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Dissertation Director:

Santosh Nagarakatte

OpenMP is a popular application programming interface (API) used to write shared-memory

parallel programs. It supports a wide range of parallel constructs to express different types of

parallelism, including fork-join and task-based parallelism. Using OpenMP, developers can

incrementally parallelize a program by adding parallelism to it until their performance goals are

met.

In this dissertation, we address the problem of assisting developers in meeting the two

primary goals of writing parallel programs in OpenMP: performance and correctness. First,

writing OpenMP programs that achieve scalable performance is challenging. An OpenMP

program that achieves reasonable speedup on a low core count system may not achieve scalable

speedup when ran on a system with a larger number of cores. Traditional profilers report program

regions where significant serial work is performed. In a parallel program, optimizing such regions

may not improve performance since it may not improve its parallelism. To address this problem,

we introduce OMP-ADVISER, a parallelism-centric performance analysis tool for OpenMP

programs with what-if analyses. We propose a novel OpenMP series-parallel graph (OSPG)

that precisely captures the series-parallel relations between different fragments of the program’s

execution. The OSPG, along with fine-grained measurements, constitute OMP-ADVISER’s

ii



performance model. OMP-ADVISER identifies serialization bottlenecks by measuring inherent

parallelism in the program and its OpenMP constructs. OMP-ADVISER’s what-if analysis

assists developers to identify regions that have to be optimized first for the program to achieve

scalable speedup. While a lack of inherent parallelism is a sufficient condition for a program not

to have scalable speedup, too much parallelism can lead to excessive runtime and scheduling

overheads, resulting in lower performance. We address this issue by extending OMP-ADVISER

to measure tasking overheads. By attributing this additional information to different OpenMP

constructs in the program, OMP-ADVISER can identify tasking cut-offs that achieve the right

balance between a program’s parallelism and its scheduling overheads for a given input. Further,

we design a differential analysis technique that enables OMP-ADVISER to identify program

regions experiencing scalability bottlenecks caused by secondary effects of execution.

Second, writing correct parallel programs is challenging due to the possibility of bugs such

as deadlocks, livelocks, and data races that do not manifest when writing a serial program. A

data race occurs when two parallel fragments of the program access the same memory location

while one of the accesses is a write. Data races are common in OpenMP applications. Due to

the exponential number of possible instruction and thread interleaving in parallel applications,

identifying and reproducing data races using manual or automated testing techniques is impracti-

cal. Hence, specialized data race detection tools have been proposed to identify data races. We

propose OMP-RACER, a novel apparent data race detector for OpenMP that supports a large

call of OpenMP applications. To detect data races, OMP-RACER constructs the program’s

OSPG to encode the logical series-parallel relation for different serial fragments of the program.

By capturing the program’s logical series-parallel relations, OMP-RACER can detect data

races in possible thread interleavings of the program for a given input. Thus, alleviating the

need for schedule exploration. Compared to other OpenMP data race detectors, OMP-RACER

can correctly identify races in a larger subset of OpenMP that use task-dependencies and locks,

while achieving similar overheads.

Our results with testing the OMP-ADVISER and OMP-RACER prototypes with 40 OpenMP

applications and benchmarks indicate their respective effectiveness in performance analysis and

data race detection. Furthermore, it demonstrates the usefulness of our proposed OSPG data

structure in enabling the creation of different types of analysis tools for OpenMP applications.
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Chapter 1

Introduction

With core frequency scaling coming to an end in the mid-2000s, multi-core CPUs, once mainly

used in the High-Performance Computing (HPC) domain, have become ubiquitous in all do-

mains [156]. In recent years, to meet the ever-increasing demand for more computational power,

heterogeneous computing using accelerators such as GPUs and FPGAs has become widely

adopted. All these advances illustrate a trend of increasing hardware parallelism.

To effectively utilize the increasing amount of hardware parallelism, new software must be

written to use the additional parallelism in hardware. Moreover, a program written to utilize the

available parallelism in current hardware may not effectively scale to leverage the additional

parallelism that becomes available in future devices—requiring a need for high-performing and

scalable parallel programs. Generally, it is a requirement for all software to be correct and meet

performance requirements. However, due to additional complexities that do not exist in serial

programs, writing correct, high-performing, and scalable parallel software is known to be a

challenging endeavor [131], requiring domain knowledge and years of developer expertise.

The most common form of parallel programming, thread-based programming, exacerbates

the complexity of writing parallel software [113]. Thread-based programming is a low-level

abstraction for parallel programming as it closely matches the way operating systems manage

parallel execution. Two common issues with parallel programming using low-level threads

exist. First, it is challenging to reason about program behavior due to many possible thread

interleavings. This potentially leads to bugs that are hard to discover, reproduce, and fix. Second,

thread-based abstraction does not decouple scheduling from the computation. Developers must

choose the number of threads to create and how to orchestrate them to run their programs. For

example, static scheduling in thread-based programming may lead to low program parallelism

and work imbalance among threads, leading to sub-par performance.
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To assist developers with writing parallel applications and address some shortcomings of

thread-based programming, different high-level programming languages and frameworks such

as OpenMP [153], Cilk [47], X10 [41], TBB [163], OpenACC [151], and CUDA [51] have

become popular. By introducing higher-level abstractions and parallelism primitives compared

to thread-based programming, these languages simplify the task of writing parallel applications.

While these languages have successfully lowered the barrier of entry for parallel programming,

many correctness and performance considerations remain even when these languages are used

for parallel programming.

A substantial amount of research has been done to increase parallel programmers’ pro-

ductivity and assisting them to develop correct and scalable applications. One branch of this

research has resulted in the design of performance analysis and verification tools for parallel

applications. A performance analysis tool aims to identify bottlenecks sources in a program

and assist programmers in locating root-causes for lack of performance and scalability. Earlier

performance analyzers for sequential programs [76] have inspired the design of parallel program

performance analysis tools. Hence, many performance analysis tools report regions where

the program spends most of its time as sources of bottlenecks [14, 50, 71, 189]. While this

approach is satisfactory for analyzing sequential programs, it is not sufficient for analyzing

parallel programs. A parallel program’s performance is determined by the longest sequence of

serial regions in the program (i.e., Amdahl’s law [18]), known as its critical path. For example,

a region where the program spends most of its time may not lie on the program’s critical path.

Optimizing it first will not impact the program’s performance. Our goal is to develop algorithms

and design tools that help parallel programmers with writing scalable programs.

In addition to bugs common with sequential programs, some bugs such as deadlocks,

livelocks, and data races are specific to parallel programs. Identifying and reproducing these

bugs is difficult, mainly due to a large number of possible thread interleavings in a parallel

program, which can grow exponentially with the number of hardware threads and instructions

per thread. Researchers have proposed different solutions to automate the identification of these

types of bugs [9, 66, 69, 88, 114, 117, 141, 168, 175].
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1.1 Performance Analysis Tools for Parallel Programs

By measuring the computation and memory usage of programs, performance analysis tools

are used to identify its performance bottlenecks. Understanding the behavior and performance

issues in parallel applications is challenging. It is desired that a performance analysis tool assists

developers by accurately identifying the sources of bottlenecks. Moreover, it should guide its

user to address performance bottlenecks by pinpointing the cause and providing actionable

recommendations to guide the developer in fixing performance issues.

For a sequential application, the program’s execution can be thought of as a chain of function

calls. For a given input, this chain forms a total order. Thus, to diagnose performance bottlenecks,

it is sufficient to identify function calls where the program performs the most computation since

optimizing them will provide the highest performance gains. Hence, profiling tools for sequential

programs tend to follow the same principle, in which they measure resource utilization and

aggregate the measurements at different granularities. For example, a call path profiler [83]

aggregates its measurements to each function call in the program.

The design of some parallel application performance profilers is inspired by their serial

counterparts. Many of these tools employ a similar strategy used by sequential program profilers,

where each thread’s resource utilization is measured. The profiler provides a thread-based view

of thread utilization, and it reports which function in the program utilizes the most resources

(i.e., a hotspot) [14, 50, 189]. While these profilers are useful in detecting certain performance

issues in parallel applications, they fail to identify other bottlenecks. By adapting the serial

program profiling techniques to a parallel setting, these profilers do not accurately model a

parallel program’s execution.

Compared to a serial program, the execution of a parallel program is more complicated.

At any point in execution, multiple threads could run different sequential operations. We

can model the parallel program’s execution with a graph. Each node represents sequential

operations, and each edge captures the ordering between operations. The longest path on this

graph represents the longest sequence of execution in the program, known as the critical path.

The critical path provides a theoretical upper bound on the program’s execution time (e.g.,

Amdahl’s law). Hence, reducing a program’s critical path is a necessary condition to improve
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Thread A
{

…
x=1;
y=6;
…

}

Thread B
{

…
y=3;
x=2;
…

}

Thread C
{

…
x=4;
z=5;
…

}

(a) Program snippet comprised of three threads

Time x y z

0 0 0 0

1 1 0 0

2 1 6 0

4 1 3 0

5 2 3 0

6 4 3 0

7 4 3 5

(b) order of operations as observed in 2 possible interleavings

Time x y z

0 0 0 0

1 0 3 0

2 2 3 0

4 4 3 0

5 4 3 5

6 1 3 5

7 1 6 5

Figure 1.1: (a) Code snippet illustrating 3 threads that write to shared variables x,y, and z. (b)
Different interleavings an a multithreaded program may lead to different final values for shared
variables. Number of interleavings grows exponentially with thread counts and the operations
within each thread. The example illustrates two possible traces that produce different results

its performance. Identifying the critical path and aiming to reduce it has been used by some

profiling tools [16, 36, 155] to discover bottlenecks in parallel programs.

However, prior profiling tools tend to have two limitations. First, some techniques identify a

trace specific critical path [172], which may not be the same as the program’s critical path as

specified by Amdahl’s law. Thus, optimizing a trace specific critical path may only improve

the application’s performance on the current system. In contrast, the program’s performance

may not improve when executed on a system with higher hardware parallelism. Second, while

some systems aim to identify the critical path1 as specified by Amdahl’s law, they are limited to

analyzing applications with structured parallelism [161, 193]. Our goal is to design performance

analysis tools that improve upon prior solutions by targeting a larger class of parallel applications

while measuring the program’s critical path. Achieving this goal requires new ways to model

the execution of a parallel application.

1.2 Race Conditions in Parallel Programs

A parallel program’s execution may have many possible interleavings 2 for a given input. The

number of program interleavings grows exponentially with the number of hardware threads and

1Also referred to as the program’s span.
2Also referred to as a schedule.
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instructions per thread. If a program produces different outputs for a given input depending

on the program’s schedule, the program is nondeterministic. Nondeterminism is the root

cause of many bugs in parallel programs, including deadlocks, livelocks, and race conditions.

Figure 1.1 illustrates an example of nondeterminism caused by different thread interleavings in

a multithreaded application.

Because of the large number of possible interleavings in a parallel program, attempts to

manually identify and reproduce these types of bugs are difficult and error-prone. Further, testing

techniques have limited efficacy due to limited coverage of all possible schedules. Hence, to

effectively identify these bugs, specialized tools are used. Data races commonly occur in parallel

programs and often lead to undefined behavior. The problem of automated data race detection is

well-studied. Some proposed solutions detect races using static analysis [9, 66, 140, 158], and

some use dynamic analysis techniques [69, 132, 168, 175].

According to Netzer and Miller’s [146] classification, a data race may be apparent or feasible.

A feasible data race is one in which it manifests in an actual program trace. To detect a feasible

data race, we should consider the program’s computation, synchronization, and parallelism

constructs. In contrast, an apparent data race approximates the program’s feasible data races

by primarily considering its synchronization and parallel constructs without taking the actual

computation into account. While not every apparent race is not feasible, in some classes of

programs know as Abelian [44], every apparent race is also a feasible data race. A data race

detector may aim to detect either feasible or apparent data races. Detecting apparent data races

is considered to be easier since it alleviates the need for schedule exploration.

Data race detection tools can be broadly classified into two categories, static and dynamic.

Static data race detectors use static analysis techniques to identify races in the program. While

this approach has the benefit of low overheads and can be used to detect races for all program

inputs, its main drawback is higher rates of false positives. Dynamic data race detectors aim

to detect data races by executing the program for a given input. Compared to a static data race

detector, a dynamic data race detector reports a lower false positives rate.

The main drawback of dynamic data race detection is that they may report data races for

only a given input and a specific thread interleaving in the program. As discussed previously,

the number of interleaving in a program may increase exponentially with the number of threads.
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Thus, limiting the tool’s ability to identify data races for all schedules. Some tools address this

issue by detecting data races that occur across all schedules using data structures that capture

logical series-parallel relations. One limitation of these tools is that they target programs with a

specific form of structured parallelism [68, 132, 160, 194]. To perform data race detection in a

larger class of parallel programs across all schedules, we need to design new data structures that

can accurately model the logical series-parallel relations specified by their parallelism constructs.

1.3 Modeling Parallel Program Execution Using Series-Parallel Graphs

To design algorithms and tools that can effectively analyze parallel applications, the algorithm

must accurately capture the parallel application’s execution. One approach to model a parallel

program’s execution utilizes data structures to capture the logical series-parallel relations be-

tween sequential fragments in its dynamic execution trace. Two fragments logically execute

in parallel if based on the parallel program’s semantics, they may execute in parallel in some

possible program schedule for a given input. The logical series-parallel relation between two

fragments is a property of the program for a given input. Intuitively, two logically parallel

fragments will execute in parallel when the program is executed on a hypothetical system with

infinite processors. Capturing the logical series-parallel relations in a parallel program enables

the design of analysis tools that can reason the application across different thread interleav-

ings for a given input. Capturing the logical series-parallel relation is complicated for general

thread-based programs. Hence, prior research has focused on modeling structured parallelism,

including applications that either use fork-join [132] or task-based parallelism [68, 161].

More recently, a line of research aims to capture logical series-parallel relations in a larger

class of parallel applications. For example, R-Sketch [15] and MultiBags+ [187] propose data

structures and algorithms to capture logical-series parallel relations in programs with futures.

The use of unstructured parallelism constructs such as futures is becoming more popular in

parallel programming languages since simplify expressing certain parallel algorithm. To design

analysis tools for this class of programs, we need to develop new data structures and algorithms

that can accurately encode logical series-parallel relations in the presence of unstructured

parallelism.
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1.4 Thesis Statement

Using logical series-parallel graphs to model the execution of parallel programs in OpenMP, we

can build practical performance analysis and debugging tools that assist developers in writing

correct and scalable programs.

1.5 Research Contributions

This dissertation explores the design of new series-parallel graphs to capture the execution of

parallel applications written in OpenMP. Using this series-parallel graph, we design a new

profiling tool to identify performance bottlenecks and develop a tool to identify a common

correctness issue in OpenMP programs, data races. Our contributions are summarized as follows:

1. The OpenMP Series-Parallel Graph (OSPG), a data structure that captures the logical

series-parallel relations between serial fragments of dynamic execution in an OpenMP

program. The OSPG is constructed incrementally and in parallel during program execution.

It correctly models OpenMP programs with both worksharing and tasking constructs.

2. The performance analysis tool and adviser, OMP-ADVISER, uses the OSPG to construct

a parallelism profiler for OpenMP applications. Using what-if and differential analyses,

OMP-ADVISER identifies performance bottlenecks and recommends which regions to

optimize to improve the program’s performance.

3. The apparent data race detector, OMP-RACER, utilizes the OSPG to design a data

race detection algorithm that alleviates the need for repeated executions and interleaving

exploration for a given input.

The rest of this section provides a brief description of the research contributions listed above

and highlights the high-level ideas used to design them.

1.6 Modeling the Execution of OpenMP Programs Using the OSPG

In this dissertation, we capture the execution of parallel applications written in OpenMP by

proposing a new data structure called the OpenMP Series-Parallel Graph (OSPG). The OSPG
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(a) A simple task-parallel 
program

(b) two possible executions with two threads

1  task a{
2 x=1;
3 y=1;
4 }
5 task b{
6 y=2;
7 }
8 task c{
9 x=2
10 }

x=1

Thread 1

y=1

y=2

Thread 2

x=2

x=1

Thread 1

y=1

y=2

Thread 2

x=2

Trace 1 Trace 2

Time

Figure 1.2: (a) A simple task-parallel program creating three tasks that logically execute in
parallel. (b) In task-parallel frameworks, the runtime dynamically schedules tasks by mapping
them to available threads. This figure depicts two possible schedules on a machine with two
threads.

encodes the logical series-parallel relations between different fragments in the program execution

trace. OpenMP [153] is a popular programming API that supports a wide range of parallelism

constructs. The high-level parallelism constructs in OpenMP support fork-join, task-based,

SIMD, and heterogeneous computing in the form of offloading. Further, OpenMP supports

incremental parallelism, where the developer adds parallelism to their application by using

OpenMP’s parallelism constructs as a set of compiler directives. OpenMP has been used for

decades in the HPC domain to write shared-memory parallel applications. More recently, it has

been used to speedup parallel applications in other domains [154].

While prior research has proposed data structures to capture the logical series-parallel

relations in parallel programming frameworks, these works mainly either support fork-join or

task-based parallelism constructs [27, 86, 132, 162, 169, 193]. Whereas the OSPG supports the

OpenMP API, thus modeling both forms of parallelism constructs. The OSPG is an ordered

directed acyclic graph (DAG) that captures the dynamic execution of an OpenMP program as

a set of fragments. A fragment is the longest sequence of instructions between two OpenMP

parallelism constructs; hence a fragment is executed serially by a thread. The OSPG captures

the logical series-parallel relations between any pair of fragments in an OpenMP program by

using different types of nodes and edges.
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Instead of capturing a specific schedule of the program’s execution, the OSPG captures the

logical series-parallel relations between program fragments. For example, a pair of logically

parallel fragments might execute serially by the same thread on a given schedule. Meanwhile,

the program’s semantics may indicate that the pair of fragments may execute in parallel. The

example in Figure 1.2 illustrates this point where two logically parallel tasks b and c, are

executed in series in a possible execution trace on a system with two threads. Intuitively, the

OSPG captures the series-parallel relations of the program when running with an infinite number

of processors using an idealized runtime. Hence, the program’s logical-series parallel relations

are a property of the program for a given input.

To use the OSPG as the basis for designing practical and scalable performance analysis and

verification tools, we must ensure that its construction is lightweight and can be constructed in

parallel. To realize this goal, we propose an incremental construction algorithm that constructs

the program’s OSPG in parallel.

1.7 Performance Analysis of OpenMP Programs With OMP-ADVISER

The parallelism constructs in OpenMP are easy to use and enable application developers to

add parallelism to their programs incrementally. However, the program may still not meet the

developer’s performance goals. Further, even when a program exhibits good speedups on a low

number of hardware threads, it may not have scalable speedup when executed on a system with a

higher core count. Our goal with OMP-ADVISER is to design performance analysis techniques

for OpenMP programs to assist developers with building performance portable applications.

As described earlier, Amdahl’s law provides a theoretical guarantee on improving the

program’s performance by quantifying and reducing its critical path, the longest sequence of

sequential computation. Thus, to quantify a program’s scalability, one can use the program’s

logical parallelism. Logical parallelism is the ratio of the program’s serial work over its critical

path3. It represents the program’s speedup when executed on an ideal system with an infinite

number of processors with no scheduling or runtime overheads. While logical parallelism is

a metric that characterizes performance for an idealized system, our crucial observation was

3Another terminology used for defining logical parallelism is the ratio of program’s work over its span.
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that it is an effective metric in assessing the performance portability of an OpenMP application

since a program with sufficient logical parallelism will have scalable speedup when running on

a system with a higher amount of hardware parallelism. Hence, OMP-ADVISER measures the

logical parallelism of the program and each static OpenMP directive in the program.

To measure the logical parallelism, we construct a performance model of the application

under test. The performance model is comprised of two components. First, we need a mechanism

to capture the logical series-parallel relations for each program fragment. Second, we need

a mechanism to measure the work performed in each program fragment. By using these two

components, OMP-ADVISER can compute the logical parallelism in the program using its

parallelism computation algorithm. Chapter 3 provides detail on how OMP-ADVISER calculates

parallelism using these components.

The OSPG encodes the logical series-parallel relations in an OpenMP program. Thus, we

use it to realize the first component in OMP-ADVISER’s performance model. As described

in Section 1.6, the OSPG data structure is a graph that captures each program fragment and

encodes their logical series-parallel relations with different types of nodes and edges. When

analyzing a program, OMP-ADVISER constructs its OSPG on-the-fly for a given input.

To measure the work performed by each program fragment, the longest sequence of instruc-

tions in the dynamic execution before encountering an OpenMP construct, OMP-ADVISER

leverages the availability of hardware performance counters in modern processors whenever

possible. These hardware counters provide the means to perform fine-grained measurements

of different metrics (e.g., instruction count, cycle count, etc.) with low runtime overheads.

OMP-ADVISER measures the amount of computation and attributes them to the program’s

OSPG nodes.

When using OMP-ADVISER as a parallelism profiler, the user runs the application under

test with a given input. The profiler executes the program, constructs its OSPG in parallel,

and uses hardware performance counters to perform fine-grained work measurements. Using

its parallelism profiling algorithm OMP-ADVISER generates a report that includes the logical

parallelism and contribution to the program’s critical path for the entire program and each static

OpenMP directive in the program. This profile can be used to identify serialization bottlenecks

and OpenMP directives in the program that exhibits low parallelism.
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While OpenMP directives with low parallelism are potentially good candidates to optimize

to improve the program’s performance, optimizing them may not always increase the program’s

parallelism. This can occur when the directive is not on the critical path, and increasing the

directive’s parallelism will not shorten the critical path. Alternatively, when the program has

multiple paths in the program’s execution graph that perform similar amounts of work compared

to the critical path. In this case, optimizing the directive will shift the program’s critical path

but not necessarily reduce it. Leading us to the question, can we use our performance model to

identify regions that improve program parallelism?

We demonstrate that OMP-ADVISER’s performance model can be used to estimate the

improvements in program parallelism if a selected program region is hypothetically parallelized.

We call this type of analysis, what-if analysis. What-if analysis helps developers prioritize which

regions to optimize first to gain the most improvement in program parallelism. OMP-ADVISER

supports user-defined what-if analysis queries where the developer annotated regions of code

to perform what-if analysis. While users found what-if analysis useful in identifying program

bottlenecks, it sometimes led to many trial and error runs to identify the regions to optimize.

We noticed that this manual process could be automated. Hence, for a given target parallelism

value, OMP-ADVISER can automatically perform what-if analysis queries to identify a list of

regions that must be optimized to reach the desired parallelism. Alternatively, it reports that it

is infeasible to achieve the target parallelism. We refer to this technique as automatic region

identification and describe it in detail in Chapter 3.

While increasing a program’s parallelism is necessary to improve its speedup, it is not

sufficient to guarantee a program is performance portable. There are many reasons that hinder

a program from being performance portable, leading to the difficulty associated with writing

scalable parallel applications. Hence, to improve the efficacy of OMP-ADVISER as a perfor-

mance analysis tool, we need to augment its performance model to capture additional sources of

performance bottlenecks. More specifically, in its current design, OMP-ADVISER identifies two

additional causes of bottlenecks.

First, in the real world, the OpenMP runtime has to use some resources to orchestrate the

parallelism expressed in the program. In practice, for a program to be performance portable, it

needs to perform sufficient parallel computation to amortize the runtime costs associated with
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creating and managing parallelism constructs. To account for this phenomenon, OMP-ADVISER

measures the runtime costs associated with creating a parallelism construct in the OpenMP

program and identifies if the program performs sufficient computation for each construct to

amortize associated runtime costs. Further, OMP-ADVISER uses runtime costs measurements

when performing automatic region identification, which identifies the limit a program can be

parallelized before runtime costs dominate.

Another common source of bottlenecks in parallel applications is resource contention, which

inhibits the application’s scalability. While many parallel programs use shared resources such as

locks and other synchronization primitives to perform correctly, not all contention is necessary

or intended by the application developer. Hence, it is desirable for a performance analysis tool

to identify and report such sources of contention. An application with resource contention may

exhibit secondary effects of execution. Directly identifying resource contention in an application

is known to be difficult.

The key insight used by OMP-ADVISER is that when a parallel program suffers resource

contention, one will typically observe work inflation in some metric of interest [13]. A program

has work inflation if its operations cost more compared to an oracle execution that does not suffer

from the resource contention in the parallel execution. Hence OMP-ADVISER uses differential

analysis [130] to identify OpenMP program regions with work inflation and reports them to the

user. Using differential analysis, OMP-ADVISER runs the program twice, once with an oracle

execution and once in parallel, and then compares the OSPG of the two runs to identify regions

with work inflation. A key insight that enables OMP-ADVISER’s differential analysis is that the

two constructed OSPGs can be compared directly, which results from the OSPG capturing the

logical series-parallel relations which are independent of the program’s thread interleaving or

the number of hardware threads used to execute the program. Chapter 3 describes the details of

OMP-ADVISER’s approach to performing differential analysis.

Using OMP-ADVISER, we have analyzed over 40 OpenMP applications from differential

benchmark suites and HPC applications. OMP-ADVISER has proven useful in identifying

performance bottlenecks and providing advice on which regions to optimize to gain speedup.
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1.8 Apparent Data Race Detection Using OMP-RACER

Similar to other multithreaded applications, an OpenMP program may have data races. Data

races may cause nondeterminism, undefined program behavior, and often are the cause of bugs

in parallel applications [29]. A data race occurs when a shared memory location is accessed by

two or more threads in parallel when one of the accesses is a write operation. For example, the

program in Figure 1.2 has two data races over variables x and y, leading to nondeterministic

final values.

Our work with OMP-RACER answers the question, "can the OSPG be used to design

debugging tools for OpenMP applications?" by using it in the context of data race detection.

With OMP-RACER, our goal is to develop an apparent dynamic data race detector for OpenMP

applications that can detect data races that occur for different program schedules for a given

input—hence alleviating the need for schedule exploration. For example, a per schedule data

race detector may miss the data race on variable y in Figure 1.2(a) if the captured execution

matches trace 2 Figure 1.2(b).

An interesting problem that we faced when designing OMP-RACER was that since the

OpenMP API is comprised of fork-join, tasking, and some forms of unstructured parallelism

constructs, our original OSPG design needed enhancements for use in data race detection. We

updated our OSPG design to precisely encode the semantics of unstructured OpenMP constructs

(e.g., taskwaits and task dependencies).

To detect data races on-the-fly, in addition to constructing the program’s OSPG, a data race

detection algorithm must include a mechanism to maintain previous memory accesses to a given

memory location [44]. A naive solution is to maintain all prior accesses to each memory location

in the program as part of the access history metadata. While correct, this approach is impractical

since the access history grows in proportion to the program memory trace and incurs large

memory overheads.

We devise two modes to manage access histories with OMP-RACER: a fast and a precise

mode. The fast mode maintains a constant amount of metadata per shared memory location.

This mode has low runtime overheads, and it is comparable to other state-of-the-art OpenMP

data race detectors in terms of performance. However, the fast mode is limited to OpenMP
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programs that use fully nested taskwaits (i.e., one of OpenMP’s synchronization constructs)

and do not use locks. When the fast mode is not suitable for the OpenMP program under test,

OMP-RACER reverts to using its precise mode. Instead of a constant amount of metadata per

shared memory location, OMP-RACER’s precise mode metadata grows in proportion to the

task nesting level and the program’s lockset size. Compared to fast mode, OMP-RACER’s

precise mode has higher runtime and memory overheads.

With these two mechanisms, OMP-RACER detects races as follows. For a given program

input, OMP-RACER constructs the program’s OSPG. Whenever a new memory access occurs,

OMP-RACER retrieves the access history metadata associated with that memory location.

Next, by querying the OSPG, it checks whether the current access is involved with any access

from the retrieved metadata, reporting any data race detection. Further, it updates the access

history to include the current memory access.

Our experience with using OMP-RACER with popular OpenMP data race detection bench-

marks and applications indicates that OMP-RACER is useful in detecting apparent data races

in different OpenMP applications. We describe the details of OMP-RACER data race detection

algorithm in Chapter 4.

1.9 Contributions to This Dissertation

The ideas and techniques described in this dissertation are drawn from the following research

papers written in collaboration with my advisor Santosh Nagarakatte and my collaborator Adarsh

Yoga.

1. "A Parallelism Profiler with What-If Analyses for OpenMP Programs" [31] introduces

OMP-WHIP, which uses the proposed OSPG data structure to construct a performance

model that enables parallelism profiling and what-if analyses.

2. "On-the-fly Data Race Detection with the Enhanced OpenMP Series-Parallel Graph" [33],

which introduces the EOSPG, an extension of the OSPG, and describes a data race

detection algorithm to detect apparent races in OpenMP applications.
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1.10 Organization of This Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we provide a brief primer on

OpenMP and introduce the OpenMP Series-Parallel Graph (OSPG). The OSPG data structure

captures the logical series-parallel relations between the serial fragments of an OpenMP program.

The OSPG enables the creation of the performance analysis and debugging tools described in

later chapters in the dissertation. Chapter 3 describes our performance profiling and advising tool,

OMP-ADVISER. Based on the OSPG, OMP-ADVISER can identify code regions that matter for

performance by providing a parallelism centric profiling technique with what-if analyses. We

describe our performance model’s details and elaborate on automatic region identification and

differential analysis techniques to find performance bottlenecks. Chapter 4 provides the details

of our apparent data race detector and evaluation using our prototype, OMP-RACER. Chapter 5

reviews related work. We conclude in Chapter 6, providing a summary of this dissertation and

reflect on potential ideas for expanding upon the work described in this dissertation.
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Chapter 2

OpenMP Series-Parallel Graph

To design tools for analyzing parallel programs written in OpenMP, we need data structures and

algorithms to precisely encode the semantics of the OpenMP API. In this chapter, we introduce

the OpenMP Series-Parallel Graph (OSPG), a data structure that precisely captures the logical

series-parallel relations in OpenMP programs that use a variety of the API’s fork-join and task-

based constructs. The OSPG is a key component in the design of our performance analysis and

data race detection tool described in Chapters 3 and 4. A program’s OSPG captures the logical

series-parallel relations between all fragments in the program for a given input. A fragment is

the longest sequence of instructions in the dynamic execution without encountering an OpenMP

parallelism construct. For a given program input, the OSPG captures the series-parallel relations

induced by the semantics of the OpenMP API instead of a given execution trace. Two fragments

logically execute in parallel if based on the parallel program’s semantics, they may execute

in parallel in some possible program schedule for a given input. The logical series-parallel

relation between two fragments is a property of the program for a given input. Intuitively, the

OSPG captures the series-parallel relation between program fragments that occur on an idealized

system with an infinite number of processors, which we refer to as the logical series-parallel

relation.

2.1 OpenMP

The OpenMP1 API consists of a set of compiler directives and library functions to specify

different types of parallelism constructs. OpenMP was introduced by the OpenMP ARB2, a

1Open Multi-Processing.
2Architecture Review Board.
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group of members from academia and industry, in 1997. Since then, its set of features have

grown with each version3.

OpenMP is widely supported and is one of the most used parallelism APIs for shared-

memory multiprocessor systems. Currently, OpenMP supports the following languages: C, C++,

and Fortran. Most compilers, including GCC, Clang, and Icc, support OpenMP. For example,

the latest version of LLVM’s OpenMP implementation fully supports OpenMP’s 3.1 standard

and partially supports features from version 4.0, 4.5, and 5.0.

One of the reasons for the wide adoption of OpenMP is its ease of use. Using a variety

of parallelism constructs provided as compiler directives, the programmer can incrementally

add parallelism to their application until their performance goals are met. Initially, OpenMP

supported only SPMD (single program, multiple data) parallelism. Later versions of OpenMP

have added worksharing, task-based, and SIMD parallelism. Thus, many serial applications can

be parallelized with the expressive set of constructs defined in the OpenMP API.

2.1.1 Introduction to OpenMP

The OpenMP API has grown in complexity with each new version. We now provide an

overview of the OpenMP programming model and a cursory discussion of the common OpenMP

parallelism constructs. We elaborate on other supported OpenMP constructs in later sections

of this chapter. A complete description of the OpenMP API can be accessed from the latest

version of its specification [153]. At its core, the OpenMP API uses the fork-join model of

parallel execution [153]. An OpenMP program begins with a single thread of execution, named

the initial thread. By using the OpenMP parallel construct, the programmer can fork a team of

worker threads, including the initial thread. The team of worker threads executes the parallel

region specified by the parallel construct. The thread that creates the team is called the

master thread. At the end of the parallel construct, the execution is joined by an implicit barrier.

After the parallel construct, only the master thread continues execution. The programmer can

incrementally add more parallel constructs to their program as they parallelize different parts of

3Currently at version 5.0 [153].
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(a) Sequential program (b) Parallelized program with OpenMP

1  #define SIZE 1000 
2  int main(){
3 int arr[SIZE];
4 for(int i=0; i < SIZE; ++i){
5 arr[i] = read_elem(i);
6 }
7 size_t pivot = partition(arr);
8 sort(arr, 0, pivot);
9 sort(arr, pivot, SIZE);
10 return 0;
11 }

1  #define SIZE 1000 
2  int main(){
3 int arr[SIZE];
4 #pragma omp parallel
5 {
6 #pragma omp for
7 for(int i=0; i < SIZE; ++i)
8 {
9 arr[i] = read_elem(i);
10 }
11 #pragma omp single
12 {
13 size_t pivot = partition(arr);    
14 #pragma omp task
15 sort(arr, 0, pivot);
16 #pragma omp task
17 sort(arr, pivot, SIZE);            
18 }
19 } 
20 return 0;
21 }

Figure 2.1: A simple C program to sort the elements of an array. (a) The sequential program. (b)
The program parallelized with OpenMP.

their applications. Hence, OpenMP supports adding incremental parallelism to the application

until the developer’s performance goals are met.

By default, each worker thread executes the same code within a parallel region. However,

this results in redundant computation in the application and no performance gains. Thus,

OpenMP supports a variety of parallelism constructs used to specify different forms of parallel

computation within a parallel region. For example, worksharing constructs distribute program

computation between the team’s worker threads. The worksharing for construct distributes

the iterations of a bounded loop between the team’s threads. The for construct is used to

implement data-parallel computations. The worksharing single construct is used to specify a

code block that only one of the team’s threads will execute within a parallel region.

Additionally, OpenMP supports task-based parallelism with the task construct. A task

instance is comprised of a block of code and its associated data environment. Once a task

construct is encountered by one of the worker threads during execution, a task instance is created.

The OpenMP runtime schedules a task instance for execution by one of the worker threads.

OpenMP supports nested tasks. In OpenMP, different task synchronization and dependency

constructs enable support for some forms of irregular parallelism.
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In C and C++, OpenMP parallelism constructs are specified as compiler directives. Upon

compilation, OpenMP directives get replaced by calls to the OpenMP runtime that orchestrates

the parallelism specified by the application developer. Consider a simple C program that

sorts an array using a divide-and-conquer algorithm such as Quicksort. Figure 2.1(a) shows a

sequential implementation. The for loop at line 4 initializes the array. Lines 7-9 implement the

Quicksort algorithm by partitioning the array and recursively sorting the left and right subarrays.

Figure 2.1(b) shows the same program being parallelized using OpenMP’s parallelism constructs.

In this sample implementation, the data-parallel for loop is parallelized using the OpenMP for

construct. Further, OpenMP tasking constructs are used to parallelize the divide-and-conquer

sorting algorithm by specifying two tasks to sort the left and right subarray, respectively.

2.2 OSPG Overview

The OpenMP Series-Parallel Graph (OSPG) is an ordered directed acyclic graph (DAG) that

captures the execution of an OpenMP program as a set of fragments and their logical series-

parallel relations. Our goal with designing the OSPG is a data structure that can precisely encode

the logical series-parallel relations in a large class of OpenMP programs. We use the OSPG as

part of the following tools. OMP-ADVISER, our proposed performance analysis tool where the

OSPG is used as part of its performance model to measure logical parallelism. OMP-RACER,

our proposed apparent data race detector for OpenMP applications where the OSPG is used to

encode the logical series-parallel relations between sequential fragments in the program to check

for possible data races.

A program fragment is the longest sequence of instructions without encountering an OpenMP

parallelism construct. By design, each program fragment is modeled by a leaf node in the OSPG.

The OSPG’s intermediate nodes and edges encode the logical series-parallel relations between

the leaf nodes. A program’s OSPG captures the logical series-parallel relations between any

pair of fragments for a given input. Given any pair of fragments, their series-parallel relations

can be retrieved by performing a least common ancestor (LCA) query between the leaf nodes

corresponding to the pair of fragments in the program’s OSPG. A program’s OSPG has different

types of nodes. The leaf nodes, which represent program fragments, are called W-nodes. Further,
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L5-L7

L8-L10

(a) Example OpenMP Program (b) Program’s OSPG

S1

1 int main(){
2 init();
3 #pragma omp parallel num_threads(2)
4 {
5 int tid = omp_get_thread_num();
6 printf(“thread id= %d\n”, tid);
7 }
8 fini(); 
9 return 0;
10 }

S2W1 W4

L1-L3

S3

P1 P2

W2 W3

L5-L7

w1

(c) Program’s trace

w2 w3

w4

Figure 2.2: (a) A simple OpenMP program using the parallel directive, which creates two
worker threads that execute the code block at lines 5-7 in parallel. (b) The program’s OSPG
where the W-nodes represent the program’s fragments. (c) The program’s trace, illustrating the
series-parallel relations between program fragments.

the OSPG has three types of internal nodes, P-nodes, S-nodes, and ST-nodes. Internal nodes

and OSPG edges encode the logical series-parallel relations between any W-node pair in the

program’s OSPG.

To demonstrate these ideas, we start with the OpenMP program illustrated in Figure 2.2(a).

This simple C program uses an OpenMP parallel construct that creates a team of worker

threads that execute the code block at lines 4-7 in parallel. The program starts sequentially

with the main thread of execution. The main thread executes the serial function init() at

line 2 before encountering the parallel construct at line 3. The num_threads() clause

specifies the number of worker threads that the OpenMP runtime creates. Thus, in this example,

two worker threads are created. Each worker thread executes lines 5-6 in parallel. Each worker

thread uses the OpenMP runtime library function omp_get_thread_num() to get its thread

number within the team4 and prints it afterward. As specified by the OpenMP standard, a

parallel construct ends with an implicit barrier where the main thread of execution

resumes execution once both worker threads finish executing the parallel block. After the

barrier, the main thread executes the serial function fini() before the program returns

and completes execution.

4With a team of two threads, the function returns 0 and 1 respectively for each worker thread.
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This program has two OpenMP parallelism constructs, the parallel construct at line 3

and the implicit barrier at line 7. Based on the definition of a fragment, the longest sequence

of instructions without encountering an OpenMP parallelism construct, the program has four

fragments. Figure 2.2(b) depicts the OSPG of the example program where each fragment is

captured by a leaf node labeled W1 �W4. The remaining nodes in the OSPG capture the

series-parallel relations between any pair of fragments in the program. Figure 2.2(c) shows the

series-parallel relations between the fragments by depicting a program trace. From the trace,

we observe that fragments W2 and W3, which represent the execution within the parallel

block, execute in parallel.

Further, both fragments W2 and W3 execute in series relative to W4, which represents

the main thread’s execution trace after exiting the implicit OpenMP barrier at the end of

the parallel block. All of these relations are encoded in the program’s OSPG. For this simple

program, internal S-nodes and P-nodes encode the relations between all fragments. An S-node

and a P-node encode a series and a parallel relation, respectively. In this example, a pair of

W-nodes execute in parallel if their LCA node’s left child is a P-node. Otherwise, the pair of

fragments execute in series.

