

BPF safety. Given the widespread use of BPF, recent efforts

have explored building safe JIT compilers and interpreters [54,

55, 56, 57]. These works assume the correctness of the in-

kernel static checker and the JIT translation happens after the

BPF code passes the static checker. Prevail [7] proposes an

offline BPF analyzer using abstract interpretation with the zone

abstract domain and supports programs with loops. In contrast

to this paper, these prior efforts have not looked at verifying

the tnum operations in the Linux kernel’s static analyzer or

explored the tnum domain specifically.

Abstract interpretation. Many static analyses use an ab-

stract domain for abstract interpretation [38, 58, 59]. Abstract

domains like intervals, octagons [45], and polyhedra-based

domains [60] enhance the precision and efficiency of the

underlying operations. Unlike the Linux kernel’s tnums, their

intended use is in offline settings. Of particular relevance to our

work is the known-bits domain from LLVM [44, 3, 43], which,

like tnums, is used to reason about the certainty of individual

bits in a value. Our work on verifying tnums will be likely

useful to LLVM’s known-bits analysis, as prior work does

not provide proofs of precision and soundness for arithmetic

operations such as addition and multiplication.

Safety of static analyzers. One way to check for soundness

and precision bugs in static analyzers is to use automated

random testing [61, 62]. Recently, Taneja et al. [3] test dataflow

analyses in LLVM to find soundness and precision bugs by

using an SMT-based test oracle [63]. Bugariu et al. [64] test

the soundness and precision of widely-used numerical abstract

domains [65, 60]. They use mathematical properties of such

domains as test oracles while comparing against a set of

representative domain elements. They assume that the oracle

specification of operations is correct and precise. This paper

differs from these approaches in that we formalize and construct

analytical proofs for the abstract operations.

VI. CONCLUSION

Abstract domains like tnums are widely used to track register

values in the Linux kernel and in various compilers. This

paper performs verification of tnum arithmetic operations, and

develops a new implementation for tnum multiplication. Our

algorithm for tnum multiplication is sound, precise, and faster

than Linux’s kernel multiplication. Our new multiplication

algorithm is now part of the Linux kernel.
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