In the presence of OpenMP tasking, this check is slightly more involved, which we describe

in detail in Section 2.5. For example, consider the parallel pair of fragments W2 and W3 in

Figure 2.2(b). The LCA node for the pair is the S-node S3. The left child of S3 is the P-node

P1. Hence, the OSPG captures the parallel relation between the fragments W2 and W3. In

contrast, the pair of fragments W2 and W4 execute in series. The program’s OSPG encodes

this information as follows. The LCA node for the pair of W-nodes, W2 and W4, is the node

S1. The left child of S1 is the S-node S2, capturing the serial relation between the fragments

that correspond to W-nodes W2 and W4.

2.3 OSPG Definition

The OSPG is an ordered directed acyclic graph (DAG), G = (V,E), where the set V consists of

four types of nodes 5, W-nodes, S-nodes, P-nodes, and ST-nodes. Thus, V = Vw [Vp [Vs [Vst.

5Also referred to as vertices.
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The set of edges, E = Epc [Edep, where Epc denotes the parent-child edges between nodes and

Edep denotes the dependency edges. Since the OSPG is a DAG, it has a topological ordering 6,

and the node that appears first in the topological ordering has an in-degree of zero. We refer

to this node as the OSPG’s root node. By design, the root S-node has a unique directed path

consisting of only Epc edges to all other nodes in the OSPG. A node’s depth is defined as the

number of edges on the path consisting of Epc edges from the root node to it. Two nodes with

the same depth are referred to as sibling nodes. For a pair of sibling nodes Vi and Vj at depth d,

node Vp is their parent node if it has depth d� 1 and the edges (Vp, Vi) and (Vp, Vj) connecting

the parent node Vp to its children nodes Vi and Vj respectively. We label edges that establish a

parent-child relationship as Epc, and label edges between sibling nodes as Edp. An edge labeled

as Edp indicates that the edge represents a dependency between sibling nodes. By design, other

than the root node, all OSPG nodes have a unique parent node. OSPG node. In an OSPG, sibling

nodes are ordered from left to right. The left to right ordering between nodes in the OSPG

represents the logical sequencing of operations in the program. For a program’s OSPG, a sibling

node U is left of node V if U is visited before V in its depth-first execution order. Each node

maintains additional information to encode the nesting depth of the program in the presence

of certain synchronization constructs (i.e., taskwait). We refer to this per node state as the

node’s st_val, which is an integer in {�1, 0, 1}. The st_val is used to precisely encode the

logical series-parallel relation in the presence of OpenMP taskwait constructs.

W-node. A W-node represents a serial fragment of dynamic execution in the program. A

program fragment7 is the longest sequence of instructions without encountering an OpenMP

parallelism construct. By construction, a W-node is always a leaf node in the OSPG. A fragment

either starts from the beginning of the program or when the execution encounters an OpenMP

construct. The fragment continues until the program ends, or it reaches another OpenMP

construct. In the absence of any OpenMP directives in the program, the entire program is serially

executed and is comprised of one fragment. Hence, the OSPG of a sequential program consists

of a single W-node that is a direct child of the root S-node. A W-node has an st_val of zero.

6A linear ordering for the nodes of the graph such that if (u, v) is an edge of the graph then u appears before v in
the ordering.

7Another common terminology for a fragment is a strand.
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The set of W-nodes in a program’s OSPG represent the entire computation performed in the

program’s execution.

P-node. A P-node encodes a logically parallel relation between W-nodes. The W-nodes

in the subtree under a P-node execute in parallel with all W-node sibling and descendants to

its right. For example, as illustrated in Figure 2.2(b), when a program encounters an OpenMP

parallel construct, it creates a P-node for each worker thread in the team to represent the

logical parallel execution between each worker thread fragment. Resulting in creating P-nodes

P1 and P2 in Figure 2.2(b). Since a P-node adds to the program’s nesting level, the st_val of

a P-node is one.

S-nodes. Complementary to P-nodes, an S-node encodes serial execution between all W-

nodes under its subtree and all W-node descendants of its right sibling nodes. For example,

when a program’s execution encounters OpenMP parallel construct, an S-node is created to

represent the serial execution between the code block within the parallel construct and the

code fragment that executes after it as illustrated in Figure 2.2(b) with the creation of S-node S2.

The st_val of an S-node is zero.

ST-node. This node also encodes the logical series-parallel relations between W-nodes.

Unlike S-nodes or P-nodes, the logical series-parallel relation between W-nodes under the

subtree of an ST-node and its right siblings depend on the number of OpenMP taskwait

constructs the program encounters and the program’s nesting level. ST-nodes are used whenever

S-nodes or P-nodes cannot correctly encode the logical series-parallel relations for W-nodes

under their subtree (See Section 2.4.6). For an ST-node, the W-nodes under its subtree are

partitioned into two subsets. First, W-nodes that execute serially with all right siblings, second,

W-nodes that execute in parallel relative to their right siblings. Upon creation, an ST-node has an

st_val of zero. Its st_val changes to -1 if the program encounters a taskwait construct.

2.4 OSPG Construction

This section describes the construction of the OSPG when encountering different OpenMP

constructs in the dynamic execution. The OpenMP API, currently at version 5.0 [153], is

comprised of different parallelism constructs that enable the developer to implement a wide
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(a) Program start (b) Pragma omp parallel start

S1

W1

S1

S2W1

S3

P1 P2

W2 W3

(c) Pragma omp parallel end

S1

W4W1 S2

S3

P1 P2

W2 W3

Figure 2.3: Step by step OSPG construction for the program in Figure 2.2. (a) OSPG at
the beginning of the program’s execution. (b) The OSPG when the program encounters the
parallel construct at line 3. (c) The OSPG when the program exits the parallel block at
line 7 Figure 2.2.

range of parallel algorithms. Currently, our OSPG construction supports a subset of the OpenMP

API called the common core plus some additional constructs that include features recently added

to the API, including task dependencies. By supporting the common core of OpenMP, the OSPG

can capture the execution of a large number of different OpenMP applications that use both

worksharing and tasking constructs.

2.4.1 Program Start

At the beginning of the program trace, the program’s OSPG starts with two nodes. It has a root

S-node with a child W-node, as illustrated in Figure 2.3(a). The W-node represents the first

fragment of execution in the program. For a sequential program, a singular W-node represents

the entire program’s execution. Thus, Figure 2.3(a) also illustrates the minimal OSPG that

occurs for a sequential program with no OpenMP constructs.

During program execution, whenever the execution trace encounters an OpenMP construct, it

incrementally adds new nodes and edges to capture the most recent program fragments and their

series-parallel relations. For example, for the program in Figure 2.2(a), W-node W1 represents

the program fragment starting from the beginning of the program’s execution until the program

encounters the OpenMP parallel construct at line 3. At the end of the program’s execution,
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the incrementally constructed OSPG matches the program’s OSPG. For example, Figure 2.3

illustrates the incremental OSPG construction for the example program in Figure 2.2(a). Hence,

the incremental OSPG construction at Figure 2.3(c) matches the program’s OSPG illustrated in

Figure 2.2(b).

2.4.2 Parallel Construct

The OpenMP parallel construct follows the fork-join model of parallel execution. The

thread encountering a parallel construct creates a team of threads, including itself, referred

to as the master thread. The team of worker threads execute the structured block specified

by the parallel construct. The developer can specify the team size explicitly using the

num_threads clause or let the OpenMP runtime choose the size of the team. Once all threads

in the team complete their execution, they are synchronized with an implicit OpenMP barrier

where only the master thread continues execution.

To correctly support the semantics of the parallel construct, the OSPG construction

must capture four pieces of information. First, it should create W-nodes to capture the fragments

of work originating at the beginning of the parallel construct and performed by each thread

in the team. Second, it should capture the parallel relation between these W-nodes. Third,

the OSPG should capture the serial relation between the W-nodes representing the execution

within the parallel region and the code fragments that represent the program’s continuation

after exiting a parallel region. Finally, the OSPG must capture the serial relation between

the first fragments in the team and followup fragments within the parallel region that may

get created when the threads in the team encounter synchronization constructs such as barriers

within the parallel construct.

To capture this information and incrementally construct the OSPG, the thread encountering

the beginning of the parallel construct adds a new S-node to the OSPG. This S-node captures

the serial relation between the work performed by the team of threads within the parallel

region and the work performed by the master thread after exiting the parallel region. As

shown in Figure 2.3(b), S-node S2 is added as the child of the root node when the program’s

execution trace reaches the beginning of the parallel region. From this point on, every

computation within the parallel region will be captured in the subtree rooted at the S-node
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(a) OpenMP Program (b) #pragma omp barrier

S1

S2

S3

P1 P2

W2 W3

1 int main(){
2 init();
3 #pragma omp parallel num_threads(2)
4 {
5 int tid = omp_get_thread_num();
6 before(tid);
7 #pragma omp barrier
8 after(tid);
9 }
10 fini(); 
11 return 0;
12 }

W1

S4

P3 P4

W4 W5

Before After

Figure 2.4: (a) A simple OpenMP program with an explicit OpenMP barrier construct. (b)
OSPG Construction before and after the execution encounters the barrier construct at line 7.

S2. At this point in the construction, we do not know a priori if the program may encounter

any additional barriers within the parallel region. We add the S-node S3 as the first child

of S2 in anticipation of the first barrier in the parallel region. To represent the parallel

computation performed by the team of threads starting from the beginning of the parallel

construct, we add a P-node for every thread in the team as child nodes of S3. Since the example

program in Figure 2.2(a) creates a team with two threads, the construction adds P-nodes P1 and

P2 per each worker thread in the team. For each newly created P-node, we add a W-node child

to represent the fragment of execution by each thread in the team. This construction precisely

captures the series-parallel information induced by the parallel construct, resulting in the

OSPG illustrated in Figure 2.3(b).

2.4.3 Barrier Construct

An OpenMP barrier synchronizes the code fragments before the barrier with the code

that executes after it. Hence, all threads must execute the barrier before the program can

continue executing the code after the barrier. An OpenMP barrier can be implicit, like

the barrier at the end of a parallel region, or explicit, specified by the programmer

using the OpenMP barrier directive. In either case, the OSPG must capture the following

information. First, it has to capture the code fragments before and after the barrier as

different W-nodes. Suppose Wpre is the set of W-nodes that represent the work performed by
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a team of threads up to the point where the team encounters a barrier, and Wcont is the set

of W-nodes that represent the work performed after the barrier. Thus when encountering

a barrier, the OSPG construction algorithm must add new W-nodes to represent Wcont.

Second, the OSPG has to capture the serial execution between any members of Wpre and Wcont.

During the construction, members of Wpre must appear to the left of members Wcont. Capturing

the serial relation between the fragments Wpre and Wcont is accomplished by an S-node. The

S-node Sbar should be an ancestor of all members of Wpre, and all members of Wcont must

occur to its right. Since the OSPG is incrementally constructed, this requirement implies that

Sbar must be added to the OSPG before any members of Wpre are created. We address this issue

by anticipating an upcoming barrier in the OSPG construction. In OpenMP, all OpenMP

barrier constructs must have an enclosing parallel region since the execution outside

a parallel region is sequential, and a barrier with no enclosing parallel region is

treated as a no-op. Thus, the OSPG construction algorithm does not need to consider barriers

outside a parallel construct. As discussed in subsection 2.4.2, upon entering a parallel

region, the master thread adds an S-node in anticipation of the first upcoming barrier.

When constructing the OSPG of the OpenMP program in Figure 2.4(a), as shown in Fig-

ure 2.4(b), the S-node S3 is added to the program’s OSPG when the program enters the parallel

region in anticipation of the upcoming barrier. When the program encounters the first

barrier at line 7, we add W-nodes W4 and W5 to represent the fragments of execution

after the barrier construct. The S-node S3 correctly captures the serial execution between

the fragments of execution before and after the barrier. Further, upon encountering the

barrier, the S-node S4 is added in anticipation of any additional barriers later in the parallel

region. To capture the parallel execution between the computation performed by the team of

threads after the barrier, we add P-nodes for each worker thread, which in Figure 2.4(b) are

labeled as P3 and P4. During the OSPG construction, we maintain the invariant of adding one

S-node to the program’s OSPG for each newly encountered barrier. Hence, only the first thread

in the team entering the barrier creates a new S-node.
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2.4.4 Critical Construct

The critical construct in OpenMP restricts the execution of an enclosing block of code to

one thread at a time. This construct acts similar to a mutex, where the team of threads executing

the structured block contends for a lock. The developer can specify a name for a critical

construct similar to using different locks in a multithreaded program.

The order of threads entering a critical construct may vary across different thread

interleavings for a given program and its input. As noted in section 2.3, the OSPG is designed to

capture the logical series-parallel relations between program fragments. Thus, for an OpenMP

critical construct, the OSPG does not capture schedule specific information. However,

entering and exiting a critical construct creates new fragments. Hence, the OSPG creating three

W-nodes to represent the fragments of execution before, within, and after the critical construct.

2.4.5 Worksharing Constructs

OpenMP has several worksharing constructs. The code specified within a worksharing construct

is distributed among the worker threads within a parallel region. This section describes the

details of OSPG construction when the program encounters an OpenMP worksharing construct.

In this section, we first discuss OpenMP single and sections constructs. Then, we discuss

how OSPG construction in the presence of worksharing loops.

An OpenMP worksharing construct must occur within a parallel construct. Otherwise,

the worksharing construct is treated as a no-op since all the code specified by it will execute

sequentially. Thus, when constructing the program’s OSPG, there is no need to update the

OSPG when a worksharing construct is encountered outside a parallel region. By default,

an OpenMP worksharing construct has an implicit barrier at its end. This barrier can

be omitted by using a nowait clause. The implicit barriers for a worksharing construct are

captured by the OSPG construction procedure as described in Section 2.4.3.

Single Construct

The single construct is used to ensure that the block of code specified by it will execute

exactly by one of the team’s threads. Since the thread that gets to execute the single construct
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(a) OpenMP Program (b) #pragma omp single

S1

S2

S3

P1 P2

W2 W3

1 int main(){
2 init();
3 #pragma omp parallel num_threads(2)
4 {
5 int tid = omp_get_thread_num();
6 before(tid);
7 #pragma omp single
8 {
9 printf(“tid = %d\n”, tid);
10 }
11 after(tid);
12 }
13 fini(); 
14 return 0;
15 }

W1

Before After
W4 W4

Equivalent
OSPGs

Figure 2.5: (a) A simple OpenMP program using the single construct. (b) Two possible
OSPG constructions before and after the program enters the single construct. Both OSPGs
encode the same series-parallel information between program fragments.

is among the threads in the team executing its enclosing parallel region, the constructed

OSPG already captures the parallel relation between the selected thread and all other threads in

the team, as described in Section 2.4.2. The OSPG captures the fragment of work starting at the

beginning of the single construct with a W-node. Depending on which thread is assigned to

execute the single construct, the newly created W-node corresponds to the P-node associated

with the selected thread as illustrated in Figure 2.5(b) for the sample program in Figure 2.5(a). In

this example, two possible OSPG construction exists for a parallel region with two worker

threads. We consider these OSPGs equivalent since the series-parallel relation between any

pair of W-nodes remains the same across all possible OSPG construction in the presence of a

single construct.

Additionally, OpenMP supports the master construct. The master construct specifies

that only the team’s master thread must execute the specified code block. While the master

construct is not classified as a worksharing construct, it can be considered as a specific case of

the single construct. Thus, it follows a similar OSPG construction.

Sections Construct

When using the sections construct, the developer specifies a fixed number of structured code

blocks using the section directive. These code blocks are distributed among the team’s worker

threads for execution, where each block is executed once. The semantics of the sections
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(a) OpenMP code snippet (b) #pragma omp sections

S1

S2

S3

P1 P2

W2 W3

W1

Before After

1 int main(){
2 init();
3 #pragma omp parallel num_threads(2)
4 {
5 before();
6 #pragma omp sections
7 {
8 #pragma omp section
9 calc_x();
10 #pragma omp section
11 calc_y();
12 #pragma omp section
13 calc_z();
14 }
15 after();
16 }

P3

W4

P4

W5

P5

W6

Figure 2.6: (a) OpenMP code snippet with a sections construct. (b) OSPG construction
before entering the sections construct at line 6 and after exiting it at line 14.

construct imply that the specified structured blocks within the sections construct all execute

in parallel. The OSPG already captures the parallel relation between the worker threads within

a team, as described in Section 2.4.2. However, depending on worker availability, a pair of

sections may execute serially on the same worker thread. To maintain the invariant of capturing

the logical parallel relation between all section blocks even when they get serialized for an

execution trace, we add a P-node during construction for each structured block. Furthermore,

we add a W-node as the child of the newly added P-node to represent code fragment starting at

each structured block within the sections construct.

Figure 2.6(a) illustrates a code snippet that has an OpenMP sections construct. The

enclosing parallel region has a team of size two. The sections construct specifies three

structured blocks that logically execute in parallel. Figure 2.6(b) depicts the OSPG construction

before the program enters, and after it exits the sections construct (lines 6-14). The W-nodes

corresponding to the parallel fragments at lines 9, 11, and 13 are represented with W4 , W5,

and W6, respectively. In a program trace with two worker threads, the fragments represented by

W4 and W5 may execute serially. To capture the logical parallel relation between the fragment

pair, it is necessary to add additional P-nodes during OSPG construction, which results in the

addition of P-nodes P3, P4, and P5 for the example code snippet in Figure 2.6(a).
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(a) OpenMP Program (b) #pragma omp for

S1

S2

S3

P1 P2

W2 W3

1 int main(){
2 init();
3 #pragma omp parallel num_threads(2)
4 {
5 before();
6 #pragma omp for schedule(dynamic, 100)
7 for (int i=0; i < 400; ++i){
8 map(i);
9 }
10 after();
11 }
12 fini(); 
13 return 0;
14 }

W1

Before After

P3

W4

P5

W6

P4

W5

P6

W7

Figure 2.7: OSPG construction for the OpenMP for construct. (a) Example OpenMP code
snippet with a for loop construct. (b) The program’s OSPG construction before entering the
loop at line 6 and after all iterations of the loop complete at line 9.

For Construct

The OpenMP for construct is used to create a bounded loop. The iterations associated with

the loop execute in parallel by getting distributed between the enclosing parallel region’s

worker threads. When using the for construct, the developer specifies the loop’s body, an

iteration space, and an optional scheduling policy using the schedule clause. Based on the

scheduling policy, the OpenMP runtime divides the iteration space into chunks of work assigned

to worker threads. The static scheduling policy divides the loop’s iteration into chunk sizes

specified by the developer and assigns each iteration to worker threads in a round-robin fashion.

In contrast, the dynamic scheduling policy distributes the loop’s iteration into chunks. Each

worker thread executes a chunk and, upon completion, requests another chunk until all chunks

are executed. Based on the OpenMP API semantics, all pairs of loop chunks logically execute in

parallel. For example, the program in Figure 2.7(a) has an OpenMP for construct that used the

dynamic scheduling policy at line 6 with a chunk size of one hundred. This policy divides the

iteration space into four chunks that logically execute in parallel.

The OSPG construction procedure for the loop construct can be thought of as a general case

of the sections construct described in Section 2.4.5. Instead of capturing the parallel relation

between the individual structured blocks of a sections construct, the OSPG construction captures

the parallel relation between each chunk in the loop. Similar to the sections construct, an



42

OpenMP for loop’s chunks may be serialized during the program’s execution. However, the

OSPG captures the logical parallel relation between all loop chunks. Thus, we create a P-node

whenever a thread starts executing a new chunk. The fragment corresponding to each chunk is

captured as a W-node child of the newly created P-node.

Figure 2.7(b) illustrates the OSPG construction of the example program before entering

the for loop at line 6 and after exiting the for loop at line 9 when all four chunks complete

execution. The parallel relation between chunks is encoded by P-nodes P3 � P6, and the

computation performed by each chunk is W-nodes W4�W7 respectively. Since the program

executes in a parallel region with two worker threads, a possible execution trace may assign

each thread two chunks. Other possible execution traces may assign chunks differently to each

worker thread. While this may change the shape of the program’s OSPG, it does not affect the

series-parallel relation captured in the resulting OSPG.

2.4.6 Tasking Constructs

The OpenMP API supports task-based parallelism by providing different tasking constructs and

task-specific synchronization. When using OpenMP’s task construct, the developer specifies

units of work as different tasks. As the program executes, the OpenMP runtime automatically

assigns worker threads to execute the program’s tasks. Tasks can recursively create child tasks,

becoming their parent task. A child task may create additional tasks. These tasks are referred to

as the descendant tasks of the parent task. Two child tasks are siblings if they share the same

parent task. In the absence of synchronization, the continuation of a parent task may execute in

parallel with its children and descendant tasks.

OpenMP specifies three task synchronization constructs: taskgroup, taskwait, and

task dependencies using the depend clause. The first two constructs serialize the execution

between parent tasks and their children or descendants. In contrast, task dependencies enable

user-defined ordering between sibling tasks. These synchronization constructs may be com-

bined to define complex ordering between task execution. In this section, we describe OSPG

construction when using different tasking constructs.
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(a) OpenMP code snippet (b) #pragma omp task

S1

S2

S3

P1 P2

W2 W3

1  #pragma omp parallel num_threads(2)
2 {
3 #pragma omp single
4 {
5 before();
6 #pragma omp task
7 task1();
8 cont();
9 #pragma omp task
10 task2();     
11 cont2();
12 }
13 }

W1

Line 5

W4

ST1

0

P3

1

W4

W5

P4

W6

W7
1

Line 6 Line 9

Figure 2.8: OSPG construction for a simple task-based OpenMP code snippet. (a) OpenMP
code snippet with task construct and no task-specific synchronization. (b) OSPG construction
when the encountering thread in the single construct reaches different lines in the single
construct.

Task Construct

The OpenMP task construct is used to create a new task. When the execution trace reaches

a task directive, the thread encountering it creates a new task. The OpenMP runtime maps

the child task to execute by one of the worker threads in the enclosing parallel construct.

The continuation and the child task logically execute in parallel. However, depending on the

availability of worker threads during program execution, the two fragments may be serialized by

running on the same thread.

Figure 2.8(a) illustrates an OpenMP code snippet that uses the task construct. It is

a common pattern to create tasks within a single or a master directive to prevent the

creation of duplicate tasks. In this example, the worker thread that enters the single construct

creates two tasks at lines 6 and 9. The OpenMP runtime schedules the newly created tasks for

execution by the worker threads of the enclosing parallel region. In the absence of task-specific

synchronization and barriers, the newly created child task and the parent task’s continuation

logically execute in parallel. For example, in Figure 2.8(a), the task fragment at line 7 and the

continuation at line 8 execute in parallel.

Whenever the parent task encounters a new task directive, and it creates its first child

task in the program or creates a new task after a synchronization construct (e.g., taskwait,

taskgroup, and barrier), we add an ST-node to the OSPG. This ST-node is used to capture
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(a) OpenMP code snippet
S1

S2

S3

P1 P2

W2 W3

1  #pragma omp parallel num_threads(2)
2 {
3 #pragma omp single
4 {
5 #pragma omp task
6 background_work();
7 #pragma omp taskgroup
8 {
9 tg_start(); 
10 #pragma omp task
11 {
12 compute_pre();
13 #pragma omp task
14 {
15 compute_left();
16 }
17 #pragma omp task
18 {
19 compute_right();
20 }
21 compute_post();
22 }
23 tg_end();
24 }
25 print_result();      
26 }
27 }

W1

Line 5

W4 ST1

P3

W5

W6

(b) #pragma omp taskgroup

S3

W7

W8

ST2

P4

W9 ST3

P5

W11

W12 P6

W13

W14

W10

Line 7 Line 25

Figure 2.9: OSPG construction for a task-based OpenMP code snippet that uses taskgroup
for synchronization. (a) OpenMP code snippet. (b) OSPG construction before the encountering
thread reaches the taskgroup directive at line 5, upon reaching the taskgroup directive at
line 7, and after exiting the taskgroup block at line 24.

the series-parallel relations between the current task’s descendant tasks and its continuation after

a taskwait. We describe this aspect of the OSPG construction in detail in Section 2.4.6. Fur-

ther, whenever a parent task creates a new child task, the OSPG construction captures two newly

created fragments of execution by creating two W-nodes. As illustrated in Figure 2.8(b), when

the parent task creates a new task at line 6, W-node W4 represents the code fragment associated

newly the created child task (lines 6-7), and W5 represents the fragment corresponding to the

parent task’s continuation (line 8). Further, the OSPG captures the parallel relation between

W-nodes W4 and W5 by adding the P-node P3 as the parent node of W4, and setting W5 as

the immediate right sibling of P3. Whenever the parent task creates its next child task (line 9 in

Figure 2.8(a)), the same pattern is followed to expand the program’s OSPG (illustrated by nodes

P4, W6, and W7 in Figure 2.8(b)).

We note that since the creation of every new child task by a given parent task results in

the creation of a new P-node under the parent’s ST-node, the corresponding P-nodes for each

child task fragments are sibling nodes in the program’s OSPG. Thus, capturing the logical

parallel relation between sibling task fragments. We use this invariant in capturing series-parallel

relations when an OpenMP program uses task dependencies.
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(a) (b)

1 #pragma omp single
2 {    
3    #pragma omp task
4    {
5      A();
6      #pragma omp task
7      {
8        B();
9 }
10     #pragma omp taskwait
11     C();
12   }
13   #pragma omp taskwait
14   D();
15  }      
16 }

S1 WD

P1

WA S2

P2

WB

WC

1 #pragma omp single
2 {    
3    #pragma omp task
4    {
5      A();
6      #pragma omp task
7      {
8        B();
9 }
10     //#pragma omp taskwait
11     C();
12   }
13   #pragma omp taskwait
14   D();
15  }      
16 }

S1 WD

P1

WA S2

P2

WB

WC

(c) (d)

ST1 WD

P1

WA ST2

P2

WB

WC

-1

1

0

1

(e)

Figure 2.10: (a) OpenMP program snippet with perfectly nested taskwaits. (b) Part (a)’s code
snippet’s OSPG. (c) OpenMP program snippet that does not have perfectly nested taskwaits. (d)
An incorrect attempt to construct part (c)’s OSPG in fast mode. (e) Correct OSPG construction
for the code snippet in part (c) using ST-nodes.

Taskgroup Construct

A taskgroup construct enforces a serial ordering between the structured block associated with

the taskgroup and the code fragments that execute after the taskgroup. Namely, the code

following the taskgroup waits for the completion of all created tasks and their descendants

within the taskgroup’s structured block. Figure 2.9(a) contains an OpenMP code snippet that

uses the taskgroup construct to synchronize the code fragments at lines 9-23 with the code

fragment at line 25. As illustrated in Figure 2.9(b) at line 7, when the program trace encounters

the beginning of the taskgroup directive, the OSPG encodes this serial relation by adding

S-node, S3. All fragments in the taskgroup are contained in the subtree rooted at node S3.

Moreover, the fragment executing after the taskgroup construct will be located as the right

sibling of the newly created S-node, depicted as W-node W8 in Figure 2.9(b).

To illustrate that the OSPG construction supports the use of taskgroups in combination with

nested task directives, Figure 2.9(b) illustrates the OSPG construction after all child tasks

complete execution in the taskgroup. As illustrated, the complete OSPG correctly captures

the series-parallel relations of all pairs of fragments in the code snippet from Figure 2.9(a),

which includes nested tasks and a taskgroup.
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Taskwait Construct

A taskwait construct specifies a serial ordering between the task encountering the taskwait

construct and its child tasks. Unlike the taskgroup construct, a taskwait does not enforce

a serial ordering with the parent task and its grandchildren and descendant tasks. While perfectly

nested taskwaits produce a similar behavior to a taskgroup, it becomes more challenging to

capture series-parallel relations when taskwaits are not fully nested correctly. Further, unlike

the taskgroup construct, a taskwait construct must appear after the task construct it

serializes. Hence, the OSPG construction algorithm should anticipate a potential taskwait

directive in the future whenever the program execution trace encounters a task construct. In

this part, we explain how the OSPG encodes the semantics of the taskwait construct using

ST-nodes.

Consider the example OpenMP program snippet and its OSPG in Figure 2.10(a) and (b).

The program creates two explicit tasks at lines 3 and 6. Assume that all functions A-D in

Figure 2.10(a) and (d) execute serially and do not contain additional OpenMP constructs;

thus, the programs have four fragments encoded with corresponding W-nodes with a subscript

matching the function. In the program snippet in Figure 2.10(a), the taskwait constructs are

perfectly nested. Hence, it is possible to encode the program fragments’ series-parallel relations

without using ST-nodes (i.e., ST-nodes can be treated as S-nodes). Based on OpenMP semantics,

a taskwait construct synchronizes the execution of the current task with its child tasks and

not its descendant tasks. However, suppose the program has fully nested taskwaits. In such

cases, after each taskwait, the current task is synchronized with all its descendant tasks. This

behavior is similar to the semantics of OpenMP’s taskgroup construct.

For example, the difference in logical series-parallel relations in the presence or absence

of fully nested taskwaits is shown in Figure 2.10(a) and (d). Since the program snippet in Fig-

ure 2.10(a) uses fully nested taskwaits, its OSPG in Figure 2.10(b) correctly encodes the series-

parallel relations between all fragments in the program. Because of the use of nested taskwaits

in Figure 2.10(a), the function D executes serially after functions A-C. The taskwait at line

13 serializes the execution of functions A-C with the function D. Additionally, the taskwait

at line 10 serializes the execution between the parent task’s continuation, implying that function
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C must execute serially after function B. Thus, the use of fully nested taskwaits ensures that the

task encountering a taskwait is synchronized with its child tasks and all its descendant tasks.

In a program’s OSPG, the computation performed within a task is located at the subtree of the

internal node created when the program encounters the task construct.

In contrast, if a program with tasks does not have fully nested taskwaits, we can no longer

model the series-parallel relation between program fragments using S-nodes. Consider the

program snippet in Figure 2.10(c). This program is similar to the program Figure 2.10(a), except

that the taskwait at line 10 has been commented. Without it, the execution between functions

C and B is no longer serialized. Hence, functions D and C may execution in parallel. Because

of the taskwait at line 13, function D still executes after functions A and C. The OSPG in

Figure 2.10(d) is an incorrect attempt to encode the program fragments’ series-parallel relations

in Figure 2.10(c) by only using internal S-nodes and P-nodes. The OSPG in Figure 2.10(d) is

incorrect since the S-node S1 encodes a serial execution between functions D and B. Looking

at the OSPG, we can see the problem is that some W-nodes (WA and WB) under the subtree of

S1 execute in series with their right sibling W-node WD, while W-node WB executes in parallel

with its right sibling W-node. Hence, in a program with no fully nested taskwaits, the use of

just P-nodes and S-nodes is no longer sufficient to encode the program’s series-parallel relations

correctly. Instead, we need an internal node that partitions the W-nodes in its subtree into two

sets that execute in series or parallel relative to its right siblings’ W-node descendants. Thus, we

model taskwaits with a different type of node (i.e., ST-node) in the program’s OSPG.

Naturally, the question arises: Which criteria should be used to partition the W-nodes

under the subtree of an ST-node? The taskwait construct’s semantics imply synchronization

between the current task and its child tasks, but not its descendant tasks. This semantic indicates

that we need to take the nesting level of a program fragment within a task into account when

checking for its series-parallel relation with another program fragment. Further, we need to store

taskwaits encounters during program execution. A node’s st_val stores information about a

task’s nesting level and the potential encounter of a taskwait construct later in the execution

trace. Thus the criteria to determine if a W-node under the subtree of an ST-node is a member of

the first or the second subset, we use the nodes’ st_val values on the path to the ST-node.
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Intuitively, the st_val values on the path to the ST-node capture the nesting level and the

number of encountered taskwaits. Whenever an ST-node is created, its st_val is set to zero.

Suppose later in the program’s execution trace, the task that created the ST-node encounters a

taskwait. In that case, the OSPG construction algorithm captures this information by setting the

st_val of the corresponding ST-node to -1. To capture the nesting level under an ST-node’s

subtree, the newly created P-node, which is the ST-node’s immediate child, will have an st_val

of one.

Invariant in the presence of ST-nodes. For a pair of W-nodes, (W1,W2), where W1 is

under the subtree of ST-node ST1 and W2 is a right sibling of ST1, the pair of W-nodes execute

in parallel if the sum of the st_val values of the OSPG nodes on the path from ST1 to W1 is

a positive integer. Otherwise, the two W-nodes execute in series.

Going back to our example program in Figure 2.10(c), we can now correctly model the

series-parallel relations between its program fragments by constructing an OSPG with ST-nodes.

Consider the dynamic execution trace of this program snippet. When the implicit task executing

the single creates the first task at line 3, the OSPG construction algorithm adds ST-node ST1

and P-node P1 with st_val of zero and one, respectively. Similarly, when the first explicit task

creates the second task at line 6, we add ST-node ST2 and P-node P2 to the OSPG. Later in the

dynamic execution trace, the implicit task encounters the taskwait construct at line 13. At this

point, the OSPG construction algorithm has observed a taskwait and records this encounter by

setting the st_val of ST-node ST1 to -1. When the dynamic execution starts executing function

D, the OSPG construction algorithm adds the W-node WD to the OSPG. At this point, the OSPG

correctly captures the series-parallel relation between WD and WA �WC . Because the sum of

the st_val values from WA to ST-node ST1 is zero, the OSPG encodes a serial relation between

WA and WD. In contrast, since the sum of the st_val values from WA to ST-node ST1 is one,

the OSPG encodes a parallel relation between WB and WD. Thus, the OSPG in Figure 2.10(e)

correctly encodes the series-parallel semantics of the program in Figure 2.10(c).

We want the OSPG construction algorithm to correctly model the program fragments’ series-

parallel relations for programs with all possible combinations of taskwaits in the program. Each

time a parent task creates a child task, the nesting level of the program increases by one, and

two W-nodes are created, one representing the beginning of the computation in the child task
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(a) (a’)

1  #pragma omp single
2  {    
3    A();
4    #pragma omp task
5    {
6      B();
7      #pragma omp task
8      {
9        C();
10       #pragma omp task
11       {
12         D();
13 }
14 E(); 
15       #pragma omp taskwait
16       F();
17 }
18 G();
19     #pragma omp taskwait
20     H();
21 }
22 I();
23   #pragma omp taskwait
24   J();
25 }

(b)

ST1 WJ

P1

WB ST2

P2

WC ST3

1

-1

1

WA

P3

WD

WH

WF

WE

WG

WI

-1

-1

1

1  #pragma omp single
2  {    
3    A();
4    #pragma omp task
5    {
6      B();
7      #pragma omp task
8      {
9        C();
10       #pragma omp task
11       {
12         D();
13 }
14 E(); 
15       #pragma omp taskwait
16       F();
17 }
18 //G();
19     //#pragma omp taskwait
20     H();
21 }
22 I();
23   #pragma omp taskwait
24   J();
25 }

ST1 WJ

P1

WB ST2

P2

WC ST3

1

0

1

WA

P3

WD

WF

WE

WI

-1

-1

1

WH

(b’)

(c) (c’)

1  #pragma omp single
2  {    
3    A();
4    #pragma omp task
5    {
6      B();
7      #pragma omp task
8      {
9        C();
10       #pragma omp task
11       {
12         D();
13 }
14 E(); 
15       #pragma omp taskwait
16       F();
17 }
18 //G();
19     //#pragma omp taskwait
20     H();
21 }
22 //I();
23   //#pragma omp taskwait
24   J();
25 }

(d)

ST1

P1

WB ST2

P2

WC ST3

1

0

1

WA

P3

WD
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WH

WJ

0

-1

1

1  #pragma omp single
2  {    
3    A();
4    #pragma omp task
5    {
6      B();
7      #pragma omp task
8      {
9        C();
10       #pragma omp task
11       {
12         D();
13 }
14 //E(); 
15       //#pragma omp taskwait
16       F();
17 }
18 //G();
19     //#pragma omp taskwait
20     H();
21 }
22 //I();
23   //#pragma omp taskwait
24   J();
25 }

ST1

P1

WB ST2

P2

WC ST3

1

0

1

WA

P3

WD

WF

WJ

0

0

1

WH

(d’)

Figure 2.11: OpenMP program snippet with a task nesting level of 3, Illustrating different
variations of taskwait usage and their corresponding OSPG, which correctly captures the series-
parallel relations between program fragments.
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and the other representing the continuation of the parent task. Consider a program with a root

task that creates descendant tasks with a nesting level of n. In this program, there exists at least

2n W-nodes under the subtree rooted at the root task’s ST-node. Further, at the end of each child

task, the program may have a taskwait or not. Thus, indicating that 2n (size of the power set of

n) program variations exist with different ways of adding taskwaits. Each variation may result

in different series-parallel relations between the W-nodes under the root task’s ST-node and its

right sibling W-nodes or the descendant W-nodes of its right sibling nodes. Figure 2.11 shows

four out of the eight possible program variations for a program snippet with a nesting level of

three and their corresponding OSPG. In all cases, the constructed OSPG correctly captures the

series-parallel relations between all pairs of program fragments.

Task Dependencies

In OpenMP, sibling tasks logically execute in parallel. However, using task dependencies

with the depend clause, OpenMP supports user-defined ordering between sibling tasks. By

specifying task dependencies among sibling tasks, a task will not start execution until all the

sibling tasks it depends upon complete execution first. When using the depend clause, the

developer can specify task dependencies by specifying in, out, or inout clauses over a

shared memory location. We capture the serial ordering produced by task dependencies in the

OSPG by adding Edp edges between P-nodes for each pair of task dependency implied from the

depend clause.

First, let’s consider the example program Figure 2.12(a) that uses perfectly nested taskwaits.

Hence, we can treat all its ST-nodes as S-nodes. Assume that all the functions A-H are serial

functions. Thus they are encoded by a single W-node in the program’s OSPG in Figure 2.12(b)

with a corresponding subscript. By default, a task dependency clause only synchronizes the

child fragments of the two dependent tasks and not necessarily the descendant fragment. For

this example program, the task dependency between the task at lines 4 and 14 forces a serial

ordering between functions E and D. However, the fully nested use of taskwaits in this program

further imposes a serial ordering between function E and all the computation performed by child

and descendant tasks of the task at line 4, effectively serializing the execution of functions E

and C as well.
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(a) OpenMP Code Snippet (b) Program OSPG

1 #pragma omp single
2 {
3 A();
4 #pragma omp task shared(x) depend(out:x)
5 {
6 B();
7 #pragma omp task
8 {
9 C();
10 }
11 #pragma omp taskwait
12 D(); 
13 }
14 #pragma omp task shared(x) depend(in:x)
15 {
16 E();
17 #pragma omp task
18 {
19 F();
20 }
21 #pragma omp taskwait
22 G();
23 }
24 #pragma omp taskwait
25 H();
26 }

S1

P1 P3

WB

WA

S2

P2

WC

WD

WH

WE S3

P2

WF

WG

Figure 2.12: (a) OpenMP program snippet with task-dependencies in a program with perfectly
nested taskwaits. (b) The code snippet’s OSPG. Each W-node is named after its corresponding
serial function in the program.

When two sibling tasks are dependent, in the program’s OSPG, the tasks’ corresponding P-

nodes, (Pl, Pr), will be connected by a dependency edge. In the example program Figure 2.12(a)

because of the use of nested taskwaits, the dependency edge encodes the serial relation between

all the W-nodes of the subtree rooted at Pl and all the W-nodes of the subtree rooted at Pl. This

serial relation can be seen in the program snippet and its OSPG shown in Figure 2.12. In this

Figure, any W-node in the subtree rooted at P1, (WB,WC ,WD), executes in series to any the

W-node in the subtree rooted at P2, (WE ,WF ,WG).

For programs with nested taskwaits, it is sufficient to check for a directed path between a pair

of P-nodes to infer serialization between the two P-nodes descendant W-nodes. For programs

with unrestricted use of taskwaits, the check for serialization from a task dependency is slightly

more involved. To see why let us look at the OpenMP program snippet in Figure 2.13, which is

identical to the program snippet in Figure 2.12 except the taskwait at line 11 is commented

out. In the absence of the taskwait construct at line 11, the task dependency only serializes

the execution of functions D and E. However, functions C and E are not serialized, and they

may execute in parallel (particularly when C is a long-running function relative to the other

functions in the program).
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(a) OpenMP Code Snippet (b) Program OSPG

1 #pragma omp single
2 {
3 A();
4 #pragma omp task shared(x) depend(out:x)
5 {
6 B();
7 #pragma omp task
8 {
9 C();
10 }
11 //#pragma omp taskwait
12 D(); 
13 }
14 #pragma omp task shared(x) depend(in:x)
15 {
16 E();
17 #pragma omp task
18 {
19 F();
20 }
21 #pragma omp taskwait
22 G();
23 }
24 #pragma omp taskwait
25 H();
26 }

ST1

P1 P3

WB

WA

ST2

P2

WC

WD

WH

WE ST3

P2

WF

WG

1 1

-1

-10

11

Figure 2.13: (a) OpenMP program snippet with task-dependencies in a program with unrestricted
usage of taskwaits. (b) The code snippet’s OSPG. Each W-node is named after its corresponding
serial function in the program.

Hence in programs with unrestricted use of taskwaits, the existence of a directed path

between a pair of P-nodes is not sufficient to indicate that a pair of descendant W-nodes are

serialized. We also need to consider the nesting level of the W-node and the taskwait

constructs encountered by the program trace. This involves checking the sum of st_val values

of the OSPG nodes on the path from the left W-node to the LCA node of the W-node pair.

Thus, the W-node pair execute in series if this sum equals one, and there exists a directed path

comprised of dependency edges between the two sibling P-nodes. Using ST-nodes with st_val

values, the OSPG in Figure 2.13(b) can be used to correctly check the logical series-parallel

relations between all pairs of W-nodes. For example, consider the logical series-parallel relation

between the W-node pair, (WD, WE). Since the sum of st_val values from WD to the pair’s

LCA node is equal to one, we identify that the pair of W-nodes execute serially. In contrast, for

the W-node pair, (WC , WE), the OSPG correctly encodes that the W-node pair may execute in

parallel since the sum of st_val values from WC to the pair’s LCA node is not equal to one.

2.5 Identifying Logical Series-Parallel Relations

A program’s OSPG can be queried to identify the logical series-parallel relations between

any fragments encountered so far in the execution trace. Each fragment in the program has a
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corresponding W-node in the program’s OSPG. To identify the logical series-parallel relations

between a pair of fragments, we first identify their corresponding W-node pair.

Algorithm 1 describes the steps involved in identifying the logical series-parallel relations

between a pair of W-nodes (Wl, Wr). W-node Wl is to left of Wr. At line 2, the algorithm

computes the LCA node of the pair of input W-nodes. Next, the algorithm identifies the child of

the LCA node on the path to Wl, labeled Llc. The algorithm checks the type of the left child

of the LCA to determine the series-parallel relations between W-nodes Wl and Wr. Since the

OSPG has four node types, four possible outcomes exist.

First, if the left child of the LCA is an S-node, then the two W-nodes logically execute in

series. The correctness of this result follows directly from the definition of S-nodes in Section 2.3.

By definition, if the left child of the LCA node, Llc, is an S-node, it encodes the serial relation

between all W-nodes in its subtree and its right sibling W-nodes. Since W-node Wl is in the

subtree rooted at S-node Llc, and Wr is a descendant of a right sibling of Llc, the two W-nodes

execute in series. Line 5 in Algorithm 1 performs this check.

Second, if the left child of the LCA is a W-node, similar to the previous case, the two

W-nodes execute in series. This scenario can only occur if the W-node Wl is the direct child of

the LCA node since W-nodes can only appear as leaf nodes in the OSPG. This case indicates the

lack of an internal node to encode a potential parallel relation. Hence, similar to the first case,

the two W-nodes execute in series (line 5 in Algorithm 1).

Third, if the left child of the LCA on the path to Wl is a P-node, the two W-nodes logically

execute in parallel in the absence of task dependencies. However, the pair of W-nodes under

consideration may be serialized by dependency edges. To check for serialization via task

dependencies, the algorithm identifies the child of the LCA on the path to Wr. If the right

child of LCA is also a P-node, a possible task dependency may serialize the two W-nodes.

Thus the algorithm checks if there exists a directed path between these two P-nodes and that

the sum of st_val values of the OSPG nodes on the path from Wl to the LCA node equals to

one. If all these conditions are satisfied, the pair of W-nodes execute in series due to a task

dependency between them. Otherwise, the two fragments logically execute in parallel (lines

9-12 in Algorithm 1).
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Algorithm 1: The ISPARALLEL function returns true if a pair of W-nodes, Wl and Wr

logically execute in parallel. The DIRECTEDPATH function returns true if there is a
path comprised of dependency edges between the input P-nodes. The COUNT(Wl, L)
function returns the sum of the nesting depth values (i.e., st_val) on the path from
Wl to L.
1 function ISPARALLEL(Wl, Wr)
2 L LCA(Wl,Wr)
3 Llc  L.childTo(Wl)
4 Lrc  L.childTo(Wr)
5 if Llc.type = S-node _ Llc.type = W-node then
6 return False
7 end
8 c COUNT(Wl, L)
9 if Llc.type = P-node then

10 if Lrc.type = P-node ^
11 c = 1 ^ DIRECTEDPATH(Llc, Lrc) then
12 return False

. series due to dependency edges
13 end
14 return True

15 end
16 else

. the left child of the LCA is an ST-node
17 if c > 0 then
18 return True

. parallel due to non-fully nested taskwaits
19 end
20 return False

21 end
22 function COUNT(Wl, L)
23 P  Wl.parent
24 c 0
25 while P 6= L do
26 c c+ P.st_val
27 P  P.parent

28 end
29 if Wl.parent.type = ST-node then
30 c c�Wl.parent.st_val
31 end
32 return c
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Lastly, if the left child of the LCA on the path to Wl is an ST-node, the two W-nodes may

execute in series or parallel depending on the nesting level of Wl and the number of taskwaits

encountered in the program. Thus the algorithm checks if the two nodes are serialized by fully

nested taskwaits. This check is realized by determining the count of the st_val values on the

path from Wl to the child of the LCA node. Following the invariant described in Section 2.4.6,

if this count is greater than zero, then the two W-nodes execute in parallel. Otherwise, they

execute in series (lines 16-18 in Algorithm 1).

2.6 Summary

The OSPG is a series-parallel graph that has been designed to capture the logical series-parallel

relations between fragments in an OpenMP program. Moreover, a program’s OSPG can be

incrementally constructed in parallel. It can be queried during construction to identify the logical

series-parallel between any pair of fragments in the program execution trace. We designed

the OSPG data structure with properties that make it useful for designing profiling tools and

on-the-fly data race detection, which we describe in Chapters 3 and 4.
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Chapter 3

Performance Profiling with What-if Analysis using OMP-ADVISER

In the last two decades, hardware with parallel execution units has become ubiquitous. With

approaching the limits of frequency scaling, adding more parallelism has been the primary

strategy to utilize increasing transistor counts in hardware. However, serial applications will not

benefit from increased hardware parallelism. Instead, explicit parallel programming is required

to design software that effectively utilizes parallel hardware resources. To develop applications

with scalable performance, developers must address different sources of bottlenecks in the

application.

This chapter introduces OMP-ADVISER, a performance profiler with what-if analysis for

OpenMP applications that aims to assist developers in creating high-performing and scalable

OpenMP programs. OpenMP applications must have sufficient parallelism to have scalable

performance. With OMP-ADVISER, we make a case for measuring logical parallelism in

OpenMP programs to identify serialization bottlenecks for a given input. A program’s logical

parallelism represents the program’s speedup when it is executed on an idealized system with

an infinite number of processors. We motivate the need for a parallelism centric profiler in

Section 3.1. The key enabler in OMP-ADVISER’s design is the use of a novel performance

model, which we describe the details of its construction in Section 3.3. This performance

model consists of the program’s OSPG and measurement of computation at each program

fragment, enabling OMP-ADVISER to compute the program’s logical parallelism and identify

serialization bottlenecks at a fine-grained granularity as described in Section 3.6. Our proposed

performance model enables OMP-ADVISER to estimate improvements in parallelism before

designing concrete strategies to address serialization bottlenecks in a region of code, which we

call what-if analysis. OMP-ADVISER’s what-if analysis enables the developer to answer the

question of what are the program regions that matter for improving the program’s performance.
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We describe the details of how our performance model is used to perform what-if analysis in

Section 3.7. Even when the application has sufficient parallelism, it may not achieve good

performance. First, we must ensure that the program has the right balance between parallelization

and the runtime costs to create and orchestrate parallelism. We augment OMP-ADVISER’s

performance model by adding estimates of runtime overheads in Section 3.5, which enables

OMP-ADVISER to pinpoint program regions with high tasking overheads. Second, a program

may suffer from unintended resource contention caused by secondary effects of execution, such

as false sharing. Such bottlenecks may manifest as parallel work inflation, where the parallel

execution of the program performs additional computation for a given input compared to its

serial execution. By comparing the performance model of the parallel execution to an oracle

execution, OMP-ADVISER’s differential analysis technique can pinpoint program regions with

work inflation (Section 3.8).

3.1 Motivation

Different performance analysis tools have been proposed and are used by OpenMP application

developers to identify performance bottlenecks [4, 5, 14, 50, 53, 71, 105, 176, 189]. The

diversity among all these tools implies the importance and perhaps the difficulty of developing

performant OpenMP applications. However, it may also raise the question of whether there is a

need for yet another OpenMP performance analysis tool?

Most traditional performance analysis tools for OpenMP provide a thread-based view of the

program’s execution and identify bottlenecks based on which functions the program spends most

of its time. While this approach effectively identifies some performance issues such as lack of

thread utilization and load imbalance, it is less effective in identifying the sources of bottlenecks

that are preventing the application from scaling to systems with more parallelism. Identifying

such bottlenecks requires exploring dimensions in the design space that have received less

attention.

Instead of providing a thread-based view of the execution, we advocate a design that

is parallelism centric and examines the program’s parallelism as the basis for identifying

performance bottlenecks. The main idea behind the design of a parallelism centric performance
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Region Work Serial 
work

Parallelism Serial 
work %

Program 140 80 1.75 0

i 10 10 1 12.5

ii 60 60 1 0

iii 30 30 1 37.5

iv 40 40 1 50

10

30

60

40

ii

i

iii

iv Region Work Serial 
work

Parallelism Serial 
work %

Program 140 70 2 0

i 10 10 1 14.3

ii 60 60 1 85.7

iii 30 30 1 0

iv 40 10 4 0
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Figure 3.1: An example parallel application and using its parallelism profile to identify which
program fragment to optimize first and the impact of first round of optimization (a) Illustration
of a parallel program’s fragments and the ordering of the fragment’s execution. (b) Parallelism
profile of the program. (c) A possible trace of the program when executed on a 4 core machine.
(d) The program’s parallelism profile after parallelizing fragment iv by a factor of 4. (e) The
optimized program’s trace when executed on a 4 core machine.

analysis technique is based on Amdahl’s law[18], which states that the speedup of the parallel

application is determined by the longest sequence of serial regions in the program1.

A program’s logical parallelism is defined as the ratio of the program’s serial work over

the work performed on its critical path. It represents the program’s speedup when executed on

an idealized system2 with an infinite number of processors. Hence, to achieve scalable perfor-

mance, a program must have sufficient parallelism. Alternatively, a program with serialization

bottlenecks will have a low amount of logical parallelism.

While there exists prior research that uses logical parallelism measurements to identify

performance bottlenecks in parallel applications [169, 192], the proposals in this space have

focused on languages with structured parallelism or require the serial execution of the parallel

application under test. In contrast, our work with OMP-ADVISER expands upon prior research

by targeting OpenMP applications. An OpenMP application may use synchronization constructs

(i.e., task and task dependency) that are not available in structured task-parallel programs.

1Also referred to as the program’s span or critical path.
2An idealized system with no scheduling or runtime overheads.
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The key insight used to design OMP-ADVISER is that the OSPG, along with measurement of

computation constitutes a performance model. This performance model can be used to compute

the program’s logical parallelism and identify serialization bottlenecks. After analyzing an

OpenMP application, OMP-ADVISER uses its performance model to generate the program’s

parallelism profile. The parallelism profile includes the program’s logical parallelism and the

logical parallelism of each OpenMP directives used in the program. Further, the parallelism

profile includes serial work contribution to the program’s critical path for each OpenMP directive.

Program regions with low parallelism on the critical path are potentially good candidates for

optimization in the parallelism profile. For example, consider a parallel application trace, as

illustrated in Figure 3.1(a), where each rectangle represents a fragment of execution3. The

number at the center of each rectangle denotes the amount of computation in each fragment.

Further, Roman numerals are used to identify each fragment.

For this simple example, the reader may quickly identify that the program has serialization

bottlenecks and will not achieve scalable speedups by looking at its trace. However, as a

program grows in complexity, identifying serialization bottlenecks by only looking at the

program trace becomes more challenging. In contrast, the program’s parallelism profile depicts

the program’s serialization bottlenecks in a report where the developer can identify serialization

bottlenecks without examining large program traces. As shown in the program’s parallelism

profile (Figure 3.1(b)), the program has a parallelism of 1.75. Thus it will not be able to utilize

more than two parallel execution units effectively.

While fragment ii performs the most amount of work in the application, the parallelism

profile illustrates that it does not lie on the program’s critical path. Hence the developer must

optimize one of the other program fragments first. Let us assume that the developer has enough

time to parallelize one program fragment. Which fragment should the developer prioritize? In

this simple example, it is evident by looking at the program’s parallelism profile that fragment iv

must be optimized first since it performs the most amount of computation on the program’s

critical path. However, as a program grows in complexity, the impact of optimizing a program

region on its parallelism becomes more challenging to assess. The developer may spend time and

3The longest sequence of instructions without encountering an OpenMP construct.
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effort optimizing code that results in no improvement in parallelism. Furthermore, a programmer

may want to know the impact of optimizing a region of code on upcoming hardware with a

larger number of parallel execution units by executing the program on a smaller scale.

OMP-ADVISER’s performance model captures the logical parallelism in an application. The

logical series-parallel relations in a program are independent of the program’s execution trace

and the number of hardware threads the program is run with. Using this performance model,

we devise a novel what-if analysis technique to answer the questions above. OMP-ADVISER’s

what-if analysis estimates the improvements in program parallelism and changes in its critical

path by mimicking the effects of parallelizing a region of code. Thus, the developer can estimate

the improvement in program parallelism before devising concrete optimization strategies and

assess if the program will have scalable speedup without having access to higher core count

systems. The results of using what-if analysis for hypothetically parallelizing fragment iv

by 4⇥ is shown in Figure 3.1(d). The what-if analysis result illustrates that the program’s

parallelism will improve to 2. Additionally, the critical path will shift to fragment ii, which is

now the limiting factor in the program’s scalability.

While OMP-ADVISER’s parallelism profile and what-if analysis proved useful in our initial

experiments using it, we identified that we could improve what-if analysis in two directions.

First, executing applications on actual hardware incurs runtime overheads to orchestrate the

application’s parallel execution. In practice, the amount of computation performed in an OpenMP

construct must be sufficiently large to amortize the associated runtime costs. We augment OMP-

ADVISER’s performance model to estimate the runtime costs used for OpenMP constructs and

report the runtime overhead ratio over the program computation for each OpenMP parallelism

construct. We also incorporate this change when performing what-if analysis to identify if

parallelizing a region further is no longer recommended due to high runtime costs.

To perform what-if analysis, OMP-ADVISER provides two options. In the first option, the

developer chooses the program’s regions to perform what-if analysis using program annotations.

Sometimes the developer wants to parallelize program regions until a target parallelism is

reached. In the second option, OMP-ADVISER identifies all regions that must be parallelized to

increase the program’s parallelism to a user-specified target value. We call this mode automatic

what-if analysis. When using automatic what-if analysis, the user does not need to provide
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any program annotations and instead specifies a target parallelism. OMP-ADVISER performs

multiple iterations of what-if analysis and reports if reaching the target parallelism is feasible or

not. If feasible, it provides a list of program regions that must be parallelized to reach the target

parallelism.

Another common scalability bottleneck for parallel applications is undesired resource con-

tention caused by secondary effects of execution. Developers use different types of synchro-

nization in their OpenMP applications to ensure the correct ordering of operations in a parallel

program. In contrast, undesired resource contention occurs as an artifact of executing on parallel

hardware. This type of hardware resource contention may manifest as parallel work inflation in

some metric of interest. Parallel work inflation is defined as additional time spent by threads in a

multithreaded computation beyond the time required to perform the same computation in an

oracle execution [150]. Identifying work inflation and its causes is difficult [13]. The application

may need to run multiple, carefully designed performance experiments to identify them.

One of our technical contributions is devising a differential analysis technique that uses our

performance model to identify program regions that suffer from different types of parallel work

inflation at a fine granularity. The key insight is that our proposed performance model captures

logical series-parallel relations in the program. These logical relations are the property of the

program for a given input and do not change across executions. Hence our differential analysis

technique identifies program regions that are experiencing unintended resource contention by

comparing the performance model of the parallel execution with an oracle execution. OMP-

ADVISER uses the single-thread OpenMP execution of the application as an oracle execution.

In this chapter, we make the following technical contributions. First, we propose a novel

performance model that uses the OpenMP Series-Parallel Graph (OSPG) and fine-grained

measurements to enable the measuring of the program’s logical parallelism (Sections 3.3-3.4).

Second, we augment the performance model to measure runtime overheads (Section 3.5). Third,

we develop an algorithm that uses the performance model to identify serialization bottlenecks

in the program. Further, we adapt the algorithm to work in an online setting during program

execution (Section 3.6). Fourth, we devise a what-if analysis technique that enables developers

to estimate performance improvements before designing concrete performance optimizations,

identifying which program regions matter for improving parallelism. Our fifth contribution is the
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design of a differential analysis technique that can identify program regions that are experiencing

scalability bottlenecks caused by unintended resource contention (Section 3.8).

3.2 Overview of Profiling With OMP-ADVISER

This section provides an overview of OMP-ADVISER’s performance model, parallelism profile,

and what-if analysis. Figure 3.2(a) illustrates an example OpenMP program that uses tasking

constructs to process a binary tree data structure in parallel. Further, the program creates a task

that performs some background processing. The tree traversal function, treeProcess, uses

a divide-and-conquer algorithm to perform a postorder traversal of the binary tree4. The

program recursively creates more tasks to process each tree node’s left and right subtree

(lines 8-14 in Figure 3.2(a)). Once the nesting level reaches a user-defined CUT_OFF value

(line 5 in Figure 3.2(a)), it stops creating more tasks and instead calls the serial function

treeProcessSerial. The program uses OpenMP’s taskwait construct to ensure that a

parent tree node is processed after its left and right subtrees are processed5. When executing this

program on a 4-core machine, the observed speedup is 2.1⇥ over serial execution.

Performance model. OMP-ADVISER constructs the program’s performance model by

executing the program in parallel for a given input. The performance model consists of two

components. First, the OpenMP Series-Parallel Graph (OSPG) encodes the logical series-

parallel relations between different all serial fragments of the program under test. Each W-node

in the OSPG stores the fine-grained measurements of the computation performed by each serial

fragment of dynamic execution, and each P-node corresponding to a tasking construct stores the

runtime cost estimates associated with tasking constructs.

Figure 3.2(b) illustrates the example program’s performance model. It is comprised of the

program’s OSPG, where each node is drawn with a circle, filled with an identifier denoting

its type and a number to identify the node uniquely. Each OSPG edge is drawn with a solid

arrow, its direction representing the parent-child relationship between the nodes. Each W-node,

which represents a serial fragment of program execution, is accompanied by its corresponding

4A common parallel programming pattern to implement divide-and-conquer algorithms is the use of nested
tasks [128].

5In this example, there is no ordering enforcement to process the left or the right subtree first.
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1 void processNode(tree* node){
2 compute(node);
3 }
4 void treeProcess(tree* root, int depth){
5 if (depth > CUT_OFF){
6 treeProcessSerial(root);
7 }
8 if (root->left){
9 #pragma omp task
10 treeProcess(root->left, depth+1);
11 if (root->right){
12 #pragma omp task
13 treeProcess(root->right, depth+1);
14 #pragma omp taskwait
15 processNode(root);
16 }
17 int main(){
18 tree* root = init();
19 #pragma omp parallel{
20 #pragma omp single{
21 #pragma omp task
22 backgroundWork();
23 #pragma omp taskgroup{
24 #pragma omp task
25 treeProcess(root);
26 printf(“processing tree\n”);
27 }
28 }
29 }
30 generateResult();
31 return 0;
32 }
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main.c:24 335 55 6.1 1.5 25

main.c:9 160 40 4 25 0
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Figure 3.2: (a) An example OpenMP program. (b) Performance model of the example program
in (a). (c) OMP-ADVISER’s parallelism profile of the program. (d) OMP-ADVISER’s automatic
what-if analysis, identifying which regions to parallelize and the resulting what-if parallelism
profile.

source code location. The amount of computation a W-node performs is shown in a solid

rectangle to its side. The runtime costs attributed to OpenMP task-based parallelism constructs

are depicted with dashed rectangles Figure 3.2(b). The internal nodes of the OSPG encode the

logical series-parallel relation between the W-nodes (See Chapter 2 for more detail).

Parallelism profile. Using the information captured by the performance model, OMP-

ADVISER constructs a parallelism profile which is reported back to the user. The parallelism

profile aims to summarize the information stored in the performance model into a brief actionable

report for the developer to identify performance bottlenecks. The example’s program parallelism

profile is illustrated in Figure 3.2(c). The parallelism profile aggregates the measurements stored
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in each W-node to each static OpenMP directive (or the program itself if the fragment performs

serial work outside of OpenMP parallel regions), which represents a row in the parallelism

profile. Each row in the parallelism profile includes the following entries. (1) Location, which

is the OpenMP directive’s source code location in the program. (2) Work, which is the total

computation attributed to the directive. (3) Serial work, which is the longest sequence of serial

computation for the directive. (4) Parallelism, which is the ratio work over serial work and

represents an upper bound on the region’s speedup. (5) Runtime overhead, which is the ratio

of estimated runtime costs over the work performed within the static directive represented in

percentage. (6) Serial work percentage, this value denotes the directive’s contribution to the

program’s critical path. If zero, the region does not lie on the program’s critical path.

Intuitively, directives with low parallelism and high amounts of serial work percentage are

potential candidates for future optimizations. For example, the third-row entry in the parallelism

profile shown in Figure 3.2(c) satisfies both criteria. This entry corresponds to the task directive

at line 21 in the program from Figure 3.2(a). Furthermore, a directive with high runtime overhead

indicates that further parallelizing the directive’s computation might not result in performance

gains since the user-specified computation is not large enough to amortize the runtime costs

associated with executing the computation in parallel.

Overall, the parallelism profile in Figure 3.2(c) denotes the example program has a logical

parallelism of 2.3, which explains the observed speedup of 2.1⇥ over serial execution on a

4-core machine. Moreover, the program’s first serialization bottleneck is most likely the task

created at line 21, which performs the majority of the program’s serial work. Note that at this

point, the program is spending more time in the processNode function (320 vs. 240 units).

However, increasing the parallelism at function treeProcessSerial will not improve the

program’s parallelism and its speedup until the task at line 21 is optimized first. A profiling

tool that reports the regions where the program spends the most time may incorrectly report the

function treeProcessSerial as the program’s current bottleneck.

What-if analysis. Before concretely optimizing the computation within the task at line

21 in Figure 3.2(a), the developer can use OMP-ADVISER’s what-if analysis to generate its

what-if parallelism profile. The main idea used by what-if analysis is that our performance

model can be used to mimic effects parallelizing a region of code. Thus OMP-ADVISER can
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estimate the changes in the program’s parallelism and its critical path if selected program regions

are parallelized. With what-if analysis, the developer chooses different program regions and a

parallelization factor. Then OMP-ADVISER hypothetically parallelizes the user-selected regions

and reports the program’s parallelism profile with the hypothetical optimizations, which we refer

to as the program’s what-if profile. For example, performing what-if analysis on background-

Work function (our candidate serialization from the task at line 21 in Figure 3.2(a)), the generated

what-if parallelism profile estimates that the program’s logical parallelism improves from 2.3 to

3. Further, the what-if profile will now indicate that the program’s critical path has changed, and

the tasks at lines 9 and 12 in Figure 3.2(a) now lie on the critical path and should be optimized

next to increase the program’s parallelism. To confirm whether parallelizing work within these

tasks will increase the program’s parallelism, we can perform another round of what-if analysis

by including this region. The resulting what-if profile is illustrated in Figure 3.2(d), indicating

that the program’s parallelism improves from 3 to 7.5.

Instead of requiring users to choose what-if analysis regions by specifying program annota-

tions, OMP-ADVISER provides an automatic what-if analysis mode. In this mode, the developer

specifies their desired target parallelism and the program’s input. OMP-ADVISER iteratively

performs what-if analysis on program regions until it finds a list of regions that can be optimized

to reach the target parallelism or determines that it is infeasible to reach the target parallelism.

For example, performing automatic what-if analysis to reach the target parallelism of 4 for the

example program in Figure 3.2(a) results in identifying the same two regions that we identified

by performing two user-defined what-if analysis tests earlier. This mode’s main benefit is that it

does not require the user to select the what-if regions.

3.3 Performance Model Construction

To create a performance model to compute the program’s logical parallelism and identify

serialization bottlenecks, OMP-ADVISER constructs the program’s OSPG incrementally in

parallel. To limit performance perturbation and achieve low overheads during performance

analysis, it is essential that the parallel construction of the OSPG is decentralized and makes

limited use of synchronization. In this section, we first describe the OSPG construction algorithm
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of a program during program execution. Further, we provide detail on OMP-ADVISER’s usage

of hardware performance counters to attribute fine-grained measurements to each serial fragment

of the program.

3.3.1 OSPG Construction During Program Execution

The OSPG captures the logical series-parallel relations between each pair of serial program

fragments. As we described in Chapter 2, for each program fragment, the OSPG construction

algorithm creates a corresponding W-node. By construction, W-nodes are always leaf nodes

in the OSPG. To encode the logical series-parallel relation between each pair of W-nodes, the

OSPG uses different types of internal nodes (i.e., S-nodes, P-nodes, and ST-nodes) and edges

(i.e., parent-child and dependency edges). The semantics of each OpenMP construct determines

what nodes and edges are added to the OSPG as described in Section 2.4. In this section, rather

than focusing on capturing the semantics of each OpenMP construct, we focus on the OSPG

construction details as the program trace executes in parallel.

The OSPG is incrementally constructed online during program execution. Since OMP-

ADVISER analyzes multithreaded OpenMP applications, we need to ensure that OMP-ADVISER

scales with the applications’ parallelism. To fulfill this requirement, the OSPG construction

algorithm must execute in parallel with the application and avoid the use of synchronization

primitives between threads when possible. Thus, the OSPG construction algorithm relies on

thread-local data structures to limit the use of synchronization. During construction, each execut-

ing thread adds nodes to a subtree in the incrementally constructed OSPG. In the common case,

each thread will operate on different subtrees of the OSPG, limiting the use of synchronization

primitives. When the algorithm must update an OSPG node shared by two or more threads

node in the OSPG, the use of some form of synchronization is unavoidable. However, for the

applications we tested, such cases are the exception rather than the norm.

As a performance analysis tool, OMP-ADVISER is linked and runs in conjunction with

the OpenMP program under test. The OSPG of a running program grows monotonically in

proportion to the OpenMP constructs encountered during program execution. Thus, to analyze

long-running applications with OMP-ADVISER, the OSPG construction algorithm should limit

the amount of OSPG nodes kept in the main memory. Otherwise, the system will run out of
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memory, and the profiling solution will fail to scale with long-running applications. To address

this problem, whenever the program trace exits an OpenMP construct, the OSPG construction

algorithm deallocates the nodes corresponding to the exited construct. Thus, limiting the memory

usage of OMP-ADVISER to be proportional to the working set of the program.

Next, we describe the OSPG construction algorithm. Whenever the program trace encounters

different OpenMP constructs, the construction algorithm updates the program’s OSPG. The

algorithm accomplishes this task by intercepting calls from the OpenMP runtime whenever an

executing thread enters or exits an OpenMP construct. Intuitively, the algorithm incrementally

constructs the OSPG using a per-thread stack and pushing unto it as the program enters different

OpenMP constructs. In contrast, the algorithm removes OSPG nodes from memory whenever

the program trace exits an OpenMP construct.

Intercepting calls to the OpenMP runtime can be accomplished in different ways, including

instrumenting the OpenMP runtime with custom calls to the OMP-ADVISER library. We decided

to use the OpenMP tooling (OMPT) interface. The OMPT interface is part of the OpenMP

specification and is designed for tools that are linked and loaded directly in the OpenMP program

[153]. Since OMPT is part of the OpenMP standard, it is guaranteed to be supported by current

and future OpenMP implementation from different compiler vendors. Thus, when describing the

OSPG construction, we also refer to the corresponding OMPT callbacks to ease the construction

of OSPG for readers interested in using the OSPG in their OpenMP tools for other types of

analysis.

Profiler Start/End

Profiler Start. When the profiler begins execution, OMP-ADVISER must initialize the data

structures used for constructing the OSPG later in the execution when the program encounters

OpenMP parallelism constructs. Each worker thread keeps track of a subset of the OSPG nodes

using a per-thread stack, indexed by a unique thread identifier. Algorithm 2 illustrates the steps

involved to initialize OMP-ADVISER to construct the OSPG. Note that OpenMP programs

start execution with a serial thread, which for C/C++ programs is also called the main thread.

This function takes the thread identifier (i.e., main_tid) for the main thread and the number

of worker threads that will be used during program execution (i.e., num_threads) as an input.
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Algorithm 2: OSPG construction at the start of the OMP-ADVISER profiler execution.
The algorithm initializes the nodes per-thread stack and creates the OSPG root node,
S1 and its W-node child, W1.
1 procedure PROFILERSTART(main_tid, num_threads)
2 foreach tid 2 num_threads do

. Initialize per-thread stack
3 nodes[tid] initializeStack(tid)

4 end
5 S1  CreateSnode()
6 W1  CreateWnode()
7 W1.parent S1

8 nodes[main_tid].push(S1)
9 nodes[main_tid].push(W1)

Algorithm 3: OSPG construction at the end of the profiler execution. The algorithm
simply pops the last remaining active OSPG nodes in the main thread of execution.
1 procedure PROFILEREND(main_tid)
2 Wi  nodes[main_tid].pop()
3 S1  nodes[main_tid].pop()
4 Finalize()

The loop at line 2 initializes an empty stack for each worker thread. Next, the algorithm creates

two OSPG nodes, the root node and its child W-node representing the first fragment of execution

(lines 5-7 in Algorithm 2). Finally, the algorithm pushes the newly created nodes to the main

thread’s stack.

OMP-ADVISER uses the ompt_initialize_callback to implement Algorithm 2.

This callback is guaranteed to be called after the OpenMP runtime is initialized, but before the

runtime executes any OpenMP construct.

Invariant for the per-thread stack. For each stack, the OSPG nodes are stored in ascending

depth order from the root node. This invariant ensures that popping the top node from a non-

empty node stack results in either an empty stack or a stack with a new top node closer to the

root node than the popped node. This invariant effectively bounds each stack’s size to O(h),

where h is the height of the OSPG. Further, the top node in the stack after each operation stores

the W-node corresponding to the current fragment of execution by an OpenMP worker thread.

The second invariant is used to facilitate the attribution of measurements to W-nodes during

OSPG construction.
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Algorithm 4: OSPG construction when a parallel construct is encountered. The
construction algorithm relies on two callbacks to update the per-thread view of the
program’s OSPG.
1 procedure PARALLELBEGIN(master_tid)
2 Wi  nodes[master_tid].pop()
3 Spar  CreateSnode()
4 Spar.parent nodes[master_tid].top()
5 Sbar  CreateSnode()
6 Sbar.parent Spar

7 nodes[master_tid].push(Spar)
8 nodes[master_tid].push(Sbar)

9 procedure WORKERBEGIN(tid, master_tid)
10 if tid 6= master_tid then
11 Sbar  nodes[master_tid].top()
12 Spar  nodes[master_tid].top(�1)
13 nodes[tid].push(Copy(Sbar))
14 nodes[tid].push(Copy(Spar))

15 end
16 Pi  CreatePnode()
17 Pi.parent nodes[tid].top()
18 Wi  CreateWnode()
19 Wi.parent Pi

20 nodes[tid].push(Pi)
21 nodes[tid].push(Wi)

Profiler End. When the program ends, the OSPG has been fully constructed by the earlier

calls to the OMP-ADVISER library. At this point in the execution of an OpenMP program,

the only active thread is the main thread since no active parallel regions exist. Thus, all node

stacks must be empty except the one corresponding to the main thread. The main thread’s stack

consists of two nodes. The top W-node refers to the last fragment. The last remaining internal

node is the OSPG root node. Thus, as illustrated in Algorithm 3, OMP-ADVISER pops the

remaining nodes from the main thread’s stack before making a call to the Finalize function,

which performs different operations depending on the profiling mode used. For offline analysis

mode, the Finalize function serializes all the remaining unserialized OSPG nodes so that

OMP-ADVISER’s offline analyzer has information about all of the program’s OSPG nodes.

Alternatively, for online profiling mode, this function performs the final parts of the parallelism

profiling algorithm (i.e., computing the program’s work, adding the last fragment of execution

to the program’s critical path, etc..) to generate the parallelism profile for the program.
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Parallel Construct

Entering a Parallel Region. When the program trace enters a parallel region, the serial (i.e.,

master) thread, creates a team of worker threads that includes itself as a member of the team.

Algorithm 4 shows the steps involved to update the program’s OSPG. First, the algorithm is

broken down into two procedures, denoting two different callbacks to the OMP-ADVISER library.

Between the two callbacks, the OpenMP runtime spawns and prepares the worker threads for

executing the code within the parallel region. The construction should use two distinct callback

to avoid wrongly attributing the computation performed by the OpenMP runtime to the program’s

W-nodes. This approach ensures that the algorithm avoids inaccurate work measurements when

entering a parallel region.

The first callback, ParallelBegin, occurs when the master thread encounters the parallel

construct before the runtime creates the new worker threads. At this point in the execution trace,

the W-node on top of the master thread’s stack corresponds to the fragment of code executed

by the main thread before the parallel region. First, this W-node is popped from the master

thread’s stack (line 2). Next, we add two S-nodes to its stack (lines 3-8). The first S-node is

used to encode the serial relation between the code fragments within the parallel region and the

master thread’s continuation after exiting the parallel region. The second S-node is added in

anticipation of OpenMP barriers within the parallel region if any.

The second callback, WorkerBegin, is called right before each worker thread starts exe-

cuting the parallel region. For each worker thread, excluding the master thread, The Algorithm

makes a copy of the barrier and parallel region S-nodes on top of the master thread’s stack (lines

10-15 in Algorithm 4). By making a per-thread copy of these S-nodes, we postpone all shared

updates to the S-node Spar to when the program encounters a global synchronization construct

(i.e., a barrier). All worker threads can update the nodes locally with the amount of work in

their subtrees without synchronization and overlap the synchronized updates to Spar with the

implicit barrier that exists at the end of all OpenMP parallel regions. Thus, limiting the impact

of OMP-ADVISER on the critical path of the program under test.

After making copies of the S-nodes (lines 10-15), each worker thread, including the master

thread, inserts a P-node into its stack to encode the parallel relation between each worker thread in
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the parallel region. Finally, each worker thread adds a W-node to mark the fragment of execution

at the beginning of a parallel region (lines 16-21). OMP-ADVISER utilizes the OMPT call-

backs ompt_callback_parallel_begin and ompt_callback_implicit_task

to implement the callbacks in Algorithm 4.

Algorithm 5: OSPG construction when exiting a parallel region. The construction
algorithm relies on two callbacks to update the per-thread view of the program’s OSPG.
1 procedure WORKEREND(tid)
2 Wi  nodes[tid].pop()
3 Pi  nodes[tid].pop()
4 Sbar  nodes[tid].pop()

5 procedure PARALLELEND(master_tid, num_workers)
6 Spar  nodes[master_tid].pop()
7 foreach tid 2 num_workers do

. aggregate results in master stack’s S-node
8 if tid 6= master_tid then
9 Spar_copy  nodes[tid].pop()

10 UpdateNode(Spar, Spar_copy)

11 end
12 end
13 ProcessRegion(Spar)
14 Wi  CreateWnode()
15 Wi.parent nodes[master_tid].top()
16 nodes[tid].push(Wi)

Exiting a Parallel Region. Upon exiting a parallel region, the worker threads execute

Algorithm 5. At this point in the execution, the program trace is exiting the parallel region. Thus

the construction algorithm must remove the remaining nodes associated with the parallel region.

Algorithm 5 is divided into two callbacks. The first callback WorkerEnd is called whenever a

worker thread finishes executing the parallel region. When called, the corresponding worker

thread pops the W-node associated with the previous fragment of execution (line 2). Additionally,

the algorithm pops the P-node and S-node that were either added at the beginning of the parallel

region or the latest encountered barrier (lines 3-4). At this point, the top OSPG node in each

thread-local stack is the S-node corresponding to the parallel region, and the thread-local copies

that were added at the beginning of the parallel region, node Spar (Algorithm 4 line 13).

To keep the results under the subtree rooted at Spar consistent, it is necessary to propagate all

the information stored in each thread-local copy of Spar to the master thread’s copy. Updating
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the master thread’s copy at the end of function WorkerEnd results in a data race. Thus, this

update is performed in the second callback, ParallelEnd, which is only executed by the

master thread after all worker threads have completed the WorkerEnd callback. Updating

Spar in lines 6-11 in Algorithm 5, results in Spar containing all the aggregate profiling infor-

mation in its subtree. Hence, depending on the profiling mode (see Section 3.6), the function

ProcessRegion, is used to either update the program’s parallelism profile or serialize the

subtree associated with the parallel region. By delaying this update to the end of the parallel

region and piggybacking on the implicit barrier’s synchronization at the end of all OpenMP par-

allel regions, the update to Spar is an example of lazy synchronization in the OSPG construction

algorithm.

Lastly, Algorithm 5 adds a new W-node to the master thread’s stack to represent the code frag-

ment corresponding to the master’s thread continuation after the parallel region. OMP-ADVISER

utilizes the OMPT callbacks ompt_callback_parallel_end and ompt_callback

_implicit_task to implement the callbacks shown in Algorithm 5.

Barrier Construct

An OpenMP barrier construct synchronizes the code fragments before the barrier with the code

that executes after it. Thus, all worker threads must first finish executing outstanding code

fragments before the program can continue executing the code after the barrier construct (See

Section 2.4.3 for a description of how the OSPG captures the series-parallel relations between

the fragments before and after a barrier). For a task-based OpenMP program, a barrier results

in waiting for the completion of all tasks created before a barrier construct. Additionally, the

worker threads entering a barrier construct become eligible to execute explicit tasks in the task

queue, if any. The OSPG construction algorithm must ensure that it correctly updates the OSPG

when the runtime schedules tasks to run while the worker thread has reached a barrier. Thus, to

handle such situations and exclude waiting times within a barrier during work measurements of

program fragments, the OSPG construction algorithm uses two callbacks to update the program’s

OSPG during a barrier construct.

Entering a Barrier. As illustrated in Algorithm 6, whenever a worker thread enters a

barrier, the algorithm removes the W-node associated with the fragment of execution ending at
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Algorithm 6: OSPG construction when the program trace encounters a barrier con-
struct. The algorithm uses two callbacks to distinguish when a worker threads enters
a barrier and when it exits a barrier construct. In BarrierExit, first_tid denotes
the worker thread that first exits the barrier construct.
1 procedure BARRIERENTER(tid, num_threads)
2 Wi  nodes[main_tid].pop()
3 procedure BARRIEREXIT(tid, first_tid)
4 Pi  nodes[tid].pop()
5 Sbarj  nodes[tid].pop()

6 if tid = first_tid then
7 Sbarj+1  CreateSnode()

8 Sbarj+1 .parent nodes[tid].top()

9 nodes[tid].push(Sbarj+1)

10 end
11 else
12 Sbarj+1  nodes[tid].top()

13 nodes[tid].push(Copy(Sbarj+1)

14 end
15 Pi+1  CreatePnode()
16 Pi+1.parent nodes[tid].top()
17 Wi+1  CreateWnode()
18 Wi+1.parent Pi+1

19 nodes[tid].push(Pi+1)
20 nodes[tid].push(Wi+1)

the current barrier. At this point, the algorithm makes no further changes to the OSPG, since

the OpenMP runtime may still schedule explicit tasks, which results in updating aggregate

measurements in the current per-thread barrier P-node and S-node.

Exiting a Barrier. The callback BarrierExit in Algorithm 6, is called whenever a

worker thread is ready to exit the barrier. At this point, the top of worker thread’s stack

is comprised of a P-node and S-node that were created at a previous BarrierExit or

WorkerBegin (See Subsection 21). Since all worker threads are ready to exit the barrier, the

computation encoded under the subtree corresponding to the current S-node must be completed.

Thus, the OSPG construction algorithm can safely remove the S-node and its child P-node from

the per-thread stack(lines 4-5 in Algorithm 6).

Once these two nodes are popped from the worker thread’s stack, the construction algorithm

must add a new S-node in anticipation of the upcoming barrier. However, the algorithm must

ensure that only one primary copy of the new barrier’s corresponding S-node is created. Thus,
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the algorithm uses a conditional branch to ensure that only the first worker thread exiting the

barrier creates the new S-node, and other worker threads make thread-local copies of the newly

created S-node (lines 6-14 in Algorithm 6). Next, each worker thread adds a new P-node to

its stack to represent the worker threads’ parallel relation. Lastly, the algorithm creates a new

W-node to represent the fragment of execution starting after the barrier construct, pushing the

newly created P-node and W-node to the worker thread’s stack (lines 15-20).

We use the ompt_callback_sync_region OMPT callback to update the program’s

OSPG when the program encounters the barrier construct.

Worksharing Constructs

OpenMP worksharing constructs are used to distribute the computation within the worksharing

construct among the worker threads that encounter it. The single and for loop constructs

are among the most commonly used worksharing constructs. Next, we describe the OSPG

construction details for these worksharing constructs.

A single construct specifies a structured block that is only executed by only one thread in

the team. The other threads in the team go over the structured block and execute the rest of

the enclose parallel region. A common use of the single construct is with OpenMP tasking

constructs where a task is created within a single block to avoid creating redundant tasks by

other worker threads in the team.

The worksharing for construct specifies that the associated loop’s iteration will be distributed

for parallel execution among the team’s worker threads encountering the for construct. An

OpenMP for loop accepts a schedule clause that specifies how the iteration space of the for loop

is partitioned into chunks and divided for execution to each worker thread. OMP-ADVISER

supports loops with static or dynamic scheduling. With static scheduling, the OpenMP runtime

divides the iteration space by the number of worker threads in the team where each worker

thread roughly executes the same number of iterations. With dynamic scheduling, the iteration

space is divided into user-defined chunk sizes. Under dynamic scheduling, each worker receives

one chunk for execution and requests another chunk when done until all chunks are executed.

Entering/Exiting a Single Construct. The OSPG construction algorithm for a single

construct is simple. The parallel relation between the thread executing the single construct and
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other worker threads in the team is already encoded in the OSPG, either from the P-nodes added

when the program enters a parallel region (See Section 21) or the P-nodes added after exiting

the latest encountered barrier (See Section 16). Hence, no new internal nodes are added to the

program’s OSPG when it encounters a single construct. When the single thread enters the single

construct, it denotes the end of the single thread’s program fragment. The construction algorithm

pops the W-node corresponding to this fragment from its stack and pushes a new W-node to

denote the program fragment’s start within the single block. Alternatively, when the single

thread exits the single construct, the construction algorithm pops the W-node corresponding to

the last fragment of execution within the single block and pushes a new W-node to encode the

start of the program fragment after the single block.

Entering/Exiting a Worksharing Loop Construct. The OSPG construction algorithm for

loops with static scheduling is similar to the worksharing construct explained in the previous

paragraph. However, for loops with a dynamic schedule, the OSPG construction algorithm must

create a W-node for each loop chunk, and it must capture the logically parallel relation between

all loop chunks. A pair of dynamic loop chunks may get executed by the same worker thread in

a program trace. However, the two chunks logically execute in parallel. Hence, to capture this

parallel relation even when the same thread executes the two chunks, the construction algorithm

must add a P-node for each loop chunk.

Compared to static loops where each worker thread receives a callback at the start and the end

of the loop, the OSPG construction algorithm receives an additional callback for dynamic loops

whenever the OpenMP runtime dispatches a loop chunk to a worker thread for execution. The

OSPG construction algorithm uses this callback to pop the W-node and P-node corresponding to

the previous chunk if any. Moreover, it pushes a new P-node and W-node to encode the current

loop chunk unto the worker thread’s stack.

The OSPG construction algorithm uses the OMPT callback ompt_callback_work

whenever a worker thread encounters the beginning/end of a worksharing construct. Further, it

uses the callback ompt_callback_dispatch to update the program’s OSPG whenever a

new dynamic loop chunk is dispatched to a worker thread.
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Algorithm 7: OSPG construction when the program encounters task creation con-
structs. The construction algorithm relies on different callbacks to both the parent and
child tasks’ view of the program’s OSPG.
1 procedure TASKCREATE(tid, task_id)
2 Wi  nodes[tid].pop()
3 if NODETYPE(nodes[tid].top()) 6= ST-node then
4 STtask  CreateSTnode()
5 STtask.parent nodes[tid].top()
6 nodes[tid].push(STtask)

7 end
8 Ptask  CreatePnode()
9 Ptask.parent nodes[tid].top()

10 TaskMap.Insert(task_id, Ptask)
11 Wi+1  CreateWnode()
12 Wi+1.parent nodes[tid].top()
13 nodes[tid].push(Wi+1)

14 procedure TASKBEGIN(tid, task_id)
15 Ptask  TaskMap.get(task_id)
16 nodes[tid].push(Ptask)
17 Wi  CreateWnode()
18 Wi.parent nodes[tid].top()
19 nodes[tid].push(Wi)

20 procedure TASKEND(tid, task_id)
21 Wi  nodes[tid].pop()
22 Ptask  nodes[tid].pop()

Tasking Constructs

OpenMP supports task-based parallelism by providing the task directive to spawn new tasks, a

set of task-based synchronization constructs, such as taskwait and taskgroup, and user-defined

ordering between sibling tasks using task dependency clauses. In this section, we describe the

OSPG construction algorithm when these constructs are encountered during program execution.

The OpenMP task construct is used to create a new explicit task. The worker thread

encountering a task construct creates a new explicit task that gets scheduled for execution by the

OpenMP runtime by assigning it to any worker thread in the team. A task construct specifies a

structure block. The new task’s code is the code associated with this structured block. The OSPG

construction algorithm distinguishes between a task creation event and when the task begins

execution event. The thread that creates a task may not be the thread chosen by the OpenMP

runtime to execute the task. The OSPG construction algorithm must update the program’s OSPG
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as described in Section 2.4.6 while updating the per-thread stacks to reflect a correct view of the

program’s OSPG.

A taskgroup construct enforces a serial ordering between the structured block associated

with the taskgroup and the code fragments that execute after the taskgroup. Namely, the

code following the taskgroup waits for the completion of all created tasks and their descendants

within the taskgroup’s structured block. The OSPG construction algorithm updates the program’s

OSPG when the thread encountering the taskgroup enters/exits the code block specified by the

taskgroup construct. In contrast, a taskwait construct enforces a serial ordering between the

thread encountering the taskwait and only its direct child tasks. Further, unlike a taskgroup, a

taskwait does not specify a block of code. Instead, a taskwait may occur at any point within an

OpenMP parallel region. Hence during program execution, we do not know a priori if a parent

task will encounter a taskwait later in the execution, requiring our OSPG construction algorithm

to create an ST-node in anticipation of encountering a taskwait.

Algorithm 7 illustrates the callbacks the OSPG construction algorithm receives for these

task and task-specific synchronization constructs.

Creating a Task with the Task construct. When the execution trace encounters a task

construct, the OSPG construction algorithm receives the TASKCREATE callback, shown in

Algorithm 7, with the encountering thread’s identifier (i.e., tid) and the newly created task’s

identifier (i.e., task_id). We first pop the W-node corresponding to the program fragment ending

at the task construct (line 2). As described in Section 2.4.6, the OSPG construction algorithm

must add an ST-node to the current thread’s stack if the current task is creating its first child task

after the most recent synchronization construct. The algorithm performs this check by checking

if the top of the current thread’s stack is an ST-node or not. If the top of the stack is not an

ST-node, the algorithm creates an ST-node that indicates the parent task’s first child task (lines

3-7). Thus, when the algorithm reaches line 8, it is guaranteed that the top of the stack includes

an ST-node.

At this point, the OSPG construction algorithm creates a P-node to encode the parallel

relation between the child task and the parent task’s continuation. However, we do not add the

newly created P-node to the current worker thread’s stack since the child task may run by a

different worker thread. Instead, we store it in a map data structure using its identifier task_id
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Algorithm 8: OSPG construction when the program encounters different task synchro-
nization constructs.
1 procedure TASKGROUPBEGIN(tid)
2 Wi  nodes[tid].pop()
3 Stg  CreateSnode()
4 Stg.parent nodes[tid].top()
5 nodes[tid].push(Stg)
6 Wi+1  CreateWnode()
7 Wi+1.parent nodes[tid].top()
8 nodes[tid].push(Wi+1)

9 procedure TASKGROUPEND(tid)
10 Wi  nodes[tid].pop()
11 Stg  nodes[tid].pop()
12 Wi+1  CreateWnode()
13 Wi+1.parent nodes[tid].top()
14 nodes[tid].push(Wi+1)

15 procedure TASKWAITBEGIN(tid)
16 Wi  nodes[tid].pop()
17 procedure TASKWAITEND(tid)
18 STtask  nodes[tid].pop()
19 STtask.st_val �1
20 Wj  CreateWnode()
21 Wj .parent nodes[tid].top()
22 nodes[tid].push(Wj)

as the key (lines 8-10). Lastly, we create and push a W-node corresponding to the parent task’s

continuation after the task construct (lines 11-13).

Task Begin/End. Right before the OpenMP runtime starts executing the body of a newly

created task, the worker thread that the runtime chooses to execute the task receives a TASKBE-

GIN callback, shown in Algorithm 7, including the task’s identifier task_id. At this point, we

check the task map to retrieve the P-node corresponding to the executing task (line 15). This

P-node, Ptask, is guaranteed to exist in this map since a task can only begin execution after it

was created at an earlier TASKCREATE callback. Next, the algorithm pushes the P-node unto to

the thread’s stack. Lastly, a new W-node that represents the program fragment at the beginning

of the task’s body is created and pushed to the worker thread’s stack (lines 17-19).

Right after a worker thread finishes executing an explicit task, the worker thread receives a

TASKEND callback. This callback performs cleanup by removing the W-node corresponding to
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the last code fragment in the task and subsequently removing the P-node corresponding to the

completed task (lines 21-22 in Algorithm 7).

The OSPG construction algorithm uses the OMPT callback ompt_callback_task

_create whenever a worker thread encounters a task construct. Further, to receive a callback

whenever an explicit task starts/finishes execution, we use the callback ompt_callback

_task_schedule.

Entering/Exiting a Taskgroup. When the current task encounters a taskgroup construct,

before the worker thread starts executing the block specified by the taskgroup construct, it

receives a TASKGROUPBEGIN callback. As shown in Algorithm 8 lines 1-8, the OSPG con-

struction algorithm adds an S-node to the current thread’s stack to encode the serial relation

between the code fragments corresponding to the taskgroup block and its continuation (lines

3-5). The callback ends by creating and pushing a W-node to represent the first fragment of

execution within the taskgroup block.

Once a worker thread finishes executing a taskgroup block, it receives a TASKGROUPEND

callback, which is illustrated in Algorithm 8 lines 9-14. At this point in the execution, all the

computation associated with the taskgroup block has completed execution. Hence, the algorithm

pops the W-node corresponding to the fragment of execution ending at the end of the taskgroup

block. Lastly, it pops the S-node created at the beginning of the taskgroup construct and pushes

a newly created W-node to represent the continuation of the taskgroup block.

Entering/Exiting a Taskwait. When a worker thread encounters a taskwait construct, it

receives two callbacks. The first callback, TASKWAITBEGIN, is called when the current task

encounters the taskwait construct right before it starts waiting for the completion of its child

tasks. The second callback, TASKWAITEND, is called after the wait for the children task’s

completion is over, and the current task can start executing the next program fragment.

The callback TASKWAITBEGIN performs a single operation, which is popping the W-node

corresponding to the fragment of execution before the taskwait construct (line 16 in Algorithm 8).

Note that this operation cannot be postponed to execute as the first operation in TASKWAITEND

since the current task might be assigned by the OpenMP runtime to execute its child tasks

while waiting at the taskwait. Without popping the W-node at the top of the current task’s
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(a) Example OpenMP Program (b) Program’s OSPG
S1

1 int main(){
2 A();
3 #pragma omp parallel num_threads(2){
4 B(omp_get_thread_num());
5 #pragma omp single{
6 C();
7 #pragma omp task{
8 D();
9 #pragma omp task{
10 E();
11 }
12 F()
13 }
14 G()
15 #pragma omp taskwait
16 H();
17 }//implicit barrier
18 I(omp_get_thread_num())
19 }
20 J();
21 return 0;
22 }
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Figure 3.3: An example OpenMP program (a) Task-based OpenMP program. (b) The program’s
OSPG. Each W-node in the OSPG is named after the corresponding serial function in the
program.

associated worker thread, the invariant that only the top node of the per-thread can be a W-node

is invalidated by the OSPG construction algorithm.

When the current task finishes waiting at the taskwait, it receives the TASKWAITEND

callback to pop the task ST-node added at a previous TASKCREATE callback from its stack (See

Algorithm 7).

3.3.2 Example OSPG Construction

We end this section with an example OpenMP program and describe its incremental OSPG

construction by applying the OSPG construction algorithm described earlier in Section 3.3.1.

Figure 3.3 contains a task-based OpenMP program and its OSPG. The program has one parallel

region (lines 3-19) that uses two worker threads. Within the parallel region, a single construct is

used to create two explicit tasks (lines 7 and 9). The program uses synchronization primitives in
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the form of a taskwait at line 15 and two implicit barriers, one at the end of the single block and

one at the end of the parallel region. We assume that all functions in the example program in

Figure 3.3(a) named with an upper case letter are serial functions, thus correspond to one W-node

in the program’s OSPG shown in Figure 3.3(b). Each W-node node in the OSPG is named after

its associated function. If a function is called by multiple worker threads (i.e., functions B and

I), its W-node name uses the thread identifier to distinguish between its instances.

Figure 3.4 shows the OSPG construction algorithm that constructs the program’s OSPG,

shown in Figure 3.3(b), incrementally and in parallel. The figure shows the contents of each

per-thread stack used by the construction algorithm and how they are updated as the program

receives different callbacks to update each thread’s view of the OSPG. The example program

in Figure 3.3(a) uses two worker threads. The construction algorithm uses thread identifiers to

distinguish between threads. Further, as described in Algorithm 7, a newly created explicit task

via the task construct has a unique task identifier that is used as a key in a shared map.

When the program in Figure 3.3(a) starts executing the MAIN function, OMP-ADVISER

receives a PROFILERSTART callback, creating the per-thread stacks and filling the serial thread’s

stack with the OSPG root node and the W-node corresponding to the upcoming fragment of

execution, function A. Next, the serial thread encounters the parallel region where it updates the

serial thread’s stack with two S-nodes, S-node S2 encoding the serial relation at the end of the

parallel region and S-node S3 in anticipation of an upcoming barrier, if any. In Figure 3.4(c)

both worker threads are about to start executing the first fragment in the parallel region (i.e.,

function B). Thread2 makes a local copy of S-nodes S2 and S3 and pushes them unto its stack.

Next, worker thread creates a P-node and the W-node corresponding function B.

Next, shown in Figure 3.4(d), thread 1 reaches the single construct first, receiving a SINGLE-

BEGIN callback. thread 1 updates its stack to include the W-node corresponding to the first code

fragment in the single block (i.e., function C). Once thread1 finishes executing function C, it

creates a new explicit task (line 7 program in Figure 3.3(a)). This triggers the TASKCREATE

callback, adding a P-node with the new tasks’ identifier as the key in the task map. After this

event, thread1 is going to execute the program continuation after the task block (i.e., starting

with the G function at line 14). This behavior is reflected in the OSPG construction algorithm in

Figure 3.4(e) by adding W-node WG to thread1’s stack.
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Since thread1 was chosen to execute the single block, it indicates that thread2 will skip over

the single block and encounters the implicit barrier at the end of the single block at line 17. At

this point in the execution trace, thread2 receives a BARRIERENTER callback (Figure 3.4(f)).

The OSPG construction algorithm pops the W-node corresponding to function B from its stack.

Further, after encountering the barrier, thread2 becomes eligible to run pending explicit tasks. In

our example, thread2 starts executing the recently created task by thread1. Thus, in Figure 3.4(g),

thread2 retrieves the task’s P-node from the task map and updates with the W-node representing

function D. The use of the task map and pushing the P-node to the worker thread that executes

the task, rather than the thread that creates the task is essential in correctly measuring the amount

of work performed in the task.

Concurrently, thread1 finishes execution function G and encounters the taskwait synchroniza-

tion construct, which causes thread1 to wait until the child task executing at thread2 to complete

execution (Figure 3.4(h)). While waiting, thread1 is eligible to execute any pending tasks.

However, no pending tasks exist until thread2, In Figure 3.4(i), creates the explicit task at line 9

in Figure 3.3(a). Thread1 starts executing the newly created task, updating its stack, as shown in

Figure 3.4(j). In figures Figure 3.4(k) and (l), both threads finish executing the explicit OpenMP

tasks. At this point, thread1 exits the taskwait and continues executing the code fragment that

comes after it (i.e., function H). Meanwhile, thread2 continues to wait at the barrier for thread1.

Note that in Figure 3.4(m), when thread1 exits the taskwait, the OSPG construction algorithm

updates the st_val of the ST-node ST1. This operation is used to encode the encounter of a

taskwait in the program. This information is later used by the parallelism profile computation

algorithm, described in Section 3.6, to correctly compute the critical path in the presence of

taskwaits in the program trace.

Once thread1 enters the barrier at the end of the single block, the execution can proceed

since all worker threads have reached the barrier. As shown in Figure 3.4(o), we remove the

S-node corresponding to this barrier from the worker threads’ stack and add the S-node S4 and

its thread-local copy in anticipation of the next barrier in the parallel region, if any. After both

threads finish executing function I, they reach the end of the parallel region. Figures 3.4(p) and

(q) show how the OSPG construction algorithm removes all the remaining S-nodes and P-nodes

corresponding to the just-completed parallel region for both threads’ stacks. Lastly, after thread1
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finishes executing function J and before it finishes execution, the OSPG construction algorithm

receives a PROFILEEND callback. OMP-ADVISER, our parallelism profiler, uses this callback

to perform cleanup of the per-thread stacks. However, more importantly, depending on the

profiling mode, OMP-ADVISER uses this callback to serialize the remaining OSPG for later

analysis or uses it to generate the program’s parallelism profile.

3.4 Fine-grained Measurements

The performance model used by OMP-ADVISER is comprised of two components. The first

component is the program’s OSPG. In section 3.3, we described in detail OMP-ADVISER’s

construction algorithm to incrementally construct a program’s OSPG in parallel. The second

component consists of fine-grained measurement of the program’s computation for each serial

fragment of execution. By using both parts, OMP-ADVISER can perform its parallelism

computation and what-if analysis.

A key requirement in designing a performance analysis tool is to ensure that the tool is

as lightweight as possible. Thus, avoiding perturbation that may result in result in skewed

or incorrect results. Similar to performance analysis tools, OMP-ADVISER uses hardware

performance counters to perform this type of fine-grained measurement. Hardware performance

counters are registers in modern CPUs, designed to count difference hardware metrics with

low overhead. During performance collection, OMP-ADVISER uses these hardware counters

to measure the work performed in each worker thread of the program by programmatically

querying the counters for different performance metrics (i.e., instruction count, cycles, etc.)

To programmatically access hardware performance counters in Linux, OMP-ADVISER

uses perf_events6 [78] that is part of the Linux kernel since version 2.6.31. The perf

interface provides a system call to access different performance metrics referred to as perf

events. There are two types of perf events, sampled and counting. Sampled events are generated

by sampling different types of measurements at fixed intervals. In contrast, counting events

are used to count the aggregate number of a performance metric. Since OMP-ADVISER

must measure the amount of computation for each fragment of the program, using sampled

6Also referred as Performance Counters for Linux (PCL) and Linux perf events (LPE).
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Figure 3.4: Incremental OSPG construction for the example program in Figure 3.3.
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events may lead to missing measurements if the given fragment ends before the sampling

intervals. Thus, OMP-ADVISER uses the perf interface to access counting events. For example

to measure the amount of computation as the number of CPU cycles, OMP-ADVISER uses the

PERF_COUNT_HW_CPU_CYCLES event.

For counting events, the perf interface provides the option of starting, stopping, and resetting

the value stored in the hardware performance counter. OMP-ADVISER uses these operations to

measure the program’s computation by resetting the value and starting the performance counter

at the beginning of the fragment and reading its value at the end of a fragment. Alternatively,

it is possible to measure a fragment’s work without resetting the counter and reading its value

at the beginning and end of a fragment. The fragment’s work is then measured by subtracting

the two values, resulting in lower overheads accessing performance counters by omitting the

reset operation. We chose the first option since the second option does not work correctly

whenever the performance counter overflows. While it is still possible for a performance counter

to overflow even after resetting its value, the program fragment must run for an exceptionally

long time to overflow the 64-bit counters available in current CPUs.

Attributing fine-grained measurements to program fragments. OMP-ADVISER’s per-

formance model is comprised of the program’s OSPG and fine-grained attribution of work

measurement to each program fragment. To measure the program’s logical parallelism, we need

to measure the program’s computation and exclude the time spent in the OpenMP runtime (i.e.,

time spent waiting on synchronization constructs such as barriers). By design, each program

fragment is represented by a W-node in the OSPG. When constructing the program’s OSPG, a

fragment’s corresponding W-node’s lifetime match each other. Further, during its lifetime, a

W-node resides on top of its per-thread stack. One approach to measure each program fragment’s

computation is to read the performance counters’ values whenever its corresponding W-node

is pushed and popped from the per-thread stack. The difference between the two values read

indicates the computation performed by a program fragment.

Figure 3.5 illustrates the operations used by OMP-ADVISER to attribute work to each W-

node. During OSPG construction, pushing a newly created W-node to the top of the per-thread

stack denotes the start of a new fragment of execution. To measure the computation performed by

the new fragment and exclude the computation performed in the runtime, we reset and start the
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(a) Performance counter 
operations after the creation 
of a W-node Wi at thread j

nodes[j].push(Wi)
counter.reset()
counter.start()
return

(b) Performance counter 
operations after W-node Wi at 
thread j completes execution

c = counter.read()
Wi = nodes[j].pop()
Wi.work = c
return

Figure 3.5: Use of performance counters to measure the program’s computation and attribution
of work to corresponding W-node during OSPG construction.

performance counter at the start of a new program fragment right before OMP-ADVISER returns

the execution to the program under test (Figure 3.5(a)). Alternatively, whenever a fragment

ends, we read the performance counter and attribute it as the work of the newly popped W-node

(Figure 3.5(b)). To maintain the invariant of having a W-node at the top of the per-thread stack

during program execution, OMP-ADVISER creates a new W-node and pushes it to the stack

before returning the execution to the program under test.

3.5 Estimating Runtime Parallelization Costs

Logical parallelism and critical path measurement in a program provide a hardware-agnostic

view of the program’s serialization bottlenecks. However, when running an application on actual

hardware with a finite number of parallel execution units, there are runtime costs associated

with executing and orchestrating the parallel execution of OpenMP constructs. Thus, to achieve

scalable speedup, it is essential to ensure that the chosen parallelism granularity ensures that the

amount of computation in each W-node amortizes the runtime costs to create and execute its

corresponding OpenMP construct.

In practice, the developer has to spend time and effort to manually identify the right par-

allelism granularity for their programs to achieve good performance. Parallelism granularity

and the parallelism of a program directive are related. Consider the program in Figure 3.2, the
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treeProcess function is using the divide-and-conquer paradigm to process the nodes in a

binary tree in parallel by creating new OpenMP tasks to solve the sub-problems in parallel. The

programmer uses a CUT_OFF value in line 5 to adjust the granularity of work performed in each

task. If we increase the CUT_OFF value by one, it results in doubling the amount of created

tasks while reducing the amount of work in each leaf task by half. To achieve good performance,

the developer manually chooses a CUT_OFF value that strikes the right balance between the

program’s parallelism and parallelism granularity. Thus, resulting in a manual trial and error

process.

OMP-ADVISER provides actionable feedback based on the runtime costs incurred by the

OpenMP runtime when creating dynamic instances of parallelism constructs. Specifically, we

augment OMP-ADVISER’s performance model by measuring the estimated cost of task creation

directives (i.e., task) in the program under analysis and attributing them to corresponding internal

OSPG nodes. We then summarize this information in the program’s parallelism profile by

aggregating the tasking overhead to each static tasking directive in the program and reporting it

back to the user.

By default, OMP-ADVISER measures the runtime cost associated with task creation con-

structs. While it is similarly possible to estimate the cost of worksharing constructs in an

OpenMP program, task creation and scheduling costs are significantly higher than creating

worksharing constructs [74]. Further, task-based regions in the OpenMP applications tend to

have higher nesting depths than its worksharing parts, which results in higher runtime overheads

if the wrong task granularity is chosen.

Measuring task creation overheads. An OpenMP task consists of a sequence of instruc-

tions. During execution, a task is comprised of an instance of executable code and a data

environment that is scheduled by the OpenMP runtime for execution on any worker thread. Thus,

the runtime overheads associated with tasking consist of two main components - task creation

and scheduling. OMP-ADVISER estimates the task creation costs.

During program execution, whenever a task construct is encountered, the program enters the

OpenMP runtime to create a task instance and its data environment. Next, the task instance is

passed on to the runtime scheduler to be scheduled for execution before exiting the runtime to

continue executing the user’s code. To estimate task creation costs, we instrument the OpenMP
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runtime to measure the computation costs from when the program enters the runtime to create a

task instance until it returns to the user’s application.

By default, we use hardware performance counters to measure this cost in terms of hardware

cycles. This reliance on hardware counters results in additionally querying hardware performance

twice for each newly created task. In our experiments, this additional overhead has been small

enough not to perturb the OpenMP program under analysis.

Attributing Task Creation Measurements to OSPG Nodes. After measuring the cost of

creating a new task, we need to attribute it to the corresponding OSPG node. For any newly

created tasks, as described in Section 2.4.6, a new P-node is added to the program’s OSPG.

We attribute the creation costs of the newly created task to this P-node. Similarly, for any

encountered taskgroup constructs, a new S-node is added to the program’s OSPG. We use this

S-node to attribute the taskgroup’s cost.

Figure 3.2(b) illustrates the attribution of task creation costs to the OSPG of the example

program from Figure 3.2(a) by depicting the task creation cost in a dashed rectangle next to the

corresponding S-node or P-node. The program creates four task instances, which their costs

are attributed to P-nodes [P2-P5]. Further, the cost of the program’s taskgroup construct is

attributed to the S-node S3.

3.6 Parallelism Profile Computation

OMP-ADVISER uses hardware performance counters to perform fine-grained measurement of

the program’s computation and attributes them to each W-node in the program’s OSPG. This is

a performance model from the perspective of computing the logical parallelism for a program

and its input. OMP-ADVISER summarizes the parallelism and critical path captured by the

performance model at each static OpenMP directive in the program. We refer to this report as

the program’s parallelism profile.

Definition 3.6.1. (Parallelism Profile) A program’s parallelism profile summarizes the infor-

mation captured in the program’s OSPG and fine-grained measurements at a static program

location (i.e., per static OpenMP directive or the main function in the program) granularity. Each

entry in the parallelism profile is comprised of the following members:
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• Location. Represents a static program location where a location includes the OpenMP

construct’s filename followed by its line number in the program’s source.

• Work. Denotes the aggregate computation attributed to the location.

• Serial work. Denotes the computation of the longest sequence of serial computation for

a given location.

• Parallelism. Is the ratio of work over serial work which represents an upper bound on the

region’s speedup.

• Runtime overhead. Is the percentage of estimated OpenMP runtime costs over the total

work attributed aggregated at a given location.

• Serial work percentage. this value denotes the location’s contribution to the program’s

critical path. If zero, the corresponding program trace does not lie on the program’s

critical path.

To generate the program’s parallelism profile, OMP-ADVISER operates in two modes, each

with its set of trade-offs. Offline mode and on-the-fly mode. In both modes, OMP-ADVISER

runs in conjunction with the program under test to incrementally construct OSPG and perform

measurements. In offline mode, the performance model is written to log files whenever an

OpenMP construct finishes execution (i.e., the corresponding OSPG nodes are popped from

the per-thread stack). Later, an analysis program uses the log files to reconstruct the entire

OSPG in memory and generates the program’s parallelism profile. Compared to on-the-fly mode,

offline mode uses less memory during profiling since it can deallocate OSPG nodes as soon

as a node is popped from a thread’s stack. Further, since the offline analysis tool has access to

the program’s entire OSPG, what-if analysis (see Section 3.7) can be performed without the

need to re-execute the program under test. This mode’s main drawback is that the log files for

long-running programs can become large, limiting its usability for long-running applications.

When using the on-the-fly profiling mode, the parallelism profile is generated on-the-fly

while executing the program under test. On-the-fly profiling mode does not require access to

the program’s entire OSPG to compute the parallelism profile. Hence it can be used to analyze

long-running applications and applications with large OSPGs that do not fit inside the system’s
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memory. However, in this mode, OMP-ADVISER maintains additional state with each OSPG

node during program execution to compute its parallelism on-the-fly. Thus, compared to the

offline mode’s profiling run, it uses more memory for each OSPG node created. Additionally,

performing multiple what-if analysis queries requires the program to be re-executed.

This section first provides the offline mode’s details since it is less complicated than the

on-the-fly mode. Next, we describe the on-the-fly mode’s details, addressing the challenges of

adapting the offline analysis algorithm to work in an online setting.

3.6.1 Offline Analysis to Compute Parallelism

A program’s parallelism profile consists of the program’s logical parallelism, the parallelism of

each static OpenMP directive in the program, and its serial work contribution to the program’s

critical path. To generate the program’s parallelism profile, the offline algorithm first performs

a bottom-up traversal of its OSPG that computes each node’s aggregate work and serial work.

The algorithm visits each OSPG node and computes the node’s work and serial work from the

information stored in its child nodes. Thus at the end of the analysis, the algorithm computes

the following two quantities for each OSPG internal node: (1) work (w) and (2) the set of

W-nodes that constitute its critical path (S). After computing these quantities, the analysis

algorithm summarizes this information to each static OpenMP directive to generate the program’s

parallelism profile.

Definition 3.6.2. (Node Work) An OSPG node’s work (w), is defined as follows:

• Leaf Nodes. By construction, all leaf nodes in the OSPG are W-nodes. A leaf node’s

work is equal to the corresponding code fragment’s fine-grained work measurement.

• Internal Nodes. An internal node’s work is the aggregate sum of the work performed by

its W-node descendants.

Definition 3.6.3. (Node Critical Path) An OSPG node’s critical path (S) is the set of W-nodes

in its subtree that execute in series and perform the largest amount of work.
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Algorithm 9: Generate program’s parallelism profile for OSPG G rooted at node R.
D is the set of the program’s directives used for aggregation. CHILDNODES returns all
the child nodes of the input node. COMPUTESERIALWORK identifies the serial work
contribution of each static directive to the program’s critical path. AGGREGATEPER-
STATICDIRECTIVE aggregates work, serial work, and tasking overheads to produce
the parallelism profile similar in format to Figure 3.2 (c) and (d).
1 function PARALLELISMPROFILE(G,R,D)
2 foreach N in bottom-up traversal of G do
3 hN.w,N.Si  COMPUTENODE(N)
4 end
5 H  COMPUTESERIALWORK(G,R,N.S)
6 foreach N in bottom-up traversal of G do
7 AGGREGATEPERSTATICDIRECTIVE(G,H,D)
8 end
9 return

Definition 3.6.4. (Node Serial Work) An OSPG node’s serial work (sw), is defined as the

amount of work performed on its critical path. It can be computed by summing the work of its

critical path W-node members.7.

Algorithms 9 and 10 show the steps involved in generating the program’s parallelism profile.

Algorithm 9 performs a bottom-up traversal of the program’s OSPG nodes and computes each

node’s work (N.w) and the set of W-nodes that constitutes its critical path (N.S) by invoking

the COMPUTENODE function shown in Algorithm 10 lines 2-4.

Once this traversal completes, the OSPG’s root node R contains the entire program’s work

in R.w. Further, the set of W-nodes that contribute to the program’s critical path are stored in

R.S. We use the results computed during this traversal to calculate the serial work contribution

of each static directive to the program’s critical path by invoking the COMPUTESERIALWORK

function (line 5 in Algorithm 9). The COMPUTESERIALWORK function returns H , a mapping

from a program location to its serial work contribution on the critical path. Finally, the algorithm

aggregates the information computed in previous steps to generate the program’s parallelism

profile matching the Definition 3.6.1.

7Let N represent an OSPG Node. N.sw =
X

C2N.S

C.w.
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Computing Each Node’s Work and Serial Work. The PROCESSNODE function in Al-

gorithm 10 illustrates the computation of in input node’s work and critical path. The PRO-

CESSNODE function is invoked for each OSPG node in a bottom-up traversal. This bottom-up

traversal enables the algorithm to compute a node’s work and critical path from its children

nodes’ work and critical path instead of processing the entire subtree rooted at a given node.

The simple case for the algorithm occurs when processing a W-node (lines 2-5 in Figure 9).

By construction, all W-nodes are leaf nodes. Thus, we can immediately compute a W-node’s

work and serial work. To process an internal OSPG node and compute its work and serial work,

the algorithm processes its child nodes from left to right, based on the logical ordering of sibling

operations (lines 9-40 in Algorithm 9). We describe how an internal OSPG node is processed

next.

Consider internal OSPG node N which has k children. Each child node is denoted by

(C1..Ck). In the PROCESSNODE function, the loop at line 10 iterates over all child nodes Ci

such that Ci 2 C1..k. The algorithm maintains the loop invariant that at iteration i, N.w and

N.S contain the node’s work and critical work when considering its first i child nodes, (C1..Ci).

By initializing N.w and N.S at lines 6-7 in Algorithm 9, the invariant is true before entering

the loop. We need to show the invariant is maintained after each iteration of the loop. If the

invariant is true after each iteration, at the end of the loop, N.w and N.S, will hold the node’s

work and critical path by considering all of its child nodes, which by definition is the node’s

work and critical path.

At each iteration of the loop, we increment N.w to include the work of the current child

node being examined (line 11 in Algorithm 9). Thus, the invariant is maintained for N.w. We

use inductive reasoning to show how the loop invariant for the node’s critical path is maintained.

Our inductive hypothesis assumes that at the start of the j + 1 iteration, N.w includes node N ’s

critical path candidate comprised of its first j child nodes and their descendants. We want to

show that at the end of the iteration, N.w includes node N ’s critical path candidate comprised

of its first j + 1 child nodes.

Based on our inductive hypothesis, N.S includes the set of W-nodes under the subtree of the

first j child nodes that perform the largest amount of work serially. When considering the node’s

critical path comprised of the first j + 1 child nodes, two cases may occur. In the first case,
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Algorithm 10: Compute input node N ’s work (N.w) and and the set of W-nodes on
its critical path (N.S).
1 function PROCESSNODE(N)
2 if NODETYPE(N) = W-node then
3 N.S  {N}
4 return hN.w,N.Si
5 end
6 N.w  0
7 N.S  {}
8 LS  {}
9 LP  {}

10 foreach C 2 CHILDNODES(N) do
11 N.w  N.w + C.w

12 cu 
X

W2N.S

W.w

13 cd 
X

W2LS
W.w +

X

W2C.S

W.w

14 switch NODETYPE(C) do
15 case P-node do
16 if HASDEPENDENCY(C) = True then
17 DP  LONGESTDEPENDENCECHAIN(C)
18 DW  IMMEDIATEFRAGMENTS(DP)
19 cd cd+

X

W2DW

W.w

20 if cd > cu then
21 N.S  N.S \ LP
22 N.S  N.S [ C.S [DW
23 LP  C.S [DW

24 else if cd > cu then
25 N.S  N.S \ LP
26 N.S  N.S [ C.S
27 LP  C.S

28 case S-node or W-node do
29 if cd > cu then
30 N.S  N.S \ LP
31 N.S  N.S [ C.S

32 LS  LS [ C.S

33 case ST-node do
34 hSTp, STsi  PARTITIONNODES(C.S)
35 if cd > cu then
36 N.S  N.S \ LP
37 N.S  N.S [ C.S
38 LP  STp

39 LS  LS [ STs

40 end
41 end
42 return hN.w,N.Si
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the critical path does not include any W-node descendants from child node Cj+1 . in this case,

the critical path candidate remains the same as the previous iteration and will not require any

changes. In the second case, the critical path includes W-node descendants from the Cj+1. In

this case, we need to update N.w with the new critical path candidate that performs more serial

work. The algorithm maintains the current critical path’s serial work in cu and the candidate

critical path’s serial work in cd (lines 12-13 in Algorithm 9). To handle these two cases, the

algorithm compares the cu and cd. If the candidate serial work is larger than the current serial

work (check performed at lines 19, 24, 28, and 35 in Algorithm 9), the algorithm updates N.S

with the candidate critical path, thus maintaining the loop invariant.

We still need to show how to compute the candidate critical path, cu, at each iteration. To

compute the critical path candidate that includes the current child node, Cj+1, the algorithm

maintains two additional sets of W-nodes. These sets, named LS and LP , are used to compute

the critical path candidate without the need to reexamine the descendant nodes of the first j

child nodes at each iteration. The first set, LS contains the set of W-node descendants of already

examined child nodes (i.e., nodes C1..Cj) that execute in series with current child node’s Cj+1

descendant W-nodes. Intuitively, node N ’s critical path candidate is comprised of the union of

LS and the current child node’s critical path (i.e., Cj+1.S). The second set, LP , contains the set

of W-nodes that are descendant of previously examined P-node and ST-node child nodes, that

lie on the currently computed critical path, N.S, and run in parallel with the current child node’s

descendant W-nodes. This set is used to update the current node’s critical path whenever the

critical path candidate performs more work than the current critical path. As the loop executes,

these sets are updated based on the type of the current child node.

Based on OSPG node definitions in Section 2.3, in the absence of task dependencies, a

P-node encodes a parallel relation between its W-node descendants and right sibling descendant

W-nodes. In contrast, an S-node encodes a serial relation between its W-node descendants and

right sibling descendant W-nodes. A W-node executes in series with all descendants W-nodes to

its right. Lastly, an ST-node partition its descendant W-nodes into two sets, the former executing

in series and the latter executing in parallel relative to the W-node descendants of its right

siblings, which is slightly more complicated than the first three types of nodes. Algorithm 9

uses the properties of the currently examined child node to maintain the loop invariant. To
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ease explanation, we first explain the algorithm when the program under test does not use task

dependencies (i.e., omitting lines 16-23 from Algorithm 9). In such cases, if the program critical

path candidate includes the descendants of a P-node or parallel partition of an ST-node, it at most

can contain one such P-node or ST-node at a time. For example, consider two sibling P-nodes,

without task dependencies, their descendant W-nodes execute in parallel. Hence, if their parent

node’s critical path contains W-nodes descendants of either P-nodes, it cannot contain any

W-nodes descendants from the other. Thus, the set LP is updated such that it contains up to one

P-node or S-node descendant W-nodes at a time.

When encountering a child P-node that replaces the current critical path (lines 24-27 in

Algorithm 9), the algorithm updates the parent node’s critical path candidate, N.S, by first

removing the elements of set LP from it and adding the current child P-node’s critical path to

its critical path (line 21-22 in Figure 9). Intuitively, all W-nodes in the set LP execute in parallel

with the current child P-node’s descendant W-nodes that comprise its critical path, C.S. Hence,

N.S is updated by removing the elements of LP and adding the elements C.S. Lastly, since the

newly updated critical path candidate includes the current child P-node descendant W-nodes,

LP is set to the current child P-node’s critical path.

When processing a child S-node or W-node, if the candidate critical path, including the

current child node, performs more work than the current critical path, it indicates that the

algorithm has found a new critical path that does not include the elements of the set LP . Hence,

similar to the previous case, N.S is updated by removing the elements of LP and adding the

elements C.S. Unlike P-nodes, an S-node or a W-node encodes a serial relation with the W-node

descendants of its right siblings. Thus, the algorithm updates the set SP instead of LP (line

32). The algorithm updates SP by adding the critical path of the current child node to the set of

W-nodes that execute in series with the W-node descendants of right siblings nodes examined in

later loop iterations.

Compared to the previous cases, processing an ST-node node is slightly more involved (lines

33-39 in Algorithm 9). As discussed in Section 2.3, unlike P-nodes, S-nodes, or W-nodes,

the W-node descendants of an ST-node may execute in series or parallel with its right sibling

descendant W-nodes. The series-parallel relation of a W-node under the subtree of an ST-node

and the W-node descendants of its right siblings depends on the nesting level and the sum of
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st_val values on the path from the W-node to the ST-node. Thus an ST-node partitions the set

of W-nodes under its subtree into two sets. A set of W-nodes that execute in parallel and a set of

W-nodes that execute in series relative to the W-node descendants of the ST-node’s right siblings.

The algorithm calls the PARTITIONNODES function to retrieve the two partitions as STp and

STs for the ST-node’s critical path, C.S (line 34). Intuitively, the algorithm treats the STp set

as the descendant nodes of a P-node and STs as the descendants of an S-node. Hence, the

rule to update the set LP and LS is similar to updating it for child P-nodes and child S-nodes,

respectively.

Compute Critical Path in the Presence of Task Dependency. OpenMP task dependency

clauses are used to specify a serial ordering between sibling tasks. In the absence of task

dependencies, all sibling tasks logically execute in parallel. Thus when computing the critical

path in the presence of task dependencies, we can no longer assume that a node’s critical path

can only pass through at most one child P-node. Instead, to compute the serial work for a P-node,

we need to consider the serial work of all left P-node siblings that it depends upon since the child

P-node cannot begin execution until all of its dependent P-nodes complete execution. Further,

task dependencies are transitive. Thus, when computing a child P-node’s serial work, we need

to identify its longest chain of task dependencies (e.g., if P3 depends on P2, and P2 depends

on P1, then the longest chain of dependency is P3, P2, and P1). We handle this case in lines

16-23 in Algorithm 9. We use the helper function LONGESTDEPENDENCECHAIN to return

the set DP , the child P-node’s longest chain of dependent P-nodes. Since task dependencies

only imply a serial ordering between the left P-nodes child fragment W-nodes and not all the

W-nodes in its subtree (See example program in section 2.13), the algorithm uses another helper

function IMMEDIATEFRAGMENTS to return the set of child W-nodes of the P-node depends

upon as a result of task dependencies (line 17-18), name DW . Next, the algorithm updates the

serial work candidate, cd, by adding the sum of work of W-nodes in the DW set to it (line 19).

Consequently, if the algorithm updates the node’s critical path, the algorithm adds members of

DW to N.S (line 22 in Algorithm 9).

Illustrative Example. Figure 3.6 illustrates the steps involved to compute the work, serial

work, and critical path of OSPG nodes. The Figure highlights the bottom-up traversal of the

OSPG subtree rooted at P-node P3 from the example OSPG in Figure 3.2(b) when executing
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Figure 3.6: Execution of the PROCESSNODE when computing the work, serial work, and critical
path on the OSPG subtree from Figure 3.2. The node currently being processed is highlighted by
bold text in the table. The child node being examined is shown with dashed circles in the Figure.
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PROCESSNODE on each node. The table in each subfigure shows the quantities that the algorithm

updates after a call to the PROCESSNODE function. For brevity, the steps to process W-nodes and

internal nodes with one child node are omitted. For these nodes, their critical path is comprised

of the W-node or their single W-node child node.

Figures 3.6(a-c) show the steps to compute work, serial work, and critical path of the ST-node

ST3 by processing its child nodes from left to right. As each child node is processed, the work

and the critical path of ST3 is updated. In Figure 3.6(a), the algorithm updates the ST-node’s

critical path, ST3.S, to include the serial work of P4. Next, when processing W-node W5, the

algorithm does not update the ST-node’s critical path since W-node W5 executes in parallel

relative to P4. When processing child node P5 in Figure 3.6(c), the critical path of ST3 is

updated since the critical path candidate comprised of node P5 and its union with W5 performs

more work than the current critical path stored in ST3. Thus, after processing all child nodes

of ST3, its work, serial work, and critical path is correctly computed by the PROCESSNODE

function. Similarly, Figures 3.6(d-f) show how the PROCESSNODE function computes the work

and serial work on node P3 by processing its child nodes.

Generating the Program’s Parallelism Profile.

Once we compute the work and critical path of all OSPG nodes, the root node’s critical path R.S

consists of the W-nodes that constitute the program’s critical path. To generate the program’s

parallelism profile, we need to summarize this information to static locations. Generally, this

aggregation can be performed at different granularity levels. The two common options are

aggregating per static location of the OpenMP parallelism directives used in the program or

the calling context of each program fragment. In both cases, we need to maintain additional

location information for the program’s OSPG nodes. For OMP-ADVISER, we opted for the

former option since it requires maintaining a constant amount of information (i.e., filename

and line number) per internal OSPG node. However, the AGGREGATEPERSTATICDIRECTIVE

function used in Algorithm 9 can be adopted to aggregate at other granularities. For example,

aggregation at a calling context granularity is possible if we maintain the calling context of each

program fragment, which can be accomplished by using a stack unwinding library whenever a

new W-node is created.
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Computing serial Work per Static Directive. When constructing a program’s OSPG, as

described in Chapter 2, whenever the program encounters an OpenMP parallelism directive (i.e.,

parallel, for, task, etc.), it creates one or more internal OSPG nodes. We attribute the

location of the directive to the first OSPG node that is created in response to the encountered

directive. If a W-node represents a program fragment outside all OpenMP parallel regions, we

attribute it to an entry representing the program’s main function.

Algorithm 11 takes the program’s critical path, CP , and the set static locations, LC, and

computes the critical path contribution of each program directive by returning map H , which

maps each static location to the amount of work it performs on the critical path. The algorithm

first initializes the entries of map H to zero by iterating over the set of static locations, LC. Next,

the algorithm iterates over each W-node on the program critical path and attributes its work to

the corresponding entry in H . To find which location a W-node corresponds to, the algorithm

examines the nodes on the path towards the root node. We attribute the W-node’s work to the

location of the first internal node visited that has a non-empty location, ensuring that the W-node

is not attributed to more than one location. Intuitively, the W-node resides under the subtree

of the encountered internal node. Hence it represents a fragment of dynamic execution within

the body of the location it corresponds to (lines 7-13 in Algorithm 11. The OSPG root node

corresponds to the location of the main function in the program. Thus, the algorithm ensures

that each W-node will be attributed to exactly one location.

Aggregating per Static Directive. The final step in generating the program’s parallelism

profile is to aggregate work, serial work, and task creation overheads to each static directive in

the program. The main challenge to correctly perform this aggregation is that we must ensure we

do not attribute the measurements corresponding to a dynamic instance of an OpenMP directives

to more than one static directive. For example, in a program that uses nested tasks, we must be

careful not to double count work and serial when the subtree under the current node includes

another node with the same directive location information.

Similar to Algorithm 11, the AGGREGATEPERSTATICDIRECTIVE function (line 7 in Algo-

rithm 9) maintains a map with each static directive entry as its set of keys. In contrast, it maps

each static entry to its work, serial work, and aggregate task creation overhead. To update the

values in the map, the algorithm performs another bottom-up traversal of the program’s OSPG.
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Algorithm 11: Compute the critical path contribution of each static location in the
program
1 function COMPUTESERIALWORK(G,R,CP,LC)
2 foreach L 2 LC do
3 H(L) 0
4 end
5 foreach N 2 CP do
6 w  N.w
7 do
8 N  PARENT(N)
9 L LOC(N)

10 if L 6= ? then
11 break
12 while N 6= ?
13 H(L) H(L) + w

14 end
15 return H

For work and serial work values, whenever an internal node with a corresponding static directive

location is encountered, we update the map’s entry by adding the node’s work and serial work if

it is not subsumed by another node with the same location information. When examining a node,

a simple way to perform this check is to check for a node with the same location information on

the path to the root node. If such a node exists, the algorithm defers adding the work and serial

work value until the ancestor node is visited later in the bottom-up traversal of the program’s

OSPG. In contrast, aggregating the tasking overhead per static directive is simpler. We increment

the corresponding entry in the map during the bottom-up traversal for every internal node with a

tasking overhead measurement.

3.6.2 On-the-fly Profiling Mode to Compute Parallelism

In the on-the-fly profiling mode, OMP-ADVISER generates the program’s parallelism profile

based on Definition 3.6.1 without the need to generate log files and using additional analysis

mode to generate the parallelism profile. The main advantage of the on-the-fly mode over the

offline mode is that it does not need the entire OSPG to compute the program’s parallelism

profile.
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To compute the program’s parallelism profile on the-the-fly, we need to devise solutions to

the following challenges:

1. In an online setting, nodes may be removed from the OSPG as soon as the computation un-

der their subtree finishes. Further, for parallel fragments of execution, their corresponding

nodes may appear in different valid ordering in each execution of the program.

2. To generate the parallelism profile, we need to track the program’s critical path. However,

in an online setting, it is not clear a priori which fragments contribute to the program’s

critical path. Hence the algorithm should be able to deduce the critical path as the program

continues execution.

We devise two different solutions to address these challenges for on-the-fly profiling that

each have their trade-offs. The first solution supports the same programs supported in the offline

profiling mode, yet it requires keeping OSPG nodes in memory longer than the second solution.

The second solution deallocates OSPG as soon as they go out of scope8. However, this solution

supports a subset of OpenMP programs that do not have any ST-nodes in their OSPG (i.e., they

do not use taskwaits). This requirement simplifies identifying the program’s critical path when

having access to only a small slice of the program’s OSPG.

Online Analysis in the Presence of ST-nodes

This solution is highly inspired by the offline profiling mode algorithm described in Section 3.6.1.

It addresses the first challenge caused by profiling in an online setting by keeping the entire

subtree representing the current parallel region in memory until the parallel region finishes

execution, which delays OSPG node removal until the corresponding parallel region completes

execution.

The behavior of ST-nodes necessitates the need to keep OSPG nodes in memory until all

computation under its subtree completes execution. Unlike S-nodes, P-nodes, or W-nodes where

they establish either a series or a parallel relation between the W-nodes in their subtree and the

descendant W-nodes of their right sibling, for a descendant W-node on an ST-node, its nesting

8i.e., The node is popped from the per-thread stack as described in Section 3.3.1.
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(a) OpenMP program 
snippet

(b) Performance 
model

S1

P1

1 #pragma omp parallel num_threads(2)
2 {
3 #pragma omp single{
4 serial_work(1);
5 #pragma omp task{
6 serial_work(2);
7 #pragma omp task{
8 serial_work(2);
9 }
10 #pragma omp task{
11 serial_work(2);
12 }
13 #pragma omp taskwait
14 serial_work(3)
15 }
16 }

L4 1

ST1 W5W1

P4P2

W4W2 ST2

P3

W3

L14 3

-1

0

1

1

L6 2

L8 2

L11 2

Figure 3.7: (a) An OpenMP program snippet that uses tasking and taskwaits. (b) The program’s
performance model. the table under each W-node contains the corresponding line in the program
and its amount of work. the st_val of nodes is shown with a hexagon each to relevant nodes.

level and the encountering of taskwaits in ancestor tasks changes the series-parallel relation

between it and the descendant W-nodes the ST-node’s right sibling.

Thus, to correctly identify the critical path of an internal OSPG node with ST-node descen-

dants, we need to maintain its subtree until all its W-node fragments complete execution. After

this condition is met, we can be certain that the st_val of ST-nodes may no longer change, and

the series-parallel relation between all W-nodes remains constant. Thus, we can safely process

each internal OSPG node and compute the parallelism profile. The example, Figure 3.7 shows

an example OpenMP code snippet and its performance model where removing the subtree under

the P-node P1 as soon as its child ST-node completes execution will result in computing the

wrong critical path for an internal node in the OSPG.

First consider computing the work and critical path of P-node P1 using the offline mode (see

Algorithm 10). The algorithm processes node P1 child nodes from left to right, and determines

that the critical path of node P1 is comprised of the set of W-nodes {W1,W2,W5} performing

five units of work. Specifically, the algorithm identifies that even if W-node W3 is part ST-node
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ST1 critical path, it is not a part of node P1 critical path since W-nodes W3 and W5 execute

in series. Now consider an online algorithm that keeps track of P1 children work and critical

path by storing them in P1 as soon as their subtree completes execution. For some program

traces the subtree under ST-node ST1 completes execution before the fragment corresponding

to W-node W5 completes execution. When node ST1 finishes execution we store its critical

path, {W2,W3}, in its parent node P1. Later in the execution trace, W5 completes execution.

The information stored is P1 is insufficient to determine the series-parallel relation between

W-nodes W5 and {W2,W3}. If we simply assume that they execute in series, the online

algorithm generates an incorrect critical path {W1,W2,W3,W5} performing eight units work

for P-node P1. However, if we maintain the subtree under ST-node ST1, an online algorithm

will have enough information to correctly deduce the critical path.

Our online solution in the presence of ST-nodes takes a straightforward approach to generate

the program’s parallelism profile. The algorithm steps are listed as follows:

• Construct the program’s OSPG incrementally based on the description in Section 3.3.

• After executing a parallel region, perform the offline analysis algorithm on the entire

subtree corresponding to the completed parallel region. Summarize the information

in the subtree by updating the entries of a map (Similar to the map in Section 3.6.1).

Subsequently, deallocate the entire OSPG subtree.

• Repeat the above steps until the program completes execution. Use the map to generate

the parallelism profile.

Compared to offline profiling, the extra computation to update the parallelism profile at the

end of each parallel region adds additional run-time overheads. However, since this computation

is performed after the parallel region ends, it does not impact worker threads’ parallel execution.

This additional computation appears as if the barrier at the end of the parallel region has a

long waiting duration in the program’s execution trace. Thus, our proposed on-the-fly profiling

addresses the three challenges mentioned with profiling in an online setting.
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Online Analysis in the absence of ST-nodes

In programs with OSPG’s that contain no ST-nodes, a node’s serial work can be deduced from

its child nodes’ serial work computation. This property holds since unlike ST-nodes, the logical

series-parallel relations between the W-node descendants of S-nodes and P-nodes, and the

descendant W-nodes of their right siblings, once established, does not change. Hence, we can

leverage this property to devise an on-the-fly profiling algorithm that can deallocate OSPG

nodes as soon as they complete execution. Effectively, the profiling algorithm piggybacks on

the OSPG construction algorithm described in Section 3.3 by keeping additional state for each

OSPG node and updating them whenever the nodes are pushed and popped from the per-thread

stack used by OMP-ADVISER to construct the program’s OSPG.

In the absence of ST-nodes, we claim that the problem of computing the critical path of

an internal OSPG node from its children nodes has the optimal substructure property. Hence,

enabling a solution that can incrementally construct the node’s critical path while examining its

child nodes from left to right. Recall that a node’s critical path is the set W-nodes in its subtree

that execute serially and perform the largest amount of work. In the absence of task dependency,

a parent’s node critical path has two forms: (1) it does not include any W-node descendant from

its child P-nodes. In this case, the parent node’s critical path is comprised of the union of the

critical path of all its S-node and W-node children and (2) it includes one child P-node in its

critical path. In this scenario, the parent’s node critical path is the union of the P-node’s critical

path with the critical path of all left sibling S-nodes and W-nodes.

Based on OSPG nodes properties, in the absence of task dependency, two sibling P-nodes

execute in parallel. Hence the parent node’s critical path can only include the descendants

of one child P-node in its critical path. Algorithm 12 uses the above properties to compute a

node’s critical path with a single left to right scan of its child nodes. Each node maintains three

sets, LW is the set of the current child node’s left W-node siblings. LS is the set of W-node

descendants on the critical path of left S-node siblings. Lastly, CP is the set of the W-node that

constitute the current critical path candidate comprised of all already processed child nodes. At

each iteration, if the critical path candidate that includes the current child node performs more
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Algorithm 12: Algorithm to compute an internal OSPG node’s critical path form its
child nodes
1 function FASTPROCESSNODE(G,N)
2 N.LW  {}
3 N.LS  {}
4 N.CP  {}
5 foreach C 2 CHILDNODES(N) do
6 cu 

X

S2N.CP

S.w

7 cd 
X

S2N.LS

S.w +
X

S2N.LW

S.w +
X

S2C.CP

S.w

8 if cd > cu then
. update critical path

9 N.CP  N.LW [N.LS [ C.CP

10 switch NODETYPE(C) do
11 case S-node do
12 N.LS  N.LS [ C.CP
13 case W-node do
14 N.LW  N.LW [ C.w

15 end
16 end
17 return

work than the previously-stored critical path, the algorithm updates the current critical path with

the new candidate. At the end of the loop, the set CP will contain the node’s critical path.

Algorithm 12 assumes that the child nodes can be examined based on the left-to-right

ordering of OSPG nodes. We can use this algorithm in an online setting if we restrict OMP-

ADVISER online profiling to execute the application under test serially. However, executing

the application under test serially does not utilize the underlying hardware parallelism and can

result in high overheads. When an application executes in parallel, depending on the program’s

schedule and underlying hardware parallelism, sibling P-nodes may run in parallel. Thus sibling

P-nodes can complete in any permutation and go out of scope. Therefore, we need to adapt

Algorithm 12 for use in parallel execution of the application.

In addition, our online profiling algorithm must update the per static location map entries

with the amount of work, serial work, and tasking overhead measurements. Our online profiling

algorithm (shown in Algorithm 13) piggybacks on OMP-ADVISER’s OSPG construction to

compute the program’s parallelism profile on-the-fly. Whenever the construction algorithm
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Algorithm 13: On-the-fly profiling mode algorithm for program’s with no ST-nodes.
The function PUSHNODE occurs when adding a new OSPG node N as the child node
of P . The function POPNODE is called after the entire subtree under node N completes
execution and node N updates its parent node’s attributes before getting deallocated.
1 procedure PUSHNODE(P,N, t)
2 N.w  0
3 N.t t
4 N.LSW  {}
5 N.CP  {}
6 N.PSW  P.LSW

7 procedure POPNODE(P,N)
8 switch NODETYPE(N) do
9 case W-node do

10 N.w  READCOUNTER()
11 N.CP  {N}
12 P.LSW  P.LSW [ {N} // atomic update
13 case S-node do
14 P.LSW  P.LSW [N.CP // atomic update
15 case P-node do
16 L TASKLOC(N)
17 T (L) T (L) +N.t // atomic update
18 end
19 P.w  P.w +N.w // atomic update
20 P.CP  max(P.CP,N.CP [N.PSW ) // atomically update

parent’s critical path
21 if LOC(N) 6= ? then
22 D  D [ LOC(N)
23 AGGREGATENODEPERSTATICDIRECTIVE(N,H,D)

24 end

pushes a new node on the per-thread stack, the algorithm initializes the attributes of the new

node (lines 1-6 in Function PUSHNODE). Each node maintains the following five attributes:

1. Work (N.w). The node’s work. Upon node creation, it is set to zero.

2. Task creation cost (N.t). The node’s task creation cost. We attribute the estimated cost of

creating a task to a task P-node. For all other nodes, this value is set to zero.

3. Left Sibling Serial Work (N.LSW ). The critical path of all S-node and W-node child

nodes that have completed execution. It is initialized as the empty set.

4. Critical Path (N.CP ). The node’s critical path. It is initialized as the empty set.
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5. Parent’s Serial Work (N.PSW ). A snapshot of the parent node’s serial work at the time

of the child node’s creation. Effectively, this is the union of the critical path of all of the

child node’s left sibling S-node and W-node.

Whenever a node completes execution, it updates some of its attributes before summarizing

the information under its subtree by atomically updating some of its parent node’s attributes.

The key idea used by the on-the-fly profiling algorithm for computing a node’s critical path in a

parallel execution is to make a copy of the parent’s current serial work (i.e., the chain of serial

W-node descendants of the parent node’s completed child S-node and W-nodes) and store it in

whenever a child node is created (line 6 in Algorithm 13). The child node later uses this copy to

update the parent node’s critical path whenever the child node completes execution (line 14 in

Algorithm 13). Intuitively, this mimics the offline algorithm to update a node’s critical path (line

9 in Algorithm 12). By making this copy whenever a child node is created, OMP-ADVISER

can continue executing the OpenMP application under test without waiting for the computation

under the newly created child node’s subtree to complete. Whenever the child node completes

execution, it has access to sufficient information to update its parent node’s critical path if the

computation in the subtree rooted at the child node is part of the parent’s critical path.

Whenever a node is popped, OMP-ADVISER first checks if the current node is a W-node.

If so, it updates the node’s work directly by calling the function READCOUNTER. Next, the

algorithm sets the W-node’s critical path to a single element set comprised of itself. Lastly,

since the W-node has completed execution, we update its parent node’s left sibling serial work

attribute (line 11 in Algorithm 13) to include the current W-node as its newly completed child

W-node. Since the update at line 11 can be done by multiple child nodes in parallel, we need to

perform this update atomically to avoid data races. Similarly, suppose the node being popped is

an S-node. In that case, we update its parent node’s left sibling serial work attribute by adding

the current S-node’s critical path to its parent completed left sibling serial work attribute (line

13-14 in Algorithm 13).

For P-nodes, the on-the-fly profiling algorithm aggregates the tasking overhead per static

tasking directive. The function TASKLOCK is used to identify the P-nodes corresponding task
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directive. Next, the task directive location is used to index a map that aggregates the tasking

overhead per static location (lines 15-18 in Algorithm 13).

Next, OMP-ADVISER updates the parent node’s work by adding the current child node’s

work atomically (line 19 in Algorithm 13). Afterward, we conditionally update the parent node’s

critical path by comparing the parent node’s current critical path with the child node’s critical

path candidate. The critical path candidate is computed by taking the union of the child node’s

critical path with the parent node’s serial work, which is copied to the child node at the time of

its creation (line 20 in Algorithm 13).

Lastly, OMP-ADVISER updates each static directive’s aggregate work and serial work if the

current node corresponds to any OpenMP directives. The function AGGREGATENODEPERSTAT-

ICDIRECTIVE ensures that we do not double count the aggregation of these quantities. Before

adding the current node’s work and serial work to the aggregation map, the function checks the

path from the current node towards the root node. Suppose the path contains any node with the

same corresponding location. In that case, the algorithm does not include the current node’s

work and serial work to ensure that each program fragment is attributed to a static directive

exactly once.

On-the-fly Profiling Example. Figure 3.8 shows the execution of OMP-ADVISER’s on-

the-fly profiling algorithm (shown in Algorithm 13) for a program’s OSPG. The first image

(shown in Figure 3.8(a)) shows the initial state of the OSPG, which is comprised of a root S-node

and a W-node child node. Next, the following images illustrate the incremental changes in the

program’s OSPG. When a node completes execution and is about to be popped from the OSPG

(shown with a dashed circle in Figure 3.8), it updates the attributes of itself and its parent node

(the attribute changes are recorded in the table under each OSPG in Figure 3.8).

The next images highlight that the parallel computation under the root node can continue

execution without any interruptions. For example, the computation under the parallel P-nodes

complete after their right sibling S-node S2. When S2 completes execution (shown in Fig-

ure 3.8(e)), depending on the program’s schedule, P-nodes P1 and P2 may not have completed

execution yet. Thus, the longest sequence of serial W-nodes observed in the dynamic execution

so far is {W1,W4}, which is not the root’s critical path of {W1,W2}. However, as the child

P-nodes complete execution, they can update the root node’s critical path using the parent serial
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N W T LSW PSW CP

S1 360 0 {W1,W4} {} {W1,W2}

W1 50 0 {} {} {W1}

P1 150 20 {} {W1} {W2}

W2 150 0 {} {} {W2}

P2 100 25 {W3} {W1} {W3}

W3 100 0 {} {} {W3}

S2 60 0 {W4} {W1} {W4}

W4 60 0 {} {} {W4}

N W T LSW PSW CP

S1 360 0 {W1,W4} {} {W1,W2}

W1 50 0 {} {} {W1}

P1 150 20 {} {W1} {W2}

W2 150 0 {} {} {W2}

P2 100 25 {W3} {W1} {W3}

W3 100 0 {} {} {W3}

S2 60 0 {W4} {W1} {W4}

W4 60 0 {} {} {W4}

N W T LSW PSW CP

S1 110 0 {W1,W4} {} {W1,W4}

W1 50 0 {} {} {W1}

P1 0 20 {} {W1} {}

W2 0 0 {} {} {}

P2 0 25 {} {W1} {}

W3 0 0 {} {} {}

S2 60 0 {W4} {W1} {W4}

W4 60 0 {} {} {W4}

N W T LSW PSW CP

S1 210 0 {W1,W4} {} {W1,W3}

W1 50 0 {} {} {W1}

P1 0 20 {} {W1} {}

W2 0 0 {} {} {}

P2 100 25 {W3} {W1} {W3}

W3 100 0 {} {} {W3}

S2 60 0 {W4} {W1} {W4}

W4 60 0 {} {} {W4}

N W T LSW PSW CP

S1 50 0 {W1} {} {W1}

W1 50 0 {} {} {W1}

P1 0 20 {} {W1} {}

W2 0 0 {} {} {}

P2 0 25 {} {W1} {}

W3 0 0 {} {} {}

S2 - - - - -

W4 - - - - -

N W T LSW PSW CP

S1 50 0 {W1} {} {W1}

W1 50 0 {} {} {W1}

P1 0 20 {} {W1} {}

W2 0 0 {} {} {}

P2 0 25 {} {W1} {}

W3 0 0 {} {} {}

S2 0 0 {} {W1} {}

W4 0 0 {} {} {}

N W T LSW PSW CP

S1 0 0 {} {} {}

W1 0 0 {} {} {}

P1 - - - - -

W2 - - - - -

P2 - - - - -

W3 - - - - -

S2 - - - - -

W4 - - - - -

N W T LSW PSW CP

S1 50 0 {W1} {} {W1}

W1 50 0 {} {} {W1}

P1 - - - - -

W2 - - - - -

P2 - - - - -

W3 - - - - -

S2 - - - - -

W4 - - - - -

Figure 3.8: Execution of the on-the-fly profiling algorithm (shown in Algorithm 13) to compute
the parallelism profile of an example OSPG. Nodes that haven’t been created or have completed
execution are greyed out. Nodes being popped from the OSPG are marked with a dashed circle.
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work (PWS) attribute. When P1 completes execution (shown in Figure 3.8(g)), it compares

the longest chain of serial work with the candidate critical path in the root node (line 20 in

Algorithm 13). It replaces it since the candidate critical path performs more serial work (200 vs.

150).

The last image (Figure 3.8(h)) shows the OSPG when the program is about to complete

execution. At this point in the execution, the root node’s attributes correctly summarize the

computation in the entire OSPG. Further, sufficient information has been recorded by the

algorithm to generate the program’s parallelism profile9.

Algorithm Analysis

Offline Parallelism Profiling. During the profiling phase, For each program fragment, the

OSPG construction algorithm creates a constant number of OSPG nodes (i.e., one or two

new nodes per fragment) and performs O(1) operations per node creation. Hence, the offline

algorithm’s time overhead is O(1) for each program fragment. The space overhead of our offline

algorithm is O(TN), where T is the maximum number of worker threads used during program

execution and N is the nesting level of the program. This upper bound is derived by considering

the OSPG construction algorithm described in Section 3.3.1, the OSPG construction algorithm

maintains a slice of the OSPG per worker thread in memory as a stack of nodes. Each stack size

is bounded by the height of the program’s OSPG, which is proportional to the program’s nesting

level, O(N). Hence, the space overhead of the offline profiling algorithm is O(TN). Whenever

a node is popped from the per-thread stack, the offline algorithm must serialize the node. While

this serialization does not impact offline profiling’s asymptotic overhead, serializing nodes to

log files has a large overhead. We use standard buffering techniques to amortize the cost of

initiating IO requests.

Offline Analysis Algorithm. The offline analysis algorithm loads the entire program’s

OSPG in memory and performs a bottom-up traversal of the OSPG to generate its parallelism

profile. The number of W-nodes in the program’s OSPG is proportional to the number of

program fragments, O(F ). In the worst case, the number of OSPG nodes is O(FN). For

9Updates to the per static location map is not shown in the figure due to space constraints.
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example, a task-based OpenMP program where each task creates two child tasks results in an

OSPG with approximately FN/2 nodes. Loading the OSPG memory and traversing all nodes

to generate the parallelism profile indicates that the offline analysis algorithm’s time and space

overhead is O(FN).

Online Parallelism Profiling. Since we described an optimized version of the on-the-

fly profiling mode for programs that do not have an ST-node in their OSPG, the algorithm’s

asymptotic cost differs depending on the existence of ST-nodes in the program’s OSPG. In the

absence of ST-nodes, since the critical path of an OSPG can be inferred by only inspecting its

child nodes, the online analysis algorithm can safely deallocate OSPG nodes as soon as they

are popped from the worker thread’s stack. Thus, indicating that the asymptotic time and space

overhead of on-the-fly profiling mode in the absence of ST-nodes is similar to offline parallelism

profiling, O(1) per OSPG node and O(TN) space overhead. In contrast, in the presence of

ST-nodes, the on-the-fly profiling algorithm must keep all the OSPG nodes in the subtree rooted

at the S-node corresponding to the current parallel region in memory. This requirement results

in increased asymptotic memory overhead for this algorithm. For example, consider a program

where all the computation is solely performed within a single parallel region. For such example

programs, similar to the offline analysis profiling algorithm’s space overhead, the space overhead

is O(FN). Despite performing more operations per OSPG node, the asymptotic running time

of the algorithm remains at O(1) per OSPG node in the presence of ST-nodes.

In practice, most OpenMP programs use more than one instance of a parallel region during

execution, thus providing opportunities to reclaim OSPG nodes after each parallel region to save

memory. Our observations with testing OpenMP benchmarks indicate that the amount of space

needed by the on-the-fly profiling algorithm is small and is a fraction of the working set size of

the OpenMP application under test (See Section 3.9 for empirical results).

3.7 What-if Analysis

Once a profiling tool identifies program bottlenecks, the developer must decide which bottle-

necks to optimize. A standard solution to optimize program bottlenecks is to parallelize them.

However, parallelizing a program bottleneck requires domain knowledge and expertise. It is
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often considered a time-consuming process to devise concrete parallelization strategies for a

program’s serialization bottlenecks. Further, a program may have many candidate regions for

optimization. The developer may spend time optimizing a region that does not reduce the

program’s critical path. Ideally, it is desirable to avoid such situations. In this section, we

describe OMP-ADVISER’s what-if analysis that aims to assist developers in identifying regions

that matter for performance in the OpenMP application.

As described in Section 3.6, a program’s parallelism profile highlights the program’s scal-

ability bottlenecks regions. Program regions with low parallelism and performing significant

amount of work on the critical path are potential candidates for optimization. However, by just

looking at the program’s parallelism profile, it may not be clear which regions must be optimized

to resolve the program’s scalability bottlenecks. For example, optimizing a program region on

the critical path might shift the critical path to other regions that perform similar amounts of

work, thus not improving the program’s parallelism.

OMP-ADVISER’s what-if analysis uses its performance model to estimate the impact on a

program’s parallelism and its critical path when user-defined program regions are hypothetically

parallelized. The key idea that enables what-if analysis is that the OSPG, along with fine-

grained measurements of computation, can be used to quantify the change in parallelism in a

program. After using what-if analysis, OMP-ADVISER reports a what-if parallelism profile. The

what-if parallelism profile is similar to the program’s parallelism profile. Except, it estimates

the parallelism profile of the program when user-defined regions are parallelized. The what-

if parallelism profile enables the developer to infer which regions must be prioritized for

parallelization to address the program’s serialization bottlenecks.

OMP-ADVISER supports what-if analysis in two modes. In the first mode, named user-

defined what-if analysis, the developer chooses the program regions for what-if analysis. After a

what-if profiling execution, OMP-ADVISER reports the program’s what-if parallelism profile.

By comparing the what-if profile with the program’s parallelism profile, the developer can assess

the impact of parallelizing different program regions on the program’s parallelism, and focus on

concretely parallelizing them.

In the second mode, named automatic what-if analysis, instead of requiring the developer to

choose program regions for what-if analysis, they specify their desired target parallelism. With
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Figure 3.9: A data-parallel for loop executed serially and in parallel. (a) Serial program with
data-parallel loop (b) The serial program’s trace. (c) Performance model of the serial program.
(d) Parallelelized version of the program (e) The parallel program’s trace. (f) Performance model
of the parallelized program.

automatic what-if analysis, OMP-ADVISER iteratively performs what-if analysis on different

program regions until it finds a list of program regions that must be concretely parallelized to

achieve the target parallelism, or it determines that it is infeasible to reach the target parallelism

for the current input. This mode can improve developer productivity by automating the process

of choosing program regions for what-if analysis, and providing a list of regions that must be

parallelized to achieve the target parallelism. Next, we describe how OMP-ADVISER uses our

performance model to mimic the effects of parallelizing program regions.

Using OMP-ADVISER’s Performance Model to Estimate the Impact of Parallelizing

Program Regions. In an ideal system, parallelizing a program region by a given factor is

equivalent to reducing its serial work by the same factor. For example, Figure 3.9 shows

the effects of parallelizing a data parallel serial loop on its performance model. Effectively,

parallelizing the program by a factor of four, quadruples the amount W-nodes in the program.

The parallelized program performs the same amount of total work. However, each fragment will

perform a quarter of its original work.

OMP-ADVISER’s performance model captures the logical series-parallel relations between

different program fragments as W-nodes and attributes their work to each W-node. Inspired
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by the example in Figure 3.9, OMP-ADVISER’s approach to estimating the effects of paral-

lelizing a program region by a given factor, is to identify the set W-nodes corresponding to

the program region, reduce their serial work while keeping their total work the same, and to

recompute the program’s parallelism profile. OMP-ADVISER’s parallelism profile reports an

upper bound on the program’s speedup. We maintain this property in our what-if parallelism

profiles by assuming that a program region for what-if analysis corresponds to an embarrassingly

parallel [128] workload, where program fragments can parallelized into smaller tasks without

incurring additional communication. Hence, OMP-ADVISER assumes that a program region

can be parallelized into a bag-of-tasks, where the new task executes independently (Shown in

Figure 3.9(f)).

As described in Section 3.5, to better characterize performance bottlenecks in OpenMP

applications, its necessary to augment the performance model with OpenMP runtime costs.

Similarly, when performing what-if analysis, it is pertinent to take the increased runtime costs

associated with creating finer-grained parallelism into account. When computing the program’s

parallelism profile, OMP-ADVISER computes the average task creation cost per tasking directive.

When hypothetically parallelizing a program region for performing what-if analysis, since OMP-

ADVISER assumes that the region is parallelized into a bag-of-tasks, it attributes the average task

creation to each hypothetical new task and reports the what-if estimate for the average tasking

overhead per static location. Further, OMP-ADVISER puts a realistic limit of the granularity

of what-if parallelism profiling by not reducing the serial work of a W-node below a certain

empirical threshold that is a function of the average costs of task creation on the system.

3.7.1 User-defined What-if Analysis

In this mode, the developer selects the program regions used for what-if analysis. To select a pro-

gram region, the OMP-ADVISER library provides a pair of annotation calls What-if-Begin

and What-if-End, for the programmer to annotate a static program region with their specified

parallelism factor. In the profiling execution, OMP-ADVISER keeps track of program fragments

corresponding to the static region. When performing what-if analysis, OMP-ADVISER computes

the what-if parallelism profile of the application by reducing the serial work of the fragments of
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Algorithm 14: OSPG construction when a user-defined what-if annotation is encoun-
tered. The annotation includes its location in the program source.
1 procedure WHAT_IF_BEGIN(tid, start_loc)
2 Wi  nodes[tid].pop()
3 Wr  CreateWnode()
4 Wr.start_loc start_loc
5 Wr.parent nodes[tid].top()
6 nodes[tid].push(Wr)
7 return
8 procedure WHAT_IF_END(tid, end_loc)
9 Wr  nodes[tid].pop()

10 Wr.end_loc end_loc
11 Wj  CreateWnode()
12 Wj .parent nodes[tid].top()
13 nodes[tid].push(Wj)
14 return

each what-if region by the user-specified parallelism factor while keeping their total work the

same.

To distinguish a program fragment within a what-if region, during OSPG construction,

OMP-ADVISER creates a new W-node whenever the dynamic trace enters or exits a what-if

region. Creating additional W-nodes does not impact the series-parallel relation in the program.

Based on the definition of a fragment and W-nodes, two sibling W-nodes in place of a W-node

with the same amount of total are equivalent. However, this distinction between W-nodes ensures

that each static what-if region corresponds to a set of non-overlapping W-nodes, simplifying

tracking of what-if regions during profiling execution.

Offline What-if Profiling. To enable offline what-if profiling, the primary change during

the performance model’s construction is to track the W-nodes corresponding the a what-if region.

OMP-ADVISER tracks a W-node’s corresponding what-if region by maintaining two additional

attributes for each W-node. The start_loc and end_loc are used to identify which what-if

region a W-node belongs to, if any. They are set whenever the program’s execution encounters a

what-if region. Algorithm 14 shows OMP-ADVISER’s operations whenever a what-if region is

entered or exited during program execution. Later, when the performance model is serialized for

offline parallelism profile analysis, OMP-ADVISER records the what-if location of all W-nodes

and the parallelism factor of each what-if region.
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Algorithm 15: Compute input node N ’s work (N.w) and and the set of W-nodes on
its critical path (N.S) in what-if profiling mode.
1 function PROCESSNODEWHATIF(N)
2 if NODETYPE(N) = W-node then
3 N.S  {N}
4 R GETWHATIFREGION(N)
5 if R 6= ? then
6 N.sw  N.w/R.f
7 end
8 else
9 N.sw  N.w

10 end
11 return hN.w,N.sw,N.Si
12 end
13 N.w  0
14 N.sw  0
15 N.S  {}
16 LS  {}
17 LP  {}
18 foreach C 2 CHILDNODES(N) do
19 N.w  N.w + C.w

20 cu 
X

S2N.S

S.sw

21 cd 
X

S2LS

S.sw +
X

S2C.S

S.sw

22 switch NODETYPE(C) do
23 case P-node do
24 if HASDEPENDENCY(C) = True then
25 DP  LONGESTDEPENDENCECHAIN(C)
26 DW  IMMEDIATEFRAGMENTS(C)
27 cd cd+

X

W2DW

W.w

28 if cd > cu then
29 N.S  N.S \ LP
30 N.S  N.S [ C.S [DW
31 LP  C.S [DW
32 else if cd > cu then
33 N.S  N.S \ LP
34 N.S  N.S [ C.S
35 LP  C.S
36 case S-node _ W-node do
37 if cd > cu then
38 N.S  N.S \ LP
39 N.S  N.S [ C.S
40 LS  LS [ C.S
41 case ST-node do
42 hSTp, STsi  PARTITIONNODES(C.S)
43 if cd > cu then
44 N.S  N.S \ LP
45 N.S  N.S [ C.S
46 LP  STp

47 LS  LS [ STs

48 end
49 end
50 return hN.w,N.sw,N.Si
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Offline What-if Analysis. The offline algorithm to generate a program’s what-if parallelism

profile is similar to the Algorithms 9 and 10 described in Section 3.6.1 with some modifications

to reduce the serial work of W-nodes corresponding to annotated what-if regions. The main

changes occur in Algorithm 10. Algorithm 15 illustrates the node processing algorithm with

what-if analysis. In this algorithm, each node maintains an additional serial work attribute

(N.sw). When processing a W-node, the algorithm uses the GETWHATIFREGION function

to determine the what-if region it corresponds to. If the W-node node is part of any what-if

region, the algorithm reduces the node’s serial work by the region’s parallelism factor (lines 5-7

in Algorithm 15). If not, we set the W-node’s serial work to be the same as its work, resulting

in the same behavior as Algorithm 10 for W-nodes that do not belong to any what-if regions.

In addition, to incorporate the what-if analysis W-nodes’ reduced serial work unto the internal

nodes of the OSPG, computing the current critical path and the critical path candidate (lines

20-21 in Algorithm 15) is based on each node’s serial work attribute instead of its work attribute.

On-the-fly What-if Profiling. Similarly, we can support On-the-fly what-if profiling by

slightly modifying Algorithm 13. Similar to offline what-if analysis, we need to add a serial

work attribute for each node. Further, when a W-node corresponding to a what-if region finishes

executing and is popped from the per-thread stack (line 9-12 in Algorithm 13, we need to reduce

its serial work by the user-specified parallelism factor (similar to lines 5-7 in Algorithm 15).

3.7.2 Automatic What-if Analysis

In this mode, the developer provides a target parallelism that they wish to achieve when they

devise concrete strategies to parallelize the program. With automatic what-if analysis, OMP-

ADVISER iteratively chooses different regions for what-if analysis and assesses the changes

in parallelism. After completion, OMP-ADVISER returns a list of program regions, sorted by

their impact on the program’s parallelism, that must be parallelized to reach the user’s target

parallelism, or it reports that it could not identify such a list.

Recall that to perform what-if analysis, we need to know the corresponding static source

location for W-nodes. In user-defined what-if analysis, we track this correspondence by using

manual annotations. For automatic analysis, it is unrealistic to expect the user to annotate all

program regions manually. Instead, OMP-ADVISER tracks the start and end location for each
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W-node in the performance mode, which effectively makes it possible to apply what-if analysis

to all static locations in the program.

A naive solution to our problem is for OMP-ADVISER to perform what-if analysis on all

program regions, check if the target parallelism is met, and return the list of all program regions.

However, returning such a list provides no new insights for the developer. Ideally, we want the

returned list to be in descending order of impact on the program’s parallelism. Further, we want

the list to contain the minimal set of regions required to reach the target parallelism. Intuitively,

when designing concrete optimization strategies, other things being equal, a developer would

want to prioritize optimizing a region that has more impact on the program’s parallelism and

achieve the target program parallelism by optimizing the smallest number of regions.

In a program with N candidate regions for what-if analysis, there exists N ! permutations

to choose the ordering of program regions for what-if analysis. One way to sort the regions

based on their impact on the program’s parallelism is to iterate over all possible permutations,

apply what-if analysis based on the ordering in the permutation, and report the permutations that

reach the target parallelism with the least number of regions. However, due to the fast growth of

factorial function, this solution does not scale for programs with more than twenty regions.

To scale OMP-ADVISER’s automatic what-if analysis algorithm for larger applications, we

use a heuristic to greedily determine the ordering of program regions. Our heuristic prioritizes

program regions that perform the largest amount of work on the program’s critical path. The

rationale with this heuristic is that in an ideal system (i.e., a system with no runtime overhead),

parallelizing the region that performs the most amount of serial work on the critical path

is guaranteed to reduce the program’s critical path the most. Hence, resulting in the most

improvement in the program’s parallelism. To reach a target parallelism, iteratively choosing

the next program region that performs the most work on the critical path results in a list with a

minimal number of regions to parallelize on an ideal system. The chosen regions are sorted in

descending order of impact on the program’s parallelism.

Algorithm 16 illustrates the steps involved to automatically generate a list of program regions

to reach a target parallelism. First, the algorithm takes the program’s performance model M ,

and the target parallelism we wish to achieve t as input and initializes the list of program regions

to an empty list. Next, the algorithm generates the program’s parallelism profile, updating the
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Algorithm 16: Automatically generate a list of program regions that, if parallelized, the
program’s parallelism becomes greater or equal to the target parallelism. Conversely,
the algorithm may terminate early without being able to produce such a list.
1 function AUTOMATICWHATIFPROFILE(M, t)
2 L INITLIST()
3 hM,Ci  PARALLELISMPROFILE(M)
4 do
5 hM,C, pi  WHATIFPROFILE(M,C,L)
6 if C = ? then
7 return hfail, p, Li
8 L APPENDLIST(L,C)
9 if p � t then

10 return hsuccess, p, Li
11 while True

program’s performance model, and returning the program region10 C that currently performs

the most amount of serial work on the program’s critical path (line 3 in Algorithm 16). Next,

the algorithm’s main loop is used to iteratively perform what-if analysis on the program region

currently performing the most amount of work on the critical path.

At each iteration, the algorithm generates the program’s what-if profile, updating the pro-

gram’s performance model, choosing a new program region that performs the most amount of

serial work on the critical path, and the program’s parallelism after performing what-if analysis.

We pass the list of program regions to the what-if profile generator to ensure that the function

returns a new program region C that has not been added to L in previous iterations, avoiding

a potential infinite loop. Subsequently, if the current round of what-if analysis identified such

a new region, the algorithm adds it to the result list L. If not, the algorithm reports that it has

failed to find a list of regions to reach the target parallelism. At the end of an iteration, the

algorithm checks if the program’s parallelism is greater or equal to the target parallelism. If so,

the algorithm successfully completes, returning the list of regions to optimize to reach the target

parallelism and the possible parallelism that may be achieved after optimizing them. Otherwise,

the program continues to the next iteration to identify a new region to add to the list.

10A program region is comprised of a start and end location, as described in Section 3.7.1, and is used to specify a
what-if analysis region.
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1 double sum = 0;
2 for(int i = 1; i <= N; ++i)
3 {
4 sum += map(i);
5 }
6 return sum;

Map(1-N/4) Map(N/4-N/2) Map(N/2-3N/4) Map(3N/4-N)

1 double p_sum[4] = {0};
2 double sum = 0;
3 #pragma omp parallel num_threads(4)
4 {
5 int tid = omp_get_thread_num();
6 #pragma omp for schedule(dynamic, N/4)
7 for(int i = 1; i <= N; ++i)
8 {
9 p_sum[tid] += map(i);
10 } 
11 }
12 for(int i = 0; i<4; ++i)
13 sum += p_sum[i];
14 return sum;

Time

Work = 1260
Serial work = 330
Parallelism = 3.8 

(a) Serial Program

(c) Parallelized Program

(b) Serial Execution

(d) Parallel Execution

Map(1-N/4)

Map(N/4-N/2)

Map(N/2-3N/4)

Map(3N/4-N)

Time

Figure 3.10: (a) A data-parallel for loop performing a simple map-reduce computation. (b)
the serial for loop execution trace. (c) An OpenMP conversion of the serial application. The
program has work inflation caused by false sharing on variable p_sum. The execution trace of
the parallel for loop (lines 6-10 in Figure 3.10). Because of false sharing, the parallel version
performs more work compared to the serial program.

3.8 Differential Analysis with OMP-ADVISER

The OpenMP API enables developers to add incremental parallelism to their applications.

Different worksharing and tasking constructs are used to divide serial fragments of execution

between different worker threads to reduce the program’s critical path. Commonly, OpenMP

constructs are used to break down a problem into smaller subproblems and then solve them

in parallel. For data-parallel computation, it might seem reasonable to the developer that by

breaking down the problem into N subproblems, the critical path to reduce by a factor of N ,

thus achieving scalable speedup.

However, when executing a parallelized program on actual hardware, the developer may not

observe their expected speedups. One primary source of bottlenecks in parallel applications is

caused by unintended resource contention caused by executing the application on hardware with

parallel execution units. This unintended resource contention may be a result of the underlying
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microarchitecture design choices on modern parallel hardware. Unintended resource contention

on parallel hardware manifests as additional work performed by each thread. In such cases, the

parallel execution performs more total work than the serial execution for performing the same

computation on the same input.

Increased work performed by the parallel execution of an application is a well-known cause

for a lack of scalability in parallel applications. It is commonly referred to as parallel work

inflation [13, 150]. For example, consider the data-parallel for loop shown in the code snippets

in Figure 3.10(a) and (c). The code snippet represents a data-parallel computation where the

elements of the map function are summed up and returned as the result of the computation.

Figure 3.10(c) shows an attempt at parallelizing the code with OpenMP’s parallel for construct

to execute on a 4-core system. Since the calls to the map function are independent, and the

computation is embarrassingly parallel, the developer expects to see scalable speedup close

to 4⇥ over serial execution. However, when executed on a modern multi-core processor, the

program has a speedup of 1.2⇥ over serial execution. The lack of scalable speedup is caused by

unintended resource contention on multiprocessors cache lines known as false sharing [40].

In modern multiprocessors, each processor has a local cache. The cache coherency protocol

ensures a consistent view of memory. Whenever a processor writes to a cache line, the cache

coherency protocol invalidates the cache line of other processors. When the other processors

access variables from the invalidated cache line, they incur a performance hit caused by a cache

miss of the invalidated cache line. In the example program in Figure 3.10(c), the developer has

avoided true sharing by using per-thread partial sums variables p_sum[i], however the four

elements of the p_sum array are mapped to the same cache line. Thus, the writes to elements of

p_sum result in false sharing.

The false sharing in the example program in Figure 3.10(c) results in each processor spending

more cycles to perform the same computation from the serial execution from the program in

Figure 3.10(a), leading to parallel work inflation. When looking at the two programs’ execution

traces in Figure 3.10(b) and (d), we observe that compared to the serial execution, the parallelized

version achieves an almost 4⇥ improvement in parallelism. However, since parallel work

inflation has resulted in increased total work and serial work in the parallelized program, it does

not achieve scalable speedup. Thus, we recognize that looking at the program’s parallelism
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alone is not sufficient and may even be misleading in identifying the source of performance

bottlenecks in programs that suffer from parallel work inflation.

The importance of identifying and lowering parallel work inflation in OpenMP programs

has been explored in prior tools [150]. However, these tools primarily focus on identifying

work inflation at the program level. In this section, we utilize our performance model to extend

OMP-ADVISER with a differential analysis technique aimed at identifying and pinpointing

program regions that exhibit work inflation.

Differential profiling [130, 173] is an effective technique to identify performance issues in

applications. Typically, performance analysis tools produce a performance report for a single run

of the application. Suppose the user wishes to assess the impact of changing a parameter on an

application’s performance characteristics. In such cases, they must run the performance analysis

tool twice and compare the generated performance reports’ manually. Manually comparing

reports generated by performance analysis tools could be time-consuming and not helpful in

pinpointing the bottleneck’s source. The basic idea behind differential profiling is to automate

this process. With differential profiling, performance measurements are performed multiple

times under different conditions (i.e., varying program or system parameters). Afterward, The

measurements are compared to gain additional insight into performance issues in the application,

reporting a differential profile to characterize the impact of the changed parameter on the

application’s performance profile. OMP-ADVISER’s differential analysis uses its performance

model to pinpoint program regions that are likely suffering from unintended resource contention.

3.8.1 Differential Analysis Approach

To use differential profiling to identify parallel work inflation, we need to compare the perfor-

mance model of the parallel execution with the performance model of an execution that does

not suffer from parallel work inflation. Second, we need to ensure that the two performance

models remain comparable. If we satisfy these two conditions, we can apply differential analysis

to pinpoint which program regions suffer from parallel work inflation by comparing the two

performance models.

For a given input, assuming the program is deterministic, the logical series-parallel relations

between program fragments do not change for different program interleavings or when varying
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Figure 3.11: (a) Performance model of the single thread execution of the program in Fig-
ure 3.10)(c). (b) Performance model of the parallel execution of the program in Figure 3.10)(c)
with four worker threads.

the number of worker threads. Thus, program fragments and their series-parallel relations are

encoded similarly by the program’s OSPG when executed serially by a single worker thread or

in parallel by multiple threads. This property is the key enabler for our differential profiling

approach to identify parallel work inflation. Namely, we choose the single-threaded OpenMP

execution of the program to estimate an oracle execution with no work inflation. Our differential

profiling technique compares the performance model of the single-threaded OpenMP execution

of the application with its parallel execution. Since the two performance models are comparable

(i.e., they identify the same set of fragments and critical path), we can compare them to identify

program regions that suffer from work inflation. Specifically, our differential profiling technique

enables fine-grained identification of regions with parallel work inflation. Thus, the addition of

differential profiling to parallelism profiling and what-if analysis enables OMP-ADVISER to

identify the primary sources of bottlenecks in parallel applications11.

11Lack of parallelism, runtime overheads, and work inflation.
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For example, consider the performance models of the OpenMP program in 3.10(c) when

executed with one worker thread and when executed in parallel with four worker threads. The

two performance models are shown in Figure 3.11(a) and (b). Note that the two performance

models contain W-nodes that represent the same set of program regions12. Further, for a pair of

W-nodes in the single thread execution of the application, there always exists a corresponding

pair of W-nodes in the parallel execution that encodes their logical series-parallel the same as the

serial execution. For instance, the pair of W-nodes (W3,W7) that execute serially in the single

thread execution have a corresponding pair of (W6,W10) in the parallel execution. Hence,

there is a mapping from each W-node in the single thread execution to one or more W-nodes in

the parallel execution. We use this mapping between W-nodes of the two executions to identify

the W-nodes experiencing work inflation in the parallel execution.

The parallelism profile of the single thread execution and the parallel execution with four

threads is shown in Figure 3.11(c). Despite work inflation in the parallel execution, the two

profiles appear similar since the work inflation has occurred uniformly across all worker threads.

Our differential analysis aims to summarize the difference between the two performance models

and highlight work inflation to the user. The result of applying differential analysis on the

program from Figure 3.10(c) is presented in the differential profile in Figure 3.11(d). For each

program region, the differential profile reports: (1) the amount of work inflation, which is the

ratio of the region’s work in parallel execution over its single thread execution. (2) Critical

path work inflation: the ratio of a region’s critical path work in the parallel execution over its

single thread execution. From the example program’s differential profile, we can identify that

the program region corresponding to the worksharing loop at lines 7-10 in Figure 3.10(c) suffers

from work inflation. Despite performing the same number of iterations in both executions, there

is a large increase in the work performed in the parallel execution compared to the single thread

execution. Overall, program regions that perform a large amount of work on the critical path and

exhibit larger than 1 work inflation are good candidates for optimizing program performance.

It is worth noting that the parallel execution may have additional W-nodes and internal nodes

compared to the single thread execution. The increased W-nodes in the parallel execution’s

12We assume that the program is deterministic for a given input. Hence both executions take the same branches in
their dynamic trace.
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performance model is caused by the SPMD (single program, multiple data) execution of the

worker threads within a parallel region that are not enclosed inside a worksharing or a tasking

construct. For example, the code region that uses omp_num_threads function to get the

current worker thread’s number falls under this category (lines 4-6 in Figure 3.10(c)). In such

scenarios, a W-node in the serial execution maps to N W-nodes in the parallel execution with N

worker threads. In the performance model of the program in Figure 3.10(c)), W-node W2 in the

single thread execution corresponds to W-nodes (W2,W3,W4,W5) in the parallel execution

with four worker threads (as shown in Figure 3.11). For the example program, this scenario

causes the differential profile to report a 4⇥ work inflation for the program region at lines 4-6 in

the program from Figure 3.10(c). When performing differential analysis, we keep the program

input the same across both executions to observe strong scaling in the application (i.e., keeping

total work the same across executions while increasing hardware parallelism). However, for

SPMD fragments, the number of worker threads in the program is part of the program input

and changes the amount of work performed by each worker thread depending on the number of

worker threads. For such SPMD regions, the work inflation metric is not a good indicator of

scalability bottlenecks. Instead, we need to examine the critical path work inflation to assess

if the region is suffering from work inflation. If the critical path work inflation is close to 1, it

indicates that the SPMD region does not have work inflation, as shown for our example program

in Figure 3.11(d).

Still, an SPMD fragment that performs work proportional to the number of worker threads can

produce misleading differential profiling results for its regions. For example, the SPMD fragment

can use the OpenMP library function to omp_get_num_threads to perform more or less

work worker-thread compared to its single thread execution. Hence, reading the differential

profiling results for SPMD regions must be done with caution. In practice, with the introduction

of worksharing constructs, this type of ad hoc work distribution among worker threads is no

longer common in OpenMP applications. However, since such programs are still valid OpenMP

programs, the takeaway point of treating the differential profile values corresponding to SPMD

program regions remains the same.
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3.9 Evaluation

In this section, we discuss the evaluation of OMP-ADVISER. We start by providing a brief

description of the OMP-ADVISER prototype and our experimental setup. Next, we report the

results of our experimental evaluation. We designed these experiments to answer the following

research questions: (1) Can OMP-ADVISER effectively identify performance bottlenecks? (2)

Does addressing the performance bottlenecks reported by OMP-ADVISER result in improved

performance? (3) What are the analysis overheads of using OMP-ADVISER with different

OpenMP applications? (4) How does OMP-ADVISER compare to other state-of-the-art OpenMP

performance analysis tools?

As a performance analysis tool, OMP-ADVISER can report performance bottlenecks. How-

ever, it does not attempt to address these bottlenecks automatically. For our experimental

evaluation, we were able to use OMP-ADVISER as a guide to finding performance bottlenecks.

In some cases, we were able to address the identified bottlenecks and observed improved

speedups. However, addressing all performance bottlenecks reported by OMP-ADVISER is

challenging and requires domain-specific knowledge.

Prototype. The OMP-ADVISER prototype can analyze C/C++ OpenMP applications. Our

prototype is comprised of a library that is linked with the application under test, supporting both

offline and on-the-fly profiling modes and a standalone analyzer to perform offline-analysis.

As described in Section 3.3.1, OMP-ADVISER utilizes OMPT callbacks to intercept OpenMP

runtime events and construct the program’s OSPG and perform fine-grained measurements.

Our prototype works with LLVM-10 and its OpenMP runtime implementation. To perform

fine-grained measurements, OMP-ADVISER uses perf_events module on Linux to measure

work using different metrics such as execution cycles or dynamic instruction. Our prototype is

publicly available [34].

Experimental Setup. All experiments in this section are performed on an Ubuntu 16.04

machine with a 16-core Xeon 6130 processor running at 2.1GHz and with 32GB of memory.

We disabled dynamic frequency scaling and hyper-threading to ensure that our results remain

consistent across different runs and among tested tools. Further, all tests were performed with

the LLVM-10 release branch with the included OpenMP runtime.
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Table 3.1: List of OpenMP benchmarks used for evaluating OMP-ADVISER
Benchmark Application Description Input

PBBS BFS Run a breadth first search on a directed graph 40M
PBBS CompSort Sort a sequence given a comparison function 100M
PBBS Convex Hull (CH) Compute the convex hull of a set of points in 2D plane 100M
PBBS Delaunay Triangulation (DT) Compute Delaunay triangulation of a set of points in 2D plane 10M
PBBS Delaunay Refinement (DR) Refine a Delaunanay triangulation given in input angle 5M
PBBS Dictionary Perform dictionary operations 100M
PBBS Integer Sort (ISORT) Sort fixed-length unsigned integer keys 100M
PBBS Maximal Independent Set (MIS) Compute maximal independent set of the input graph 10M
PBBS Maximal Matching (MM) Compute maximal matching of the input graph 40M
PBBS Nbody Forces (NBODY) Solve n-body force calculation problem for a set of points in 3D space 1M
PBBS K-Nearest Neighbors (KNN) Find k nearest neighbors of a set of points 10M
PBBS Ray Cast Find the intersection of input rays and triangles default
PBBS Remove Duplicates Remove duplicate items from a sequence of input objects 100M
PBBS Spanning Forest (SF) Compute a valid spanning forest for input undirected graph 10M
PBBS Minimum Spanning Forest (MSF) Compute minimum spanning forest of for input weighted undirected graph 10M
PBBS Suffix Arrays (SA) Generate suffix array of input string 100M
BOTS Alignment Align a sequences of proteins prot.100
BOTS FFT Compute a Fast Fourier Transformation 225

BOTS Floorplan Compute the optimal placement of cells in a floorplan input.20
BOTS Fibonacci Compute Nth Fibonacci number 47
BOTS Knapsack Solve the Knapsack problem input.040
BOTS Health Simulates a country health system large
BOTS Nqueens Finds solutions of the N-Queens problem 15
BOTS Sort Use a mixture of sorting algorithms to sort a vector 225

BOTS SparseLU Compute the LU factorization of a sparse matrix 100⇥ 100
BOTS Strassen Compute matrix multiplication with Strassen’s method 212 ⇥ 212

Coral AMGmk Algebraic multigrid solver microkernel 50k
Sequoia IRSmk 27-point stencil loop kernel input_50
Coral Lulesh Performs a hydrodynamics stencil calculation default
SPEC KDTree Build a k-d tree using random coordinate points ref
Coral2 Quicksilver Monte Carlo transport benchmark Coral2_P_1

Benchmarks. We evaluate OMP-ADVISER with a set of different OpenMP application

chosen from different benchmarks suites from Coral [1], Sequoia [107], PBBS [178], BOTS [63],

Kastros [2], and SPEC [179]. The benchmarks are listed in Table 3.1, including a description

and the input used to analyze the application. Some applications, such as Lulesh and Quicksilver,

use MPI + OpenMP for parallelism. To test them with OMP-ADVISER, we built and ran

them with MPI disabled. By default, the PBBS applications are not OpenMP applications. We

ported them to OpenMP. Our ported PBBS applications exist in two variants, one using static

loop scheduling and the other using dynamic loop scheduling. All other OpenMP benchmarks

were left unchanged. To run an OpenMP application with a single thread for OMP-ADVISER’s

differential analysis, we set the number of worker threads to one using the OMP_NUM_THREADS

environment variable.
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3.9.1 Effectiveness of OMP-ADVISER in Identifying Scalability Bottlenecks

We used OMP-ADVISER with the set of benchmarks and report the initial program speedup13,

parallelism, and tasking overhead percentage14 in Table 3.2. Since our test setup uses a 16-core

processor, we consider speedup values close to 16⇥ as good program speedups. To achieve

scalable speedup, the program should have more parallelism than the target core count. Further,

a higher parallelism value also helps with reducing load imbalance among worker threads.

However, having a very high parallelism value can negatively impact the program speedup if the

aggregate cost of task creation becomes comparable to the amount of work performed by a task

or results in parallel work inflation. For benchmarks that do not use OpenMP tasking constructs,

the amount of tasking overhead is reported as 0% in Table 3.2.

Benchmarks with Serialization Bottlenecks

After computing the parallelism profile of the applications listed in Table 3.2 and observing

their speedup, the benchmarks described next exhibit low logical parallelism and low speedup.

Thus, indicating that these applications could have serialization bottlenecks or load imbalance.

In the use cases that follow, we improved the program’s parallelism by addressing some of the

bottlenecks reported by OMP-ADVISER and improved the application’s speedup on our test

system. Unless stated otherwise, the parallelism profiles shown in this section use execution

cycles as their work measurement unit. Further, the parallelism profiles shown in the upcoming

figures do not show all regions in the program’s parallelism profile. Instead, we only show the

relevant program regions to keep the figures concise.

AMGmk. The AMGmk benchmark from the LLNL Coral benchmark suite [1] is an

algebraic multigrid solver that uses OpenMP for parallelization. The program is made of three

main kernel functions - a compressed sparse matrix multiply, an algebraic mesh relaxation, and

an axpy vector operation. Initially, the speedup over serial execution on a 16-core machine was

7.16⇥. To understand bottlenecks, we used OMP-ADVISER to generate its parallelism profile,

which is shown in Figure 3.12(a). The entire program has a parallelism of 10.46 and regions

13Speedup over serial execution is measured as the ratio of the serial program execution over parallel execution.
14Defined as the percentage of aggregate task creation costs over the program’s aggregate work.
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Table 3.2: List of OpenMP benchmarks used for evaluating OMP-ADVISER

Application Parallelism Tasking Overhead% Initial Speedup

BFS 47.68 0% 5.56⇥
CompSort 13.01 0% 3.77⇥
Convex Hull (CH) 2.31 0% 2.10⇥
Delaunay Triangulation (DT) 1.32 0% 1.23⇥
Delaunay Refinement (DR) 19.63 0% 4.00⇥
Dictionary 719.86 0% 7.55⇥
Integer Sort (ISORT) 40.21 0% 3.36⇥
Maximal Independent Set (MIS) 42.9 0% 6.13⇥
Maximal Matching (MM) 250.4 0% 7.19⇥
Nbody Forces (NBODY) 1.13 0% 1.07⇥
K-Nearest Neighbors (KNN) 72.05 0% 4.11⇥
Ray Cast 5.74 0% 4.16⇥
Remove Duplicates 150.2 0% 4.76⇥
Spanning Forest (SF) 8.92 0% 4.19⇥
Minimum Spanning Forest (MSF) 2.93 0% 1.94⇥
Suffix Arrays (SA) 2.68 0% 1.93⇥
Alignment 501.75 8.53e�3% 15.87⇥
FFT 114.99 9.01% 9.10⇥
Floorplan 130.6 0.11% 15.08⇥
Fibonacci 122.98 6.53e�4% 14.75⇥
Knapsack 9913.71 43.82% 118.92⇥
Health 168.56 8.67e�2% 14.13⇥
Nqueens 851.63 5.82e�4% 15.78⇥
Sort 8929.28 2.33% 13.32⇥
SparseLU 119.93 3.30e�2% 14.73⇥
Strassen 31.52 5.93e�4% 8.69⇥
AMGmk 10.46 0% 7.16⇥
IRSmk 13.56 0% 3.06⇥
Lulesh 12.86 0% 4.56⇥
KDTree 550.78 20.01% 1.14⇥
Quicksilver 13.05 0% 11.07⇥

Location Parallelism Serial 
Work %

main 10.46 35.46

relax.c:91 15.89 36.36

csr_matvec.c:176 15.79 20.16

vector.c:383 14.81 3.32

(a) Initial parallelism profile

Location Parallelism Serial 
Work %

main 12.83 21.44

relax.c:91 15.93 45.54

csr_matvec.c:176 15.86 24.74

vector.c:383 14.88 4.32

(b) What-if profile

Location Parallelism Serial 
Work %

main 13.01 17.70

relax.c:91 15.89 44.11

csr_matvec.c:179 15.71 20.16

vector.c:383 14.72 4.05

(c) Final parallelism profile

Figure 3.12: Parallelism profile for AMGmk. (a) parallelism profile on the original program.
(b) what-if profile after manually annotating selected regions. (c) The parallelism profile of the
program after concretely parallelizing the regions selected using what-if analysis.



130

Location Parallelism Serial 
Work %

main 13.05 7.53

mc_omp.hh:4 14.03 92.47

(a) Initial parallelism profile

Location Parallelism Serial 
Work %

main 87.02 58.07

mc_omp.hh:4 206.18 41.93

(b) What-if profile

Location Parallelism Serial 
Work %

main 89.35 43.50

mc_omp.hh:4 190.99 46.50

(c) Final parallelism profile

Figure 3.13: Parallelism profile for Quicksilver. (a) parallelism profile on the original program.
(b) what-if profile after manually annotating selected regions. (c) The parallelism profile of the
program after concretely parallelizing the regions selected using what-if analysis.

that are not associated with any OpenMP constructs constitute 35.46% of the program’s critical

path (i.e., lines corresponding to main in the tables shown in Figure 3.12(a)). Upon examining

the source code, we observed that parallel regions were interspersed with serial code fragments.

We used user-defined what-if analysis to annotate the first of these four regions to estimate the

increase in parallelism when this region is optimized by 16⇥. The what-if profile showed a

slight increase in parallelism from 10.46 to 10.95. To further increase the program’s parallelism,

we annotated one more serial region and generated the program’s what-if profile when both

regions are hypothetically parallelized on 16-cores. Figure 3.12(b) shows the what-if parallelism

profile where the parallelism of the program increases to 12.83. Subsequently, we examined

these regions closely to parallelize them. The first region in the sparse matrix multiply kernel

contains a for loop that initializes a vector and performs the algebraic operation on each vector

element. Similarly, the second region contained the vector operation kernel with for loops. We

parallelized both regions with an OpenMP worksharing for loop construct. The parallelism

profile after concrete parallelization of the program is shown in Figure 3.12(c), which almost

attains the same parallelism as the estimate from what-if analyses. Moreover, the program’s

speedup increased from 7.16⇥ to 8.93⇥ on a 16-core machine.

QuickSilver. Quicksilver [3] is a Coral application that solves a simplified dynamic Monte

Carlo particle transport problem. We configured it to run on a single node machine by disabling

MPI and used the Coral2_P_1 input to profile the program. The program has a parallelism of

13.05 (Figure 3.13(a)). The program is comprised of a single kernel that is parallelized using an

OpenMP worksharing for loop that iterates over the number of particles being simulated. We

annotated the body of the loop and used what-if analyses to check if the parallelism increases

when it is optimized by 16⇥. Figure 3.13(b) presents the what-if profile that shows the increase
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Location Parallelism Serial 
Work %

main 1.32 98.60

delaunay.c:258 25 1.15

sequence.h:275 1.99 0.17

(a) Initial parallelism profile

Location Parallelism Serial 
Work %

main 15.08 85.26

delaunay.c:258 24.67 12.23

sequence.h:275 2.22 1.53

(b) What-if profile

Location Parallelism Serial 
Work %

main 33.1 33.04

delaunay.c:243 71.71 34.45

delaunay.c:258 23.42 27.30

sequence.h:275 2.21 3.18

(c) Final parallelism profile

Figure 3.14: Parallelism profile for Delaunay Triangulation. (a) parallelism profile on the original
program. (b) what-if profile after manually annotating selected regions. (c) The parallelism
profile of the program after concretely parallelizing the regions selected using what-if analysis.

in parallelism for both the worksharing loop (to 206.18) and the program (to 87.02). We noticed

that the loop was using static scheduling, which resulted in some load imbalance between the

worker threads. We changed the loop scheduling clause to use dynamic scheduling and increased

the chunk size by a factor of 16. Figure 3.13(c) shows the final parallelism profile after this

optimization. The program’s speedup increased from 11.07⇥ to 12.45⇥ on a 16-core machine.

Delaunay Triangulation. This PBBS application [178] computes the Delaunay triangula-

tion of a given a set of points in the 2D plane. The program has an initial speedup of 1.23⇥.

Figure 3.14(a) shows that the low speedup can be explained by the program’s low parallelism

of 1.32 and that most of the program’s work (i.e., 98.6%) is being performed serially. For

its parallelism profile, we see that the OpenMP constructs at delaunay.c:258 adds some

parallelism to the program. Upon examining the source code, we confirmed that this OpenMP

construct is located in function incrementallyAddPoints, the main kernel of the Delau-

nay triangulation computation. However, it only parallelizes a small region of code within this

function (lines 258-260). Using OMP-ADVISER’s user-defined what-if analysis, we annotated

the serial portion of this function and generated its what-if profile (i.e., a 16⇥ hypothetical

optimization), as shown in Figure 3.14(b). The program’s what-if profile indicates that the

program’s parallelism would significantly increase if we can parallelize this serial region. We

identified a bounded for loop within the what-if region that finds the nearest points for each

point to compute their Delaunay Triangulation. Since the loop appears to be data-parallel, we
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Location Parallelism Serial 
Work %

main 2.92 97.82

seq.h:403 5.87 1.45

seq.h:429 20.61 0.48

spec.h:72 14.81 0.12

(a) Initial parallelism profile

Location Parallelism Serial 
Work %

main 88.56 14.64

sampleSort.h:126 51.80 45.54

sampleSort.h:100 59.81 24.74

seq.h:443 20.57 13.45

(b) What-if profile

Location Parallelism Serial 
Work %

main 94.53 9.39

sampleSort.h:126 52.01 33.63
sampleSort.h:100 59.63 30.57
seq.h:443 20.84 13.68

(c) Final parallelism profile

Figure 3.15: Parallelism profile for Minimum Spanning Forest. (a) parallelism profile on
the original program. (b) what-if profile after manually annotating selected regions. (c) The
parallelism profile of the program after concretely parallelizing the regions selected using what-if
analysis.

parallelized the loop using an OpenMP worksharing loop. The optimized program’s speedup

improves from 1.23⇥ to 9.53⇥15.

Minimum Spanning Forest. This program computes the minimum spanning forest of

the input undirected weighted graph using the parallel Kruskal algorithm. Initially, it has a

speedup of 1.94⇥ over serial execution. Its parallelism profile shows that the program has low

parallelism (i.e., 2.92 in Figure 3.15(a)). OMP-ADVISER’s what-if analysis helped us find two

regions which, when hypothetically optimized by 16⇥, can increase the program’s parallelism

to 35.7. We noticed that these regions were calling the serial sort function, and we replaced

them with the parallel sort function already present in the program. The speedup increased from

1.94⇥ to 7.54⇥. When we ran the modified program with OMP-ADVISER’s what-if analysis, it

showed that optimizing regions in the functions called by parallel sort can improve parallelism

to 88.56 (Shown in Figure 3.15(b)). We parallelized the recursive block transpose function

within this region using OpenMP tasks. The final program’s increased to 95.83 as shown in

Figure 3.15(c). The parallelism in the final parallelism profile is higher than the estimate from

what-if analyses because what-if analyses hypothetically optimized the region by 16⇥ (assuming

parallel execution on 16 cores). However, our parallelization created more tasks. With our

changes to the program, we increased the speedup from 1.94⇥ to 8.91⇥ over serial execution.

NBody. The NBody benchmark computes the gravitational force vector of each point,

given a set of points in 3D space. The OpenMP port of this PBBS application primarily uses

15It appears that this serial loop was a performance bug in the PBBS benchmarks since in later versions of the
benchmark, this loop is parallelized.
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Location Parallelism Serial 
Work %

main 1.13 98.87

seq.h:123 1.30 0.52

seq.h:403 1.82 0.19

CK.c:226 9.31 0.16

(a) Initial parallelism profile

Location Parallelism Serial 
Work %

main 15.06 84.64

seq.h:123 1.33 6.93

seq.h:403 1.88 2.50

CK.c:226 9.06 2.36

(b) What-if profile

Location Parallelism Serial 
Work %

main 77.53 17.95

seq.h:123 1.31 35.75

seq.h:403 1.84 12.83

CK.c:226 9.13 11.58

(c) Final parallelism profile

Figure 3.16: Parallelism profile for NBody. (a) parallelism profile on the original program. (b)
what-if profile after manually annotating selected regions. (c) The parallelism profile of the
program after concretely parallelizing the regions selected using what-if analysis.

Location Parallelism Serial 
Work %

main 2.31 86.30

seq.h:150 5.54 8.87

seq.h:277 13.02 4.38

seq.h:106 51.88 0.23

(a) Initial parallelism profile

Location Parallelism Serial 
Work %

main 22.07 57.76

seq.h:397 246.25 1.34

seq.h:392 40.83 0.17

seq.h:380 21.82 10.45

(b) What-if profile

Location Parallelism Serial 
Work %

main 219.61 0.14

seq.h:200 16.06 33.32

seq.h:152 59.77 16.28

seq.h:378 21.75 15.23

(c) Final parallelism profile

Figure 3.17: Parallelism profile for Convex Hull. (a) parallelism profile on the original program.
(b) what-if profile after manually annotating selected regions. (c) The parallelism profile of the
program after concretely parallelizing the regions selected using what-if analysis.

OpenMP worksharing constructs, which does not parallelize the program sufficiently. Hence, its

initial speedup was 1.08⇥ and its parallelism was 1.13, as shown in the parallelism profile in

Figure 3.16(a). OMP-ADVISER’s what-if analysis suggested that hypothetically parallelizing

certain code regions in the serial parts of the application by 16⇥ can increase the parallelism to

15.06 (Figure 3.16(b)). Upon examining these regions, we identified a recursive serial function

that was invoked on a disjoint set of vertices. We parallelized this function by converting it to

spawn tasks for each recursive call. This change in the program increased its parallelism to

77.53 (Figure 3.16(c)). Resulting in an increased speedup from 1.08⇥ to 13.28⇥.

Convex Hull. This PBBS application computes the convex hull of points in a 2D space.

Initially, it was parallelized with OpenMP worksharing for loop constructs. It had a low

parallelism of 2.31 and a speedup 2.10⇥ over serial execution. We used OMP-ADVISER’s

what-if analysis to find two regions that if optimized, could improve the program’s parallelism

as shown in the what-if parallelism profile shown in Figure 3.17(b). parallelism. We were able

to increase parallelism in one region located at the filter function in the source file seq.h
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by using an OpenMP for loop. Further, we increased the parallelism in the main kernel of the

convex hull function by using recursive decomposition with tasks. These changes improved the

program’s parallelism from 2.51 to 220, increasing the program’s speedup 2.10⇥ to 11.13⇥.

Strassen. This benchmark performs a matrix multiplication using the Strassen algorithm. It

uses OpenMP tasking to solve the recursive submatrix multiplications. The OpenMP program

has a speedup of 8.69⇥ over the serial execution. When we generated its parallelism profile, we

noticed that the program has a parallelism of 31.52 while its aggregate tasking overheads are low.

From this observation, we posited that increasing the program’s parallelism might reduce any

load imbalance in the program. Since the program’s aggregate tasking overhead is negligible,

the task granularities should remain large enough even if we increase the program’s parallelism

by increasing the recursive algorithm’s nesting depth to create more tasks. We changed the

nesting cut-off value of the program by one. This change improves the program parallelism to

69.43 and improves the program’s speedup from 8.69⇥ to 9.64⇥ over serial execution.

We also used an updated variant of this program that uses task-dependency from the Kas-

tros [2] benchmark suite. This variant omits some taskwait constructs in the program and

replaces them with finer granularity task-dependencies. Because of this change, this variant’s

parallelism profile reports higher parallelism values compared to the original program. We also

see higher speedups over serial execution (i.e., 13.39⇥ compared to 8.69⇥). We used the same

idea of improving the BOTS program’s parallelism for the Kastros benchmark. The modified

task dependency program achieves parallelism of 78.54, and its speedup increases from 13.39⇥

to 14.78⇥ over serial execution on our 16 test machine.

Benchmarks with High Tasking Overheads

Some of our tested applications use OpenMP use tasking constructs. As shown in Table 3.2,

the parallelism profile of these applications has a non zero tasking overhead percentage. These

benchmarks predominantly use OpenMP tasking to solve recursive divide-and-conquer algo-

rithms. As shown in the table, the benchmarks with a large amount of parallelism and tasking

overheads of less than one percent achieve a speedup of over 14⇥ over serial execution, which

is close to the linear scaling expected on our 16-core test setup. In contrast, OMP-ADVISER

reports high tasking overheads in some applications. The following use cases describe the



135

Location Parallelism Tasking 
overhead%

Serial 
Work %

main 550.79 19.43 89.89

kdtree.cc:545 14.88 8.58 1.23

kdtree.cc:567 14.86 10.98 0.73

kdtree.cc:636 3871.78 0.01 0.02

kdtree.cc:649 3834.68 0.01 0.01

(a) Initial parallelism profile (b) Final parallelism profile

Location Parallelism Tasking 
overhead%

Serial 
Work %

main 77.41 0.98 85.75

kdtree.cc:418 24.14 9.23 1.96

kdtree.cc:448 24.79 8.38 0.95

kdtree.cc:636 165.60 0.03 3.51

kdtree.cc:649 159.44 0.03 4.08

Figure 3.18: Parallelism profile with tasking overhead measurements for KDTree. (a) parallelism
profile of the original program. (b) The parallelism profile of the program after reducing its
tasking overheads.

applications where we could lower these overheads and observed improved running times in the

modified application.

KDTree. This benchmark is from the SPEC OMP 2012 [179] benchmark suite. The program

takes a set of random points in 3D or 4D space. It constructs a k-d tree and finds the points that

are close to each point in the tree. The benchmark suite provides three sets of inputs for this

application ranging from smaller to larger inputs16. The program uses recursive traversals to

search for a point and then recursively find the points adjacent to it, which is parallelized using

OpenMP tasks. When we ran the program, we observed little to no speedups over the serial

execution on our 16-core test setup across all three program inputs.

We generated the program’s parallelism profile to diagnose the issue. The parallelism profile

is shown in Figure 3.18(a) indicates that the program has a large tasking overhead of 19.48%.

We also see that the tasking constructs located at the source file kdtree.cc at lines 636 and

649 (located in function sweepkdtree) have a large parallelism of 3800. After looking at the

source code of the sweepkdtree function, we learned that the high amount of parallelism at

this OpenMP construct is caused by how the sweepkdtree is written. sweepkdtree is a

recursive function that uses OpenMP tasking, and in its base case, it calls to another recursive

function, searchkdtree, that is also parallelized using OpenMP tasks. The source locations

of the tasking constructs of the searchkdtree are at lines 545 and 567 in the source file

kdtree.cc. In the parallelism profile in Figure 3.18(a), we see that these two locations suffer

16From small to large; the inputs are named test, train, and ref.
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Location Parallelism Tasking 
overhead%

Serial 
Work %

main 9913.71 43.82 9.51

knapsack.c:166 5032.76 22.59 1.08

knapsack.c:170 4740.77 21.23 80.83

knapsack.c:305 11443.20 0 1.08

(a) Initial parallelism profile (b) Final parallelism profile

Location Parallelism Tasking 
overhead%

Serial 
Work %

main 35.00 19.01 0.34

knapsack.c:166 24.14 10.01 0.03

knapsack.c:170 24.79 9.20 99.31

knapsack.c:305 165.60 0 0.03

Figure 3.19: Parallelism profile with tasking overhead measurements for BOTS knapsack. (a)
parallelism profile on the original. (b) The parallelism profile of the program after reducing its
tasking overheads.

from high tasking overheads, indicating that the task granularity at these locations might be too

small to amortize the cost of creating and executing them. We changed the program by removing

the tasking constructs at the function searchkdtree (i.e., tasking constructs at lines 545 and

567 in file kdtree.cc). As expected, this change reduces the program’s parallelism profile,

as shown in the modified program’s parallelism profile shown in Figure 3.18(b), from 550.79 to

77.41. However, this amount of parallelism is still sufficient to utilize all cores in our 16-core

test system. Further, the aggregate tasking overhead of the program is significantly reduced.

After this change, the program’s speedup improves for all three inputs of the KDTree benchmark.

For example, for the largest input, ref, the speedup increases from 1.14⇥ to 6.14⇥.

Knapsack. This benchmark solves the knapsack problem using tasks. Unlike the other

benchmarks we tested, this application’s parallel version performs less computation for the same

input than its serial variant. This is because the optimization problem solved by this benchmark

prunes out child tasks as soon as an intermediate result becomes worse than the best solution

found by the program so far. Hence we observe a superlinear speedup of 118.92⇥ over the

serial program. However, when we generated the program’s parallelism profile, as shown in

Figure 3.19(a), we saw that the program has a high aggregate tasking overhead. Prompted by this

observation, we changed the program’s tasking cut-off value from 24 to 16. With this change,

the program’s task nesting level is lowered, which results in an increase in task granularity and

lower tasking overheads.

The parallelism profile of the modified program with lowered aggregate tasking overheads is

shown in Figure 3.19(b). The modified program finishes the knapsack computation faster and
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Table 3.3: List of OpenMP applications with low initial parallelism used with OMP-ADVISER’s
automatic what-if analysis.

Application Parallelism No of Regions Automatic What-if Parallelism

Convex Hull (CH) 2.31 5 38.58
AMGmk 10.46 3 34.51
IRSmk 13.56 1 132.92

increases the program’s speedup from 118.92⇥ to 1496.13⇥ compared to its serial execution.

By comparison, the modified parallel version of the program is 12.58⇥ faster than the original

parallel program. Since the parallel version of the program can perform less work based on how

it prunes the task subtrees, we also checked the amount of total work performed by the modified

program to explain the increased speedup over the original parallel program. Our measurements

indicate that the program with a lower tasking cut-off performs 10.20⇥ less aggregate work17

than the original parallel program. Hence, even when considering the lower amount of work

performed by the modified program, we still observe some speedup that may be attributed to the

lowered aggregate tasking overhead in the modified knapsack program.

3.9.2 Effectiveness of OMP-ADVISER’s Automatic What-if Analysis

To assess the effectiveness of OMP-ADVISER’s automatic what-if analysis technique, we tested

the applications in our benchmark suite that exhibited low logical parallelism and set OMP-

ADVISER to report program regions that, if parallelized by a factor of 16⇥, would improve

the program’s parallelism to 32. The parallelism factor and target parallelism are user-defined

OMP-ADVISER parameters. We chose a parallelism factor of 16⇥ to match the hardware core

count of our experimental setup. We chose the target parallelism of 32, a slightly higher value

than our core count, to account for potential load imbalances in the optimized program. Further,

OMP-ADVISER’s automatic what-if analysis never chooses the same region twice. This setting

achieves two goals. First, OMP-ADVISER’s automatic analysis is guaranteed to terminate.

Second, based on the automatic what-if analysis algorithm, the regions reported by automatic

what-if analysis are ordered based on the amount of work performed on the critical path. Hence,

if a region performs a significant amount of serial work on the critical path, it is likely that it

174.8e8 cycles compared to 4.9e9 cycles in the original program.
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will be among the first regions reported by automatic what-if analysis, and there is no reason to

report it again later during the analysis.

Understanding the inner working of some tested OpenMP benchmarks can be challenging

and require domain-specific knowledge. Hence, we do not have ground truth knowledge for

all tested benchmarks to validate the results of OMP-ADVISER’s automatic what-if analysis.

Further, it may not be possible to parallelize a program region reported by OMP-ADVISER’s

what-if analyses, or parallelizing it after the region has sufficient parallelism on the current

test setup may not result in noticeable speedups. One way to empirically check if the results

of OMP-ADVISER’s automatic what-if analysis are credible is to check for overlap between

the regions reported by OMP-ADVISER and the regions we used with user-defined what-if

analysis in Section 3.9.1 to increase some benchmark’s speedup. Hence, we include the PBBS

applications we sped up using what-if analyses from Section 3.9.1 to compare the results reported

by automatic what-if analysis.

Table 3.3 shows the list of tested benchmarks and the number of regions reported by OMP-

ADVISER’s automatic what-if analysis, illustrating the parallelism of the application, the number

of regions identified by the automatic what-if analyzer, and the final parallelism reached by

the automatic what-if analyzer. In some applications, such as Delaunay Triangulation, the

final parallelism reached by automatic what-if analysis is below the target parallelism 32. For

these applications, after an initial improvement in parallelism by optimizing a few regions, the

program’s hypothetical parallelism reaches the target parallelism by reporting tens of program

regions where each region slightly improves the program’s parallelism as each region contributes

a small fraction to the program’s critical path. For this evaluation, attempting to parallelize

tens of program regions concretely, each providing a small improvement in parallelism, was

not possible. Hence, we report the lower automatic what-if parallelism, where we were able to

manually examine the regions reported by OMP-ADVISER.

AMGmk. Using OMP-ADVISER’s user-defined what-if annotations, we were able to

identify two regions on the program’s critical path, that when parallelized, would improve

the program’s parallelism from 10.46 to 13.01, resulting in an improvement in speedup from

7.16⇥ to 8.93⇥ over serial execution as described in Section 3.9.1. However, the program’s

final parallelism is still lower than the number of cores in our test system. Thus, using the
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unmodified program, we applied OMP-ADVISER’s automatic what-if analysis to see what other

program regions can be optimized to improve the program’s parallelism. OMP-ADVISER’s

what-if analysis reports three program regions that, if parallelized, can improve the program’s

parallelism to 34.51. The first region reported is the serial region starting from the main function

and ending before the matrix-vector kernel, which OMP-ADVISER estimates would improve the

program’s parallelism to 12.85. This serial region includes covers the same regions we identified

when using user-defined what-if analyses.

The next two regions reported by OMP-ADVISER are within the relax kernel of AMGmk.

This result is consistent with the parallelism profile of the optimized program shown in Fig-

ure 3.12(c) as it indicates that the OpenMP parallel region corresponding to relax.c:91

performs the most amount of work on the critical path. However, these two regions are already

parallelized using OpenMP worksharing loops. Increasing the logical parallelism of this region

by reducing the loop’s chunk size does not result in notable speedups in the program on our

16-core test setup.

Convex Hull. To improve this benchmark’s parallelism to over the target parallelism of 32,

OMP-ADVISER’s automatic what-if analysis identifies five different regions. The unmodified ap-

plication has a parallelism of 2.31. Among the regions reported, two regions seq.h:150-275

and seq.h:277-278 closely match the serialization bottlenecks we identified using user-

defined what-if analysis and later optimized to increase the program’s speedup from 2.10⇥

to 11.13⇥. These two regions include two macros, maxIndex and filter. These two

macros are located within the serialization bottleneck region we identified using user-defined

what-if annotations in the main kernel of the Convex Hull. The other three regions reported by

OMP-ADVISER are located in geometryIO.h and IO.h files. Both these regions include

functions that are used for performing I/O and reading the input file for the Convex Hull program

in parallel using worksharing for loops. While hypothetically increasing the parallelism of

these regions improves the program’s parallelism and reduces the program’s critical path, in

practice, increasing the parallelism for these regions does not result in a noticeable effect on the

program’s performance since the performance in these regions is I/O bound. Overall, our results
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with Convex Hull indicate that OMP-ADVISER’s automatic what-if analysis effectively iden-

tifies serialization bottlenecks in this benchmark, alleviating the need for user-defined what-if

annotations.

To check the validity of the regions identified by automatic what-if analysis, we also

developed a suite of small microbenchmarks. Each microbenchmark is comprised of an OpenMP

program with less than 100 lines of code. We identified the program’s logical parallelism in

each microbenchmark and manually verified the results of OMP-ADVISER’s automatic what-if

analysis. In all microbenchmarks, the results reported by automatic what-if analysis matches our

expected results.

3.9.3 Effectiveness of OMP-ADVISER’s Differential Analysis

When testing our benchmark application with OMP-ADVISER and using parallelism profiling

and what-if analysis, we still observe that some applications do not achieve scalable speedup

despite having sufficient parallelism. In this section, we describe using OMP-ADVISER’s

differential analysis with one of these applications.

Lulesh. This benchmark is part of LLNL’s proxy applications, and it is used to approximate

the hydrodynamics equations discretely by partitioning the spatial problem domain into a

collection of volumetric elements defined by a mesh [102]. The application is parallelized to

the OpenMP API by using worksharing loop constructs with static scheduling. As reported in

Figure 3.20(a), Lulesh has a parallelism of 12.86, which is higher than its speedup of 4.56⇥.

Such a discrepancy for a data-parallel application indicates that the program may be experiencing

parallel work inflation. Hence, we used OMP-ADVISER’s differential analysis to identify which

regions of the application are experiencing parallel work inflation, if any.

OMP-ADVISER’s differential analysis, shown in Figure 3.20(b), identifies that the program

has parallel work inflation. Specifically, Lulesh’s parallelism profile indicates that the workshar-

ing for loops in source file lulesh.cc at lines 832, 2364, 2123, 2121 perform 36.31% of the

work in the program’s critical path, and they suffer from parallel work inflation when measuring

program cycles and local HITM18. A large number of HITM events in these program regions in

18HITM events count the cache hits in a modified cache line. A high number of HITM events in the parallel
execution indicates true or false sharing among worker threads
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Location Parallelism Serial 
Work %

Main 12.86 12.48

lulesh.cc:832 15.87 8.79

lulesh.cc:2364 19.66 7.57

lulesh.cc:2131 12.43 7.46

lulesh.cc:2121 12.43 7.35

(a) Parallelism profile (b) Differential profile

Region Inflation 
Cycles

Inflation
Local HITM

Main 1.76x 607.88x

lulesh.cc:832-1016 1.04x 28.54x

lulesh.cc:2364-2366 18.89x 67950x

lulesh.cc:2133-2148 1.51x 2344.26x

kdtree.cc:2123-2129 1.79x 1307.11x

Figure 3.20: Parallelism profile and differential analysis for Lulesh. (a) parallelism profile of the
original program (b) Differential analysis result.

Lulesh may indicate that these regions have large cache line contention, limiting the scalability

of the parallel execution of Lulesh. Inspecting these parallel loops’ body, we attempted to reduce

cache line contention by using OpenMP runtime and guided loop scheduling instead of static.

However, this simple change does not result in a noticeable reduction in work inflation, and

the added cost of choosing runtime loop scheduling ends up slightly reducing the program’s

speedup. Reducing or rearranging the work performed in these loops can reduce work inflation.

However, with our limited domain knowledge, we could not change the computation within

these loops without impacting the application’s correctness.

To check that OMP-ADVISER’s differential analysis can pinpoint regions suffering from

parallel work inflation in some metric of interest, we developed a suite of small microbenchmarks.

Each microbenchmark is less than 100 lines of code and has a program region experiencing

unintended resource contention that manifests as parallel work inflation in a performance metric.

In all microbenchmarks, OMP-ADVISER’s differential analysis can identify these program

regions.

3.9.4 OMP-ADVISER Performance Overhead

In addition to effectively identifying performance bottlenecks, a performance analysis tool

should be practical to use. That is, the tool should have low run-time and memory overheads.

Further, it should be able to analyze long-running applications. Table 3.4 shows the run-time and

memory overheads of OMP-ADVISER’s on-the-fly profiler compared to the original OpenMP
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Table 3.4: OMP-ADVISER’ s performance overheads. The first two columns show the on-the-fly
profiler’s run-time overhead compared to the unmodified serial and OpenMP application. The
third column compares the program’s resident memory usage in profiling mode over parallel
execution.

Application Run-time overhead (serial) Run-time overhead (parallel) Memory overhead
Alignment 0.06⇥ 1.01⇥ 1.51⇥
Floorplan 0.09⇥ 1.35⇥ 2.46⇥
Fibonacci 0.07⇥ 1.09⇥ 1.18⇥
Health 1.10⇥ 15.51⇥ 1.35⇥
Sort 1.47⇥ 10.12⇥ 1.83⇥
NQueens 1.39⇥ 18.48⇥ 1.20⇥
Sparselu 0.08⇥ 1.13⇥ 1.27⇥
Strassen 0.13⇥ 1.14⇥ 1.01⇥
BFS 0.89⇥ 4.95⇥ 1.13⇥
CompSort 0.70⇥ 2.63⇥ 1.18⇥
Delaunay Refinement (DR) 0.56⇥ 2.26⇥ 1.03⇥
Dictionary 1.08⇥ 8.17⇥ 1.11⇥
Integer Sort (ISORT) 1.20⇥ 4.03⇥ 1.29⇥
Maximal Independent Set (MIS) 1.13⇥ 6.91⇥ 1.13⇥
Maximal Matching (MM) 1.06⇥ 7.65⇥ 1.14⇥
Geo Mean 0.44⇥ 3.66⇥ 1.28⇥

application. Since OMP-ADVISER’s on-the-profiling mode runs with the application under

test, it leverages the application’s parallelism and OpenMP worker threads to construct the

performance model in parallel. Thus, as seen in the first column of Table 3.4, OMP-ADVISER

can analyze some applications faster than the original serial application. On average, OMP-

ADVISER’s run-time overhead compared to serial applications is 0.44⇥, resulting in a 2.27⇥

faster execution times.

Compared to the 16-core OpenMP execution, OMP-ADVISER on-the-fly profiling mode

is, on average, 3.66⇥ slower. OMP-ADVISER’s slowdown compared to the parallel execution

can be attributed to the additional cost of OSPG construction, accessing hardware performance

counters for measurements, and generating the program’s parallelism profile. Among these

sources, accessing hardware performance counters to perform fine-grained measurements has

a large impact on the profiler’s slowdown. To test this, we ran a modified version of OMP-

ADVISER that, instead of accessing performance counters, attributes the value of one to each

program fragment. For example, in the BFS application, this change reduces OMP-ADVISER’s

slowdown from 4.95⇥ to 1.78⇥ compared to the parallel execution, indicating that investigating

solutions to reduce the overhead of accessing hardware counters or reducing the number of calls

to them can reduce OMP-ADVISER’s run-time overheads.
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Further, similar to how sampling-based performance analysis tools can reduce their run-

time overhead by reducing the sampling frequency, in worksharing applications, using static

scheduling instead of dynamic can significantly reduce the number of loop chunks. This change

reduces the program’s OSPG size and the number of accesses to hardware counters19, which

in applications that use many worksharing loops can significantly reduce OMP-ADVISER’s

overheads. For example, for the BFS application, when using our port that uses static for loops

instead of dynamic, its run-time overhead decreases from 4.95⇥ to 1.05⇥ compared to the

parallel execution.

To empirically assess the memory overheads of OMP-ADVISER, we measured the resident

memory used by its on-the-fly profiling mode. Recall that OMP-ADVISER does not maintain

the entire program’s OSPG in memory and reclaims OSPG node as soon as the program exits

a parallel region, to reduce its memory overheads. On average, OMP-ADVISER’s on-the-fly

profiling mode uses an additional 28% of memory compared to the original OpenMP application.

Since OMP-ADVISER maintains a small slice of the program’s OSPG in memory at any point

in time, it can also be used with long-running OpenMP applications.

To test OMP-ADVISER with long-running applications, we used it to analyze several

benchmarks from the Coral suite, including Pennant, Kripke, Lulesh, and Quicksilver. These

benchmarks take some standard inputs that let them run for several hours. In all cases, OMP-

ADVISER’s on-the-fly profiling mode can successfully analyze and generate the program’s

parallelism profile. In contrast, the offline profiling mode is not practical for long-running

applications since the log sizes can grow to up to hundreds of gigabytes for these benchmarks.

3.9.5 Comparison With Other Performance Analysis Tools

Next, we evaluate the effectiveness of OMP-ADVISER by comparing it with state-of-the-art Intel

Parallel Studio XE [49] suite of performance analysis tools. This suite provides several tools for

analyzing the performance and parallelism of OpenMP applications. For this comparison, we

use Intel Advisor [48] and Intel VTune [50]. Intel Advisor provides insight into the program’s

parallelism within a core (i.e., vectorization) and among cores (i.e., multithreading). It provides

19When using this mode, OMP-ADVISER measures the parallelism of the program instead of its logical parallelism.
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Table 3.5: List of applications used with Intel Advisor to analyze.
Application No of Regions Maximum Program Gain for All Sites Improved Speedup After Optimization

BFS 3 2.75⇥ N
Convex Hull (CH) 1 1.02⇥ N
Delaunay Triangulation (DT) 5 13.70⇥ Y
Nbody Forces (NBODY) 5 2.73⇥ Y
Minimum Spanning Forest (MSF) 3 4.18⇥ N
Knapsack 0 1⇥ N
Strassen 3 1.09⇥ N
AMGmk 2 2.15⇥ N
Lulesh 1 11.17⇥ N
KDTree 2 3.19⇥ N
Quicksilver 3 6.95⇥ Y

a suitability analysis that estimates program speedup after parallelizing different user annotated

regions of code. We compare Intel Advisor’s suitability analysis with OMP-ADVISER’s what-if

analysis. Intel VTune is a profiling tool that is used to identify performance bottlenecks. It

provides different analysis types, including computation and memory hotspot identification.

Comparison With Intel Advisor. Intel Advisor’s primary use is for tuning the vectorization

and threading performance of the application. We focus on its threading workflow results

for comparison with OMP-ADVISER. The starting point of using Intel Advisor is to run a

survey analysis of the application. The threading workflow’s survey analysis results include

the following information: (1) a list of the program’s loops ordered by the time spent by

the program and (2) recommendations for improving loops’ performance. After the survey

analysis, Intel Advisor’s threading workflow provides an optional analysis to compute loop trip

counts. This information is used by Intel Advisor to generate a roofline model for each loop

to indicate how much room for performance improvement exists on the current system under

test. Similar to what-if analysis, Intel Advisor provides special program annotations to assess

the impact of parallelizing user-selected program regions. After running the program with the

added annotations, Intel Advisor generates a suitability report to indicate the potential speedup

gains under different thread counts and threading models, including OpenMP and TBB. Lastly,

the threading workflow includes a dependency analysis pass to check if the annotated loops

carry data dependencies. Intel Advisor’s dependency analysis requires another execution of the

program and has significantly higher runtime overheads (i.e., 50-100⇥ more than other analysis

passes with Intel Advisor).
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We test eleven applications from our benchmark suite using Intel Advisor’s threading

workflow, which includes the applications that we could optimize using OMP-ADVISER. We

start testing these applications using survey analysis. Next, we annotate program sites (i.e.,

regions) and tasks within each site to hypothetically run in parallel based on survey analysis’

recommendations. After adding the annotations, we use Intel Advisor’s suitability analysis to

get the estimated improvement on speedup on a 16 thread system using the OpenMP threading

model. Lastly, in some applications where it was not clear if the recommended scalar loops were

parallelizable, we use Intel Advisor’s dependency analysis to find potential data dependencies.

Subsequently, we attempt to parallelize Intel Advisor’s recommendation with OpenMP constructs

and measure the modified program’s speedup. Table 3.5 summarizes our results with Intel

Advisor. First, it shows the number of scalar loops reported by Intel Advisor for suitability

analysis. The second column reports Intel Advisor’s suitability analysis maximum speedup gain

estimate after parallelizing all annotated regions. The final column indicates if we observed

improved speedups after parallelizing Intel Advisor’s recommended program regions.

Intel advisor recommends regions for parallelization in all tested applications except Knap-

sack. For this benchmark, attempting to annotate program regions results in a crash. For the

remaining applications, we attempted to parallelize the reported regions. We could not parallelize

many of the reported regions due to data dependencies that result in a data race if the region is

parallelized. Intel Advisor’s dependency analysis confirms that such data dependencies exist

in some of the reported regions. In three applications (Delaunay Triangulation, NBody, and

Quicksilver), we observe improved speedup after parallelizing Intel Advisor’s recommendations.

In these applications, the regions reported by Intel Advisor included the regions we identified

using OMP-ADVISER. For the rest of the applications, the performance bottlenecks highlighted

by Intel Advisor do not match OMP-ADVISER.

Comparison With Intel VTune. VTune is the flagship performance profiler in Intel’s

Parallel Studio suite of tools. For parallel applications, the recommended workflow is to

use VTune after parallelizing the program with Intel Advisor to identify the application’s

remaining performance bottlenecks. VTune offers several predefined collections of analysis

for the program under test. To test OpenMP benchmarks with VTune, we used the following

analysis types: (1) hotspot analysis to find the performance hotspots in the application, (2) HPC
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Table 3.6: Summary of Intel VTune’s analysis report for different OpenMP applications.
Application No of Hotspots CPU Utilization High Runtime Overhead Memory Access Issues

BFS 3 3.48 N Y
Convex Hull (CH) 3 8.35 N Y
Delaunay Triangulation (DT) 2 5.33 N Y
Nbody Forces (NBODY) 2 11.99 N N
Minimum Spanning Forest (MSF) 3 4.47 N Y
Knapsack 1 8.27 Y Y
Strassen 2 6.38 Y Y
AMGmk 3 9.47 N Y
Lulesh 5 5.18 N Y
KDTree 3 2.82 Y N
Quicksilver 5 9.27 Y Y

performance characterization analysis to perform an OpenMP aware analysis, and (3) memory

access analysis to identify memory-related issues with the application. VTune uses hardware

sampling techniques to provide a low overhead and low perturbation performance profiling tool.

We ran each OpenMP benchmark three times to generate the three analysis reports listed.

After using Intel Advisor to address threading issues in the programs in Table 3.5, we

use VTune to identify additional performance issues. Table 3.6 shows the results of profiling

these applications using Intel VTune. The first column indicates the number of performance

hotspots reported by VTune20. The second column indicates VTune’s effective CPU utilization

measurements. This metric is execution specific and differs from OMP-ADVISER’s logical

parallelism measurement. The third and fourth columns indicate if VTune flags the application

for having high runtime overheads or memory access issues. The hotspots reported by VTune

overlaps with the serialization bottlenecks highlighted by OMP-ADVISER. However, in some

applications (AMGmk and NBody), some of the bottlenecks identified by OMP-ADVISER are

not listed as performance bottlenecks in VTune. Among the tested applications, VTune identifies

four applications with high runtime overheads. OMP-ADVISER reports high task creation

overheads in two of these applications (Knapsack and KDTree). In these applications, OMP-

ADVISER’s parallelism profile identifies the task directive suffering from high task creation

overhead. In contrast, VTune’s report does not specify the exact task directive causing high

runtime overheads.

In nine of the tested applications shown in Table 3.6, VTune reports memory subsystem

issues (i.e., True and False sharing, NUMA issues, etc.). Similarly, OMP-ADVISER’s differential

20We did not include regions that belong to system libraries or the OpenMP runtime.
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analysis identifies program regions with parallel work inflation in these applications. However,

we could not determine these reports’ effectiveness without having some ground truth on how

addressing the reported bottlenecks may impact the program’s performance. Overall, Intel

Advisor and VTune are effective in identifying threading issues, program hotspots, runtime over-

heads, and unintended contention. However, in some tested applications (AMGmk, Knapsack,

and KDTree), OMP-ADVISER’s feedback pinpoints the region in the program with scalability

bottlenecks. Further, while execution specific parallelism measurements are effective in identify-

ing bottlenecks in the current execution, OMP-ADVISER’s logical parallelism measurements

provide additional insight into the program’s scalability.

3.10 Limitations

The task creation measurements by OMP-ADVISER is a first-order approximation. Our mea-

surements include the runtime costs to allocate and initialize a task. However, it does not

include the runtime cost to check for task dependency and the cost associated with the task

scheduler. Given this limitation, OMP-ADVISER has still proven useful in identifying programs

with high tasking overheads. However, our analysis may underestimate the tasking overheads

for some applications, especially OpenMP applications that use many dependencies per task.

Constructing a more accurate estimate may prove useful in identifying tasking overhead issues

in such applications.

While OMP-ADVISER can identify regions that must be optimized to address program

bottlenecks, ultimately, it is the programmer that has to devise strategies to parallelize reported

regions. Parallelizing a reported region may not be possible due to inherent dependencies in the

application. In practice, parallelizing two different program regions may require vastly different

amounts of effort. It would be interesting to explore expanding OMP-ADVISER to consider

the feasibility of parallelizing different regions and incorporate it in the regions reported by

automatic what-if analysis. We have currently incorporated a simple block listing feature where

the developer can block program regions considered for what-if analysis if they deem it too

challenging to parallelize concretely.
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Further, after the user parallelizes a region, it is their responsibility to check that their

changes have introduced no new bugs. At the moment, we can provide some assistance by

running a suite of bug detection tools (i.e., data race detector) on the optimized program. An

interesting direction for future work is to equip OMP-ADVISER with the ability to synthesize

parallelization strategies for some serialization bottlenecks automatically.

3.11 Summary

In this chapter, we presented the details of OMP-ADVISER, a novel performance analysis tool

for OpenMP applications. OMP-ADVISER’s performance model is comprised of the program’s

OSPG along with fine-grained measurements using hardware performance counters. Using its

performance model, OMP-ADVISER computes the program’s parallelism profile, including

the program’s inherent parallelism and the parallelism of each static OpenMP directive in the

program. OMP-ADVISER parallelism-centric view of the program simplifies identifying serial-

ization bottlenecks. OMP-ADVISER’s performance model enables its what-if analysis technique.

Using what-if analysis, OMP-ADVISER can estimate improvements in program parallelism

if selected regions in the program are hypothetically parallelized. Further, OMP-ADVISER’s

automatic what-if analysis techniques alleviate the programmer’s need to identify which regions

to parallelize to reach a target parallelism. Our performance model includes measurements to

estimate runtime task creation costs, which ensures that the optimization candidates reported

by OMP-ADVISER perform work at a high enough granularity that can amortize the costs of

increasing the region’s parallelism. Lastly, OMP-ADVISER’s differential analysis technique is

based on the observation that applications with unintended resource contention may exhibit it as

secondary effects of execution that do not manifest in the application’s oracle. Our proposed

differential analysis technique can identify scalability bottlenecks by comparing the performance

model of the application’s parallel execution with its oracle execution.
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Chapter 4

On-the-fly Apparent Data Race Detection with OMP-RACER

OpenMP applications, similar to other multithreaded programs, are susceptible to various

correctness bugs caused by nondeterministic execution order of threads. Bugs such as deadlocks,

livelocks, and data races belong to this category. In particular, the execution of a parallel

application may have many possible thread interleavings, and the bug may only manifest in a

small fraction of those interleaving. The number of thread interleavings grows exponentially

with the number of threads and instructions in the application, which makes it challenging to

identify and reproduce such bugs using standard software testing techniques.

This chapter introduces OMP-RACER, a novel on-the-fly apparent data race detector

for OpenMP applications. Apparent data races are those races that manifest in a program

considering the logical series-parallel relations of the execution. By identifying apparent races,

OMP-RACER can detect races that occur not only in the observed schedule but also in other

schedules for a given input. OMP-RACER maintains information about previous accesses with

each memory access and uses the OSPG to check if they can logically execute in parallel.

4.1 Background

Data races are a common source of bugs in multithreaded applications, including OpenMP pro-

grams. A program has a data race if, during program execution, there exist two parallel memory

accesses to a shared memory location, where at least one of them is a write. Programming

languages such as C/C++ [6, 180] consider a data race as undefined behavior. An undefined

behavior removes all restrictions from the compiler and the code it generates, which may result

in unintended behaviors and potentially even lead to catastrophic consequences. Further, data

races cause the program execution to be nondeterministic and dependent on the underlying

system’s memory model, often leading to bugs and portability issues.
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Thread A
{
x=1;
z=4;

}

Thread B
{
y=3;
x=2;

}

x=1

y=3

z=4

x=2

x=1

y=3

z=4

x=2

x = 2 x = 1

Thread 1 Thread 2 Thread 1 Thread 2Time

(a) (b)

Figure 4.1: (a) Code snippet illustrating multithreaded program with a data race on shared
variable x. (b) Two possible execution traces on a system with two threads.

A parallel application may have many thread interleavings (i.e., possible schedules), which

grow exponentially with the number of threads and instructions per thread. A data race may

manifest in only a small subset of them. Thus, identifying data races manually or using standard

software testing techniques is often ineffective. Due to a large number of possible thread

interleavings, these approaches fail to detect many possible data races in the application.

Next, we formally define data races, describe different types of data race detectors, and

provide a brief classification of different types of data races.

Definition 4.1.1. (Data Race) During program execution, a data race occurs when two memory

accesses:

• Access the same memory location.

• At least one access is a write.

• Both accesses are in parallel with no ordering.

Two memory accesses may be ordered if one access always executes before the other access.

For OpenMP applications, this ordering may be satisfied by one of the following criteria: (1)

both memory accesses belong to the same serial fragment of execution, (2) there exists an

OpenMP synchronization construct (i.e., barrier, taskwait, etc.) that ensures one access always

finishes before the other access, and (3) a mutual exclusion primitive such as a lock or OpenMP

critical construct ensures both memory accesses are never executed in parallel. For example,
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Figure 4.1(a) shows a simple multithreaded program with a data race on the shared variable x.

Figure 4.1(b) shows two possible execution traces of the program on a system with two threads,

illustrating that the shared write accesses to variable x are unordered. Hence, constituting a data

race.

Data races in an application are most often undesired, and identifying them with standard

software testing techniques is mostly inadequate. Hence, researchers have proposed data race

detection tools to assist developers in identifying data races. In practice, proposed solutions

make different trade-offs to design practical data race detectors to identify data races with

acceptable overheads. Next, we provide a characterization of data races and provide a brief

background on prior data race detection tools.

4.1.1 Characterizing Data Races

Data races can be characterized into two categories: feasible and apparent [146]. Feasible data

races follow the intuitive notion of a data race that manifests on an actual program trace for some

input. To detect a feasible data race requires assessing both the computation and the behavior

of synchronization primitives in the application. In contrast, apparent data races are based

solely on the semantics of the synchronization primitives of the program. However, locating all

feasible is data races in an application is computationally hard [146]. Intuitively, multithreaded

applications have exponential number of thread interleavings that grows in proportion to the

number of threads and instructions per thread 1. Since locating all feasible data races in an

application requires analyzing each interleaving, it makes solving this problem computationally

intractable. In contrast, detecting apparent data races is simpler. Detecting apparent data races

requires analyzing the semantics of the synchronization primitives of the application into account.

Hence it requires capturing the logical-series parallel relations in an application. These relations

are a property of the program for a given and are independent of thread interleavings in the

application.

Apparent data races are an approximation of a program’s feasible data races. That is, every

feasible data race is an apparent data race. However, the opposite is not true. Figure 4.2(a)

1Approximately tt⇥n interleavings for a program using t threads with n instructions per thread
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Time

(a) (b)

Thread A
foo(){
x=1;
fl=1;
}

Thread B
bar(){
while(!fl){
wait(10);
}
print(x);

}

(Wr,x,1)

(Wr,fl,1)

Thread A Thread B

(Rd,fl)

(Rd,x)

(Wr,x,1)

(Wr,fl,1)

Thread A Thread B

(Rd,fl)

(Rd,x)

(Rd,fl)

Init: fl = 0

Figure 4.2: (a) Code snippet illustrating multithreaded program with two apparent data races
on shared variables x and fl. (b) Two possible execution traces of the code snippet in (a),
illustrating that the data race on variable fl is feasible.

provides an example. In this code snippet, we observe two apparent data races on shared

variables x and fl. If we explore all possible execution traces for this application, it becomes

clear that the read access to variable x always follows the write access to it. Hence, the apparent

data race on variable x is not a feasible data race. This ordering between these two accesses

to the variable x is enforced by the while loop checking the value of the variable fl since the

execution in the function bar will not proceed until the value of fl is set by the last instruction

in function foo. In contrast, the data race on variable fl is feasible as shown by two execution

traces in Figure 4.2(b).

As shown in the example code snippet, feasible data races are actual races in the sense that

they occur for some possible execution of the application. In contrast, an apparent data race may

not occur in any actual program execution trace. However, it has been proven that if a program

has apparent data races, it must have at least one feasible data race [144]. Further, for a class of

parallel applications with commutative critical sections, known as Abelian programs [44], every

apparent race is also a feasible race. Hence, many data race detectors, including our work in this

chapter, focus on identifying simpler to locate apparent data races.

Ideally, we would want to design data race detection algorithms that are both sound and

complete. A soundness guarantee implies that the algorithm does not report false negatives.

That is, if the program has a data race, the algorithm will detect and report it. In contrast,

a completeness guarantee implies that the data race detection algorithm will not report false

positives. However, achieving both guarantees is not pragmatic as it is equivalent to detecting

all possible feasible data races in the program, which is shown to be NP-hard [146].



153

Further, a data race detection algorithm may detect data races at three different granularities:

(1) per-schedule, (2) per-input, or (3) per-program where each granularity provides stronger

guarantees than the previous granularity. First, a per-schedule data race detection algorithm aims

to detect data races in a given program schedule (i.e., thread interleaving). per-schedule data race

detectors tend to focus on finding feasible data races. Second, a per-input data race detection

algorithm aims to identify data races for a given program input across all possible schedules.

From this definition, it becomes clearer why a feasible per-schedule data race detector is not

practical to identify data races per-input. Instead, most per-input data race detectors focus on

detecting apparent data races. Lastly, a per-program data race detection algorithm aims to detect

all data races in the program across all inputs and schedules.

4.1.2 Static Data Race Detectors

These tools detect data races in an application by using static analysis techniques. A static

data race detector can identify data races across all possible program schedules and inputs.

However, this comes at the price of increased false positives. Static data race detection is a

well-studied problem. Prior work has used static analysis to identify races in multithreaded

programs [9, 66, 140, 158]. More recently, several lines of work have utilized static analysis

to identify data races in OpenMP programs. Since these tools exclusively target OpenMP

applications, they can identify data races in OpenMP with higher accuracy when compared to

their more general-purpose counterparts [25, 42, 191]. Static data race detection algorithms

provide per-program guarantees, and some provide soundness guarantees. However, their main

drawback is that they may report a large number of false positives. Requiring the developer to

inspect the validity of a reported data race manually.

4.1.3 Dynamic Data Race Detectors

A dynamic data race detector uses dynamic analysis techniques to identify data races. Generally,

a dynamic data race detector runs the program and analyzes its execution trace to report data races.

Unlike a static data race detector, a dynamic data race detector tends to have lower false positive

rates since the tool has access to the program input and the application’s execution trace. A large

body of work explores dynamic data race detection for multithreaded applications [69, 168, 175].
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There are two types of dynamic data race detection algorithms: on-the-fly and post-mortem.

On-the-fly data race detectors perform data race detection analysis during program execution. In

contrast, some data race detectors perform post-mortem analysis on a captured program trace

after the program’s execution to discover data races [21, 145]. The main trade-off between the

two approaches is that the former does not require generating log files to capture the execution

trace for later analysis. The latter approach tends to have lower runtime and memory overheads

since it performs data race detection analysis after its execution.

Several data race detection algorithms focus on identifying feasible data races for a given

program execution trace. This results in per-schedule data race detection algorithms. The data

race detectors in this category are based on analyzing the happens-before [112] relation in the

captured trace. FastTrack [69] improved upon the vector clock based method of capturing

happens-before relations to reduce data race detection overheads. ThreadSanitizer [175], uses a

hybrid approach inspired by FastTrack with the aim of targeting large-scale applications at the

cost of introducing some false positives.

In contrast, per-input dynamic data race detection algorithms analyze the logical series-

parallel relations in the application trace, resulting in detecting apparent data races in the

application. This line of work mainly focuses on structured parallel programming languages

and the use of series-parallel graphs to model the logical series-parallel relations[68, 161].

Subsequent works expand upon these techniques to support a larger class of parallel programs

and perform data race detection in parallel [162, 194]. offset-span labeling [132] uses a labeling

scheme in fork-join programs to summarize the program’s series-parallel graph and uses it to

detect apparent races in fork-join parallel applications.

4.1.4 Prior Dynamic Data Race Detectors for OpenMP Applications.

While a data race detector written for multithreaded programs [98] may be used to identify data

race in OpenMP applications, since it does not capture the semantics of the OpenMP API, it will

not be very effective at detecting data races. Hence, in recent years there has been a growing

interest in developing data race detectors for OpenMP applications [20, 21, 25, 42, 81, 191].

Several dynamic data race detection tools have been proposed for OpenMP programs.

Archer [20] is the state-of-art dynamic data race detector for OpenMP programs. Archer builds
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upon ThreadSanitizer [175] by extending it to support OpenMP semantics. Since Archer is a

per-schedule data race detector, it may require multiple executions of the same program with

different number of threads and the same input to detect the program’s data races.

SWORD [21] is a post-mortem apparent data race for OpenMP applications. It uses the

offset-span labeling technique [132] to detect if two memory accesses may execute in parallel.

As a post-mortem data race detector, SWORD uses a constant amount of memory overhead per

worker thread during program analysis. However, the main drawback of SWORD is the size of

log files and the increasing amount of time needed to perform post-mortem analysis. Further,

SWORD does not detect data races in OpenMP programs that use tasking directives. ROMP [81],

expands upon the offset-span labeling technique by adapting it to encode OpenMP task-based

constructs and design an on-the-fly OpenMP data race detector. While ROMP aims to address

some of SWORD’s limitations, its public prototype [80] only works for microbenchmarks and

fails to analyze larger applications.

4.2 Overview of OMP-RACER

We describe OMP-RACER, a novel per-input apparent data race detector for OpenMP programs.

We discussed several prior OpenMP data race detectors. Our goal is to design an on-the-fly

apparent data race detector where the program is run once for a given input and identify data

races that can occur in other thread interleavings of the application. We also want to detect

data races in a large class of OpenMP applications with structured and unstructured constructs,

including task-based constructs.

To detect apparent race, OMP-RACER must consists of the following components:

• A mechanism to check if two shared memory accesses may execute in parallel. A

program’s OSPG captures the logical series-parallel relations between all program frag-

ments, which are represented by W-nodes in the OSPG. By constructing a program’s

OSPG on-the-fly and attributing each memory access to its corresponding W-node in the

OSPG, we can identify if two memory accesses may execute in parallel by performing a

least common ancestor (LCA) query.
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• Managing access histories. A dynamic data race detector must keep track of previous

memory accesses in the program trace to check if the current memory access is involved

in a data race with previous accesses. OMP-RACER provides two modes for managing

access histories with different trade-offs. The fast mode uses a constant amount of memory

overhead for each memory location accessed by the program. However, it is limited to

a subset of OpenMP programs that do not employ locks and use taskwaits in a fully

nested manner. In contrast, precise mode’s memory overhead grows in proportion to the

program’s nesting level and the size of its lockset for a given memory location. However,

it is able to detect data races in a larger class of OpenMP programs.

4.2.1 Illustrative Example

Consider the example OpenMP code snippet in Figure 4.3(a). This code snippet modifies

the shared variables x and y. This code snippet creates two sibling tasks at lines 5 and 9 in

Figure 4.3(a). Based on OpenMP semantics, in the absence of task dependency clauses, two

sibling tasks may execute in parallel. Hence, the program snippet has a write-read data race on

shared variable x because of write access at line 7 and the read access at line 11 in Figure 4.3(a).

The two accesses may execute in parallel if there a sufficient number of worker threads to

schedule the tasks on different worker threads.

To detect data races on-the-fly, a data race detector implements the following two mecha-

nisms. First, it must track how different serial fragments of the application’s execution trace

execute relative to each other. For example, the code fragment at lines 3-4 in Figure 4.3(a) exe-

cutes serially before the code fragment at lines 6-8 since the worker thread executing the single

block must execute lines 3-4 before creating the task at line 5. As described in Section 4.1.3, dif-

ferent data race detectors employ different strategies to capture these series-parallel relations (i.e.,

happens-before relations, offset-span labeling, series-parallel graphs, etc.). For OMP-RACER,

we use the OSPG to capture the logical series-parallel relations between different program

fragments. Second, an on-the-fly data race detector must track previous memory accesses for

each memory location in the program execution. For example, as shown in Figure 4.3(b), an

execution trace with two worker thread of the program snippet in Figure 4.3(a), when the current

memory access is the read operation on variable x (time 4 in Figure 4.3(b)), to identify the data
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race on x, an on-the-fly data race detector must keep track of the previous write access to it

(time 3 in Figure 4.3(b)).

Capturing Logical Series-Parallel Relations. To detect apparent data races on-the-fly in

OpenMP application, we need a data structure that encodes the logical series-parallel relations

in the program execution trace. Since logical series-parallel relations are independent of a

particular thread interleaving in the application, using them enables a data race detector to

detect data races per-input. For example, in Figure 4.3(a), if the code snippet is executed on a

system with one worker thread, the two sibling tasks will execute serially by the same worker

thread. However, based on the semantics of OpenMP, the two tasks logically execute in parallel.

Thus, by encoding the logical series-parallel relations between program fragments, a data race

detector can detect data races per-input, which is a stronger guarantee than per-schedule data

race detectors.

As described in Chapter 2, the OSPG is a data structure that captures the dynamic execution

of an OpenMP program as a set of program fragments and encodes the logical series-parallel

between all pairs of fragments. OMP-RACER uses the OSPG to capture the logical series-

parallel relations in an OpenMP application. OMP-RACER executes with the program under

test and creates its OSPG on-the-fly. A different W-node represents each program fragment in

the OSPG. As described in Section 2.5, to check for the logical series-parallel relation between

two program fragments, the pair corresponding W-nodes an OSPG can be queried by performing

an LCA query. For example, Figure 4.3(c) shows the OSPG that OMP-RACER constructs

during the execution of program snippet in Figure 4.3(c). As illustrated, the three program

fragments are represented by W-nodes W1�W3, where the OSPG captures the serial relations

between W1 and W2�W3 and the parallel relation between the two sibling task fragments

W2 and W3.

Access History Management. To identify apparent data races, OMP-RACER must keep

track of previous memory accesses in the program’s execution trace. A naive but straightforward

approach is to maintain all previous memory accesses in the OpenMP program for each memory

location. While simple, this approach is impractical as the amount of access history per memory

location grows with the number of dynamic load and store instructions in the program. OMP-

RACER uses two different access history management modes to limit the amount of metadata
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stored for each memory location: fast and precise mode. The main advantage of fast mode

is that amount of metadata per memory location is constant. In fast mode, for each memory

location OMP-RACER maintains up to two previous parallel read accesses and the latest write

access. Fast mode is applicable to programs with structured parallelism. That is, the program

uses fully nested OpenMP taskwaits and has no OpenMP critical constructs. In contrast, when

using precise mode, OMP-RACER no longer maintains a constant amount of metadata per

memory location; however, it can detect data races in OpenMP programs that use taskwaits and

critical constructs with no restrictions needed. In precise mode, the metadata used per memory

location grows in proportion to the program’s task nesting level and its lockset size.

The program snippet in Figure 4.3(a) does not use OpenMP taskwait or critical construct.

Hence, it uses fast mode for access history management. As shown in the third column of the

table in Figure 4.3(b), OMP-RACER keeps track of memory accesses by maintaining an access

history (i.e., variables x and y in Figure 4.3(a)). In fast mode, the access history metadata for

each memory location is comprised of up to three entries, the W-node corresponding to the latest

write operations, and up to two W-nodes, which correspond to previous parallel read operations

(represented as a 4-tuple in Figure 4.3(b)). The important updates to the access history metadata

happen at time steps 3 and 4, shown in the program trace in Figure 4.3(b). When the program

execution reaches line 11 in Figure 4.3(a), it performs a read operation on variable x (time 4

in Figure 4.3(b)). At this point, OMP-RACER retrieves the access history corresponding to

the location of x and updates it with the current read operation using the W-node W3. Next,

OMP-RACER looks for an apparent data race by checking if the current read access is involved

with the previous write access’ corresponding W-node in the retrieved metadata, W-node W2.

Based on the constructed OSPG in Figure 4.3(c), W-nodes W2 and W3 may execute in parallel.

Hence, OMP-RACER reports a write-read data race on the memory access to variable x.

While both access history management strategies employ significantly less memory overhead

than the naive approach, When comparing the two modes, the main trade-off between them is

that the fast mode uses less memory when compared to the precise mode. In contrast, the precise

mode is applicable to a larger class of OpenMP applications. To choose between the modes,

OMP-RACER uses an analysis pass that involves a quick execution of the program under test

to check if the program has fully nested taskwaits and does not use critical constructs. If so,



159

(a) OpenMP Code Snippet (c) Program OSPG(b) Program Trace

L6-L8

S1

S2W1

L3-L4

P1 P2

W2 W3

L10-L12

Time Observed Trace
(Tid, Type, Addr, Node)

Access History
(Addr, Wr, Rd1, Rd2)

1 (0,Wr,x,W1) (x,W1,-,-)

2 (0,Wr,y,W1) (y,W1,-,-)

3 (1,Wr,x,W2) (x,W2,-,-)

4 (0,Rd,x,W3) (x,W2,W3,-)

5 (0,Wr,y,W3) (y,W1,W3,-)

1  #pragma omp single
2 {  
3 x=0;  
4 y=0;
5     #pragma omp task 
6     {
7       x=1;
8     }
9     #pragma omp task
10    {
11      y+=x;
12      print(y);//y=1 or y=2
13    }
14   }      

Figure 4.3: (a) OpenMP program snippet with a write-read data race on shared variables x (b)
Possible execution trace of the code snippet in (a), when executing on a 2 threaded system. (c)
The code snippet’s OSPG. The code fragment each W-node represents is shown below it.

it uses fast mode; otherwise, it switches to precise mode to ensure that it correctly identifies

data races in the program. We describe the two modes in more detail in Sections 4.3.1 and 4.3.2

respectively.

4.3 Data Race Detection Algorithm

The goal of OMP-RACER is to detect apparent data races in OpenMP applications. OMP-

RACER runs with the program under test and constructs its OSPG in parallel. To update its

access history metadata, OMP-RACER instruments memory the program’s read and write

operations. With a single execution of the program, OMP-RACER detects apparent races

that manifest not just in the program’s current execution trace but also in other possible thread

interleavings for a given input. In this section, we first describe OMP-RACER data race

detection algorithm in fast mode. Afterward, we describe how we extend OMP-RACER to

detect data races in programs with unrestricted OpenMP taskwaits and critical constructs.

4.3.1 Data Race Detection in Fast Mode

In fast mode, OMP-RACER’s data race detection algorithm operates on OpenMP programs

that use perfectly nested taskwaits and do not use the critical constructs. When limiting the

use of taskwaits to being fully nested, its uses do not result in unstructured parallelism (See



160

Algorithm 17: Analysis algorithm checking if using fast mode is safe for an OpenMP
program. This analysis requires OMP-RACER to run the program once before running
its data race detection algorithm using fast or precise mode.
1 procedure ONPROGRAMSTART()
2 use_fast_mode false
3 RegisterCallback(on_node_pop, OSPGNODEPOP)
4 RegisterCallback(critical_begin, CRITICALBEGIN)
5 ConstructOSPG()

6 procedure OSPGNODEPOP(node)
7 if NodeType(node) = ST-node ^ node.st_val = 0 then
8 use_fast_mode False
9 end

10 procedure CRITICALBEGIN(lock)
11 use_fast_mode False

Section 2.4.6), Thus resulting in a simpler data race detection algorithm that uses a constant

amount of metadata per memory location. When possible, OMP-RACER uses fast mode over

precise mode.

OSPG Construction in Fast Mode

OMP-RACER constructs the program’s OSPG during program execution. A program’s OSPG

is constructed incrementally and in parallel as the program executes. The OSPG construction

algorithm in fast mode is similar to the OSPG construction described in Section 2.4 and its

construction details in Section 3.3.1. Except it does not create ST-nodes. Instead, all ST-nodes

are treated as S-nodes.

Choosing Between Fast Mode and Precise Mode. A question that arises when using

OMP-RACER’s data race detection algorithm is when it is safe to use fast mode over precise

mode? For example, using fast mode instead of precise mode in programs that do not have

perfectly nested taskwaits will incorrectly capture the relation of a pair of logically parallel

program fragments as serial. If these two program fragments have a conflicting memory access,

OMP-RACER will miss the data race, reporting a false negative. Further, in fast mode, OMP-

RACER is not aware of mutual exclusion locks. Thus, when two logically parallel fragments

access a shared location protected by a lock, OMP-RACER in fast mode will incorrectly report

a false positive.
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Algorithm 17 illustrates the check performed by OMP-RACER to deem if using fast mode

is safe. The analysis algorithm requires running the program under test once to determine which

data race detection mode is suitable for a program and a given input. The analysis algorithm sets

a flag variable (use_fast_mode) to indicate if OMP-RACER can use fast mode for data race

detection. The analysis works as follows. When the program begins execution, the algorithm

sets the value of the flag variable to true, registers two callback functions, before starting to

construct the program’s OSPG (lines 1-5 in Algorithm 17). The first callback, OSPGNODEPOP,

is called whenever during the OSPG construction algorithm, a node goes out of scope, and it

gets popped from the per-thread pop an OSPG node (See Section 3.3.1 for details on the OSPG

construction algorithm). The second callback, CRITICALBEGIN, is called whenever the program

encounters an OpenMP critical construct.

The callback OSPGNODEPOP is used to check if the taskwaits in the program are perfectly

nested. Recall that the OSPG construction algorithm creates an ST-node whenever a parent task

creates its first child task in the program or after an OpenMP synchronization construct (See

Section 2.4.6) with a starting st_val of zero. During the program execution, whenever the

current task encounters a taskwait, it sets the corresponding ST-node’s st_val to -1. Thus, it

follows that a program’s OSPG ST-nodes are all set to -1 if and only if all taskwaits are fully

nested in the program, which implies structured parallelism semantic where each parent task

waits for the completion of all descendant tasks. The OSPGNODEPOP callback checks to see if

this property is maintained during the construction algorithm whenever an OSPG node goes out

of scope and is popped from the OSPG. As soon as the algorithm detects an ST-node with an

st_val of zero, the flag variable use_fast_mode is set to false (lines 6-9 in Algorithm 17).

Alternatively, we can construct the entire program’s OSPG in memory and then traverse all its

nodes and check if all ST-nodes have a value of -1 before the program ends. However, the latter

approach requires has higher memory overheads since it requires maintaining the entire OSPG

in memory until the end of the program.

The callback CRITICALBEGIN is used to check if the program has any OpenMP critical con-

structs for a given input. As soon as the program encounters a critical constructs, the algorithm

identifies that the use of fast mode is not safe and it sets the flag variable use_fast_mode to

false (lines 10-11 in Algorithm 17).
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Algorithm 18: The ISPARALLEL relation when using OMP-RACER’s fast mode for
a pair of W-nodes where Wl is left of Wr.
1 function ISPARALLEL(Wl, Wr)
2 L LCA(Wl,Wr)
3 Llc  L.childTo(Wl)
4 if Llc.type = S-node _ Llc.type = W-node then
5 return False
6 end
7 Lrc  L.childTo(Wr)
8 if Llc.type = P-node then
9 if DIRECTEDPATH(Llc, Lrc) = True then

10 return False . series due to task dependencies
11 end
12 return True

13 end

Computing Series-Parallel Relations in Fast Mode

Using the OSPG, we can check if two W-nodes logically execute in parallel. Since when using

fast mode, the program’s OSPG does not have any ST-nodes, performing this check is more

straightforward than the ISPARALLEL relation described in Section 2.5 and does not require

storing st_val values in each nodes. Note that for each memory access, OMP-RACER

keeps track of which W-node it corresponds to; Thus to compute the series-parallel relations

between a pair of memory accesses is equivalent to finding the series-parallel relation of the

pair’s corresponding W-nodes.

Algorithm 18 shows the steps involved for performing this check given a pair of W-nodes,

Wl and Wr where Wl is to the left of Wr. This procedure is as follows. (1) Compute the least

common ancestor (LCA) of the two nodes Wl and Wr (line 2). (2) Identify the left child of the

LCA node on the path to Wl and (line 3). If the left child of the LCA, node Llc, is an S-node or

a W-node, then the two W-nodes logically execute in series (lines 4-6). This follows directly

from the properties of OSPG nodes (See Section 2.3). (3) If the left child of the LCA on the

path to Wl is a P-node, the pair of W-nodes may execute in parallel unless they are serialized

by task dependencies (lines 8-12 in Algorithm 18). To perform this check, the algorithm calls

the DIRECTEDPATH function to perform a reachability query comprised of only dependency

edges between the two nodes. If a directed path exists, the pair of W-nodes execute in series.

Otherwise, they logically execute in parallel.
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Algorithm 18 is simpler than Algorithm 1, as it does not need to consider the presence of

ST-nodes. Further, the ISPARALLEL relation in fast mode does not require checking the nesting

levels of the left W-node and the st_val values of nodes on the path to the LCA node. This

also results in a simpler check for task-dependency serializations between the two algorithms.

This simplification occurs because, in fast mode, the algorithm can safely assume that a parent

task’s continuation starts execution only after all the parent task’s descendant tasks complete

execution. Thus when a dependency clause serializes two sibling tasks, it also serializes all their

descendants because of the fully nested taskwaits in programs analyzed in fast mode.

Access History Management in Fast Mode

OMP-RACER maintains access history metadata with each shared memory address. In fast

mode, OMP-RACER maintains up to three W-nodes per memory location. One W-node, W1,

corresponds to the latest write operation. Two W-nodes, R1 and R2, correspond to two previous

parallel read accesses, resulting in a constant amount of metadata per memory location used by

the program under test. The access history management strategy used by OMP-RACER in fast

mode is similar to prior work [132, 162, 194], where the authors have explored on-the-fly data

race detection for task-parallel and fork-join applications.

For every shared memory location x referenced by the program, OMP-RACER maintains a

3-tuple hW1, R1, R2i for its access history. Initially, all three entries are set to empty, h�,�,�i.

Until the first data race is detected, OMP-RACER keeps the following invariants. For every

write operation to x, the W1 entry is updated to the W-node that corresponds to the latest write

operation. The intuition behind keeping track of only the latest write access W-node is that all

previous write accesses, including the most recent one, must have executed in series relative to

each other. Otherwise, we would have two parallel reads, breaking the assumption that no data

race has been detected so far.

In contrast, multiple parallel read accesses to location x may exist without breaking the

assumption of the absence of data races so far in the execution2. In such cases where n parallel

read W-nodes, R1..n, to location x exist, the access history entries R1 and R2 are chosen

2two parallel reads accesses to the same location does not constitute a data race
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from R1..n such that L = LCA(R1, R2), is closer to the root node than L0 = LCA(R1, RK)

or L00 = LCA(R2, RK) for any RK 2 R1..n. This pruning criteria is similar to the SPD3

algorithm proposed by Raman et al. [161, 162]. Further, updates to the metadata entries must be

performed atomically.

The intuition behind such a choice is that if any future memory access is involved in a

data race on location x with prior any prior n parallel reads, R1..n, then it will also have a

data race with either R1 or R2. Thus, it is sufficient to maintain two previous parallel reads

for a given memory location without missing a data race on location x. in fast mode, the

isParallel relation has the transitive property. Consider the read access Rk that is a mem-

ber of R1..n. By definition, isParallel(R1, Rk) = True and isParallel(R2, Rk)

= True. If a future write access, Wj , is involved in a data race with Rk, implying that

isParallel(Rk,Wj) = True, based on the transitive property, isParallel(R1,Wj)

= True and isParallel(R2,Wj) = True. Indicating that under this access history man-

agement strategy, OMP-RACER will still detect the data race despite not including Rk in the

access history metadata.

Since two memory accesses before and after a global synchronization construct can not be

involved in a data race, all metadata entries can be safely set to empty after the program exits an

OpenMP parallel region.

Data Race Detection Algorithm in Fast Mode

OMP-RACER runs with the OpenMP program under test and constructs the program’s OSPG

on-the-fly. The OSPG is used to compute the ISPARALLEL function shown in Algorithm 18.

OMP-RACER instruments memory accesses in the program to update the access history

metadata and to identify if the current access is involved in a data race. The function ONMEMO-

RYOPERATION in Algorithm 19 is invoked whenever the OpenMP program encounters a new

memory access event. Algorithm 19 performs two main tasks. First, it checks if the current

memory access is involved in a data race with the stored W-node entries stored in the access

history metadata (lines 3-17). Second, after performing the check for data races, the algorithm

updates the access history metadata corresponding to the current memory access (lines 18-41)



165

Algorithm 19: OMP-RACER data race detection algorithm in fast mode. The func-
tion is invoked whenever the program accesses a memory location.
1 function ONMEMORYOPERATION(tid, addr, type)
2 hW1, R1, R2i  GETACCESSHISTORY(addr)
3 Cur  GETCURRENTWNODE(tid)

. Check if current access is involved in a data race
4 if type = Read ^ ISPARALLEL(Cur,W1) = True then
5 REPORTDATARACE(addr,Read,Write)
6 end
7 else

. Current memory operation is a Write
8 if ISPARALLEL(Cur,W1) = True then
9 REPORTDATARACE(addr,Write,Write)

10 end
11 if ISPARALLEL(Cur,R1) = True then
12 REPORTDATARACE(addr,Write,Read)
13 end
14 if ISPARALLEL(Cur,R2) = True then
15 REPORTDATARACE(addr,Write,Read)
16 end
17 end

. Update Access History Metadata
18 if type = Read then
19 if R1 = h�i then
20 R1  Cur
21 end
22 else if R2 = h�i then
23 if ISPARALLEL(Cur,R1) = True then
24 R2  Cur
25 end
26 else
27 R1  Cur
28 end
29 else if ISPARALLEL(Cur,R1) = False ^ ISPARALLEL(Cur,R2) = False

then
30 R1  Cur
31 R2  h�i
32 else if ISPARALLEL(Cur,R1) = True ^ ISPARALLEL(Cur,R2) = True

then
33 LCA12  LCA(R1, R2)
34 LCAc1  LCA(Cur,R1)
35 LCAc2  LCA(Cur,R2)
36 if LCAc1 > LCA12 ^ LCAc2 > LCA12 then
37 R1  Cur
38 end
39 end
40 else

. Current memory operation is a Write
41 W1  Cur

42 end
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The algorithm starts by first retrieving the access history metadata corresponding to the

current memory access (line 2). In fast mode, this entry is comprised of up to three W-nodes,

W1, which corresponds to the previous write operation, and R1 and R2, which corresponds to

two previous read operations. Next, the algorithm retrieves W-node, Cur, the program fragment

the current memory operation belongs to. Depending on the type of the current memory access,

lines 4-17 check for apparent data races. If the current access is a read operation, the algorithm

checks if the current access is involved in a data race with the latest write operation, W1. When

the current access is a write operation, checking for a data race with entries R1 and R2 is not

needed since multiple read operations will not constitute a data race. If the current access is a

write operation, in addition to checking for data race with the latest write access, the algorithm

checks if the current access is involved in a Read/Write data race with the two previously

store read entries, R1 and R2.

Afterward, OMP-ADVISER updates the metadata data entries to include the current memory

access, if required. If the current memory access is a write, we update the W1 entry with the

current access to maintain the invariant of W1 storing the latest write operation (line 41). If

the current memory access is a read operation, the update criteria are slightly more involved.

When the current read access may execute in parallel with both reads stored in R1 and R2, we

must keep two of the read accesses in the access history metadata. OMP-ADVISER maintains

the invariant of storing a pair of read accesses such that their LCA node is closest to the root

node of the OSPG (i.e., the pair’s LCA node subsumes the other two pairs LCA node). The data

race detector performs this check at lines 32-38. Replacing R1 with the current access’ W-node,

Cur, if the LCA criteria is met. In contrast, if the current access executes is series with both R1

and R2 the algorithm removes clears both entries, replacing R1 with Cur

Time and Space Overhead. The running time of OMP-RACER’s data race detection

algorithm can be broken down into two components. First, the cost of OSPG construction.

Second, the cost of calling the ONMEMORYOPERATION on each memory operation. Creating

the OSPG requires time proportional to the number of program fragments. Since program

fragments start/end when the program trace encounters an OpenMP construct, the number of

program fragments is proportional to the number of dynamic OpenMP constructs encountered

during the program execution. The height of the OSPG, h, is proportional to the task nesting
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level of the program (including both implicit and explicit tasks) since creating a child task by a

parent task results in adding a constant number of nodes to the OSPG. Hence, the overall cost of

creating the OSPG is proportional to the running of the program under test.

The number of times the function ONMEMORYOPERATION is called is equal to the number

of shared memory access operations performed within OpenMP parallelism constructs in the

program, which is proportional to the dynamic trace of the program. The running time of each

call to ONMEMORYOPERATION is O(h), since all operations except the calls to ISPARALLEL

and LCA perform a constant amount of work. The LCA operation takes a pair of W-nodes,

which are leaf nodes in the OSPG. Performing an LCA query between a pair of leaf nodes can

be accomplished by traversing each node’s parent on the path to the root node and reporting the

first common node between the two paths as their LCA. The height of the OSPG bounds the

cost of this operation. Hence, the LCA running time is O(h).

In the absence of task dependencies, the running time of ISPARALLEL is O(h) since the

algorithm does not call the DIRECTEDPATH function. The DIRECTEDPATH function performs a

reachability query on the subgraph of sibling tasks and the dependency edges connecting them.

For a set of sibling tasks with the size of k, up to k2 unique dependency edges can exist. In a

graph with k2 edges, performing a depth-first traversal answers a reachability query in O(k2)

time and O(k) space. We can improve the running time of a reachability query to O(k) by

maintaining the task dependency subgraph’s transitive closure using O(k2) space. By default,

OMP-RACER uses the second approach. Hence the running time of ISPARALLEL is O(h+ k).

In practice, task dependencies are often used to model stencil computations, where k is constant.

In such cases, the running time of ISPARALLEL is O(h).

Since the cost of an LCA query is one of the dominating factors in our algorithm’s running

time, it naturally raises the question of whether more efficient algorithms exist to perform this

query. Finding faster algorithms for LCA queries on trees and DAGs has been explored in

prior works. However, these solutions explore the problem in a serial setting [26, 46] or require

preprocessing the entire DAG first [170]. Either limitation makes the algorithm not suitable to

our parallel and on-the-fly data race detection setting. Nonetheless, a faster LCA algorithm can

improve our data race detection algorithm.
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The space overhead of the algorithm is bound by the access history size. Each access

history entry has the size O(1) since it uses the identifiers to up to three W-nodes. Since

metadata entries can be safely discarded after a global synchronization construct at the end

of an OpenMP parallel region, the number of access history entries is bound by the number

of memory locations accessed within the parallel region, Wset (i.e., its working set within the

parallel region). Thus, OMP-RACER’s data race detection algorithm in fast mode requires

additional memory proportional to the working set size of the program under test.

4.3.2 Data Race Detection in Precise Mode

In precise mode, OMP-RACER data race detection algorithm applies to programs with unre-

stricted use of taskwaits and programs that use OpenMP locks.

Computing Series-Parallel Relations in Precise Mode

In precise mode, the program’s OSPG may include ST-nodes. To capture the logical-series

parallel relations in the program in precise mode, we need to use the ISPARALLEL relation as

described in Section 2.5. There are two main differences between the ISPARALLEL relation

used in fast and precise mode. First, the inclusion of ST-nodes is needed to correctly capture

the logical series-parallel relations of program fragments in the presence of unrestricted use

of taskwaits, which results in additional checks at lines 16-20 in Algorithm 1 compared to

Algorithm 18. Second, the presence of unrestricted taskwaits impacts the check for serialization

implied from a task dependency since we can no longer assume that all descendant tasks of a

parent task complete when the parent task completes. This change is reflected in the additional

check performed at lines 10-11 in Algorithm 1.

Access History Management in Precise Mode

In precise mode, it is no longer possible to maintain a constant amount of access history

metadata per memory location. Two factors contribute to this change: First, the unrestricted use

of taskwaits results in unstructured parallelism in the program. Thus unlike fast mode, we can

no longer assume that the ISPARALLEL relation is transitive. Second, the use of locks requires
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(a) OpenMP Code Snippet (b) Program OSPG

1 #pragma omp single
2 {    
3    #pragma omp task
4    {
5      #pragma omp task
7      {
8        Rd_A(x);
9 }
10     Rd_B(x);
12   }
13   #pragma omp task
14 {
15 Rd_C(x); 
16 }
17 #pragma omp taskwait
18 Wr_D(x);     
19 }

S1
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P3ST2

P2

WA

WB

1

0

1

0-1

WC

Time Observed Trace
(Tid, Type, Addr, Node)

Access History
(Wr, Rd1, Rd2)

1 (0,Rd,x, WB) (-,WB,-)

2 (0,Rd,x, WC) (-,WB,WC)

3 (1,Rd,x, WA) (-,WB,WC)

4 (0,Wr,x, WD) (WD,WB,WC)

(c) Program Trace and Access History in Fast Mode

Time Observed Trace
(Tid, Type, Addr, Node)

Access History
(Node, Wr, Rd1, Rd2)

1 (0,Rd,x, WB) [(S1,-,WB,-),(ST1,-,WB,-),(ST2,-,WB,-)]

2 (0,Rd,x, WC) [(S1,-,WB, WC),(ST1,-,WB, WC),(ST2,-,WB,-)]

3 (1,Rd,x, WA) [(S1,-,WB, WC),(ST1,-,WB, WC),(ST2,-,WB, WA)]

4 (0,Wr,x, WD) [(S1, WD,WB, WC),(ST1,-,WB, WC),(ST2,-,WB, WA)]

(d) Program Trace and Access History in Precise Mode mode

Figure 4.4: Illustration of an example OpenMP program snippet where the use of constant
amount of access history metadata is not sufficient to detect the data race on variable x. (a)
OpenMP program snippet. (b) The code snippet’s OSPG. (c) Program trace with fast mode’s
access history metadata management. (d) Program trace with precise mode’s access history
metadata management.

the need to store additional access history metadata that grows in proportion to the lockset size3.

This change is required since if two conflicting memory operations hold at least one common

lock (i.e., the intersection of the locks held between the two access is not the empty set), then the

two memory operations do not constitute a data race. Hence, requiring OMP-RACER’s data

race detection algorithm to keep track of the locks held by the program’s threads and updating

the access history metadata entries accordingly. To ease explanation, we first start with an

example lock-free program that does not have fully nested taskwaits and describes the changes

required to the access history metadata. Next, we discuss the changes required to detect data

races in the presence of locks correctly. Finally, we describe the update rules to the access

history metadata in precise mode.

Consider the example OpenMP program snippet and its OSPG shown in Figure 4.4(a) and

(b). This program is comprised of four serial functions where based on the prefix of their name,

Rd_ or Wr_, perform a read or write operation to the shared variable x, respectively. Since the

program is missing a taskwait after line 9, no serial ordering between functions Rd_A and Wr_D

exists. Hence, the program has a read-write data race on variable x.

3For a program that uses n unique locks; the lockset size is the size of its power set, i.e., 2n.
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In this example program, using fast mode to manage access history metadata entries is not

sufficient to detect some data races. We can no longer maintain three W-nodes (latest write and

up to two reads) per memory location. Figure 4.4(c) shows a possible program trace and the

access history management using fast mode as described in Section 13. At time 3, when the

read operation at line 8 occurs, the W-node corresponding to read access WA is not added to

the metadata entry. Following lines 33-38 of Algorithm 19, since W-node WA may execute

in parallel with both previously stored metadata entries (WB,WC), and LCA(WA,WC) and

LCA(WA,WB) is not closer to the root node of the OSPG the metadata entry is left unchanged

after time 3 in the program trace in Figure 4.4(c).

In precise mode, for lock-free programs, instead of storing a single 3-tuple of W-nodes,

(Wr,R1, R2), the number of 3-tuples grow proportionally to the number of active ST-nodes in

the program. As shown in Figure 4.4(c) for programs with ST-nodes in their OSPG, maintaining

two read access W-node entries is not sufficient to find the first data race. The example from

the program snippet in Figure 4.4(a) can be generalized as follows. Consider two parallel reads,

(R1, R2) that occur in tasks that are at an outer nesting level of the program and a parallel read

that occurs in a task at an inner nesting level, R3. Maintaining the earlier invariant results in

keeping (R1, R2) in the access history. Leading to potentially missing data races that involve

R3. Thus, in precise mode, OMP-RACER maintains two additional reads and one write for

each active ST-node.

Figure 4.4(d) shows the program trace and the access history metadata in precise mode. The

access history is shown as a list of 4-tuples, where the first entry in the tuple references the

root S-node or an ST-node in the program’s OSPG. For each memory location reference by the

program, OMP-RACER maintains one write, and two read accesses for the entire program,

corresponding to the program’s OSPG root S-node. An additional write and two read accesses

for every active ST-node in the program. For example, with the extra number of access history

entries per memory location in precise mode, OMP-RACER does not miss the data race in

Figure 4.4(a), since at time 3, OMP-RACER stores W-node WA in the access history list as

shown in Figure 4.4(d). Subsequently, at time 4, when the program performs the write access

that corresponds to W-node WD, OMP-RACER detects the program’s data race since it finds

that W-nodes WD and WA are involved in a data race.
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In precise mode, the metadata is updated as follows. On a memory access operation that

corresponds to W-node Wcur, traverse the OSPG towards the root S-node and identify all ST-

nodes on the path to the root node. For every ST-node encountered and the root node, retrieve the

current entry from the access history if present; otherwise, create a new entry. This entry contains

three W-nodes, corresponding to the latest write and up to two parallel reads. The update rules

for this 3-tuple is similar to OMP-RACER’s fast mode. For example, if the retrieved entry

already includes two read entries, if the LCA node of Wcur and one of the existing read entry

W-nodes is closer to the root than the LCA of the existing pair, then Wcur replaces one of the

previous read accesses. Otherwise, information about Wcur is already subsumed by the existing

two read entries in the access history tuple, and the entry is not updated.

Detecting Data Race in the Presence of Locks and Critical Construct. We now de-

scribe how OMP-RACER’s access history management in precise mode is adjusted to handle

mutual exclusion locks4 and the OpenMP critical construct. OpenMP critical construct (See

Section 2.4.4 for more detail), acts similar to a lock in that it provides mutual exclusion to

the block of code surrounded by a critical construct where only one worker thread at a time

can execute. Locks and the OpenMP critical construct provide ordering between two memory

accesses. Hence, two memory accesses to the same location by different threads in parallel

does not constitute a data race if both accesses hold the same lock or execute within critical

constructs with the same name. Locks and OpenMP critical constructs are identified by a unique

identifier 5, which makes their handling by OMP-RACER’ precise mode similar. For the rest

of this section, when we make a statement about OMP-RACER’s handling of locks, it similarly

applies the OpenMP critical construct.

To detect data races in the presence of locks, inspired by prior data race detectors such as

ALL-SETS [44], SPD3 [161], and PTRACER [194], OMP-RACER’s data race detection

algorithm keeps track of the set of locks held before a memory access operation and only reports

data races when two memory accesses do not hold a common lock. Thus, OMP-RACER

maintains an access history metadata entry for each distinct set of locks used by the program.

The lockset size grows exponentially with the number of distinct locks in the program. The

4Also referred to as a mutex.
5In most implementations, this identifier is the address of the lock
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exponential growth of the lockset size impacts the usability of OMP-RACER’s precise mode’s

access history management strategy in programs that use many distinct locks. In practice,

most OpenMP programs use locks sparingly. For example, in our evaluated benchmarks from

Sections 4.4 and 3.9, the tested programs were either lock-free or use a single lock.

Further, in the presence of locks, we need to adjust the number of write accesses maintained

per access history metadata data entry. Unlike lock-free memory accesses, where two parallel

write accesses on a shared variable constitute a data race, two parallel shared memory location

write operations holding a common lock do not constitute a data race because of the ordering

provided by the common lock. Hence, instead of storing the latest write operation, each

metadata entry maintains up to two parallel write accesses in precise mode. Thus, for a given

lockset and memory location, OMP-RACER maintains up to four W-nodes, two parallel writes,

(Wr1,Wr2), and two parallel reads, (R1, R2). The metadata entry update rule for parallel

writes is similar to how parallel reads are handled in fast mode. If the W-node corresponding

to the current write operation, Wcur is in parallel with the two previously stored write entries

in the access history metadata, (Wr1,Wr2), it replaces one of them if LCA node of Wcur and

(Wr1 or Wr2) is closer to the root node than the LCA of the existing pair.

Overall, in the presence of locks and unrestricted use of taskwait, the metadata entry

per memory location is comprised of 6 entries. The first two entries, Lockset and Node

uniquely identify the lockset and the corresponding node (i.e., root node or an ST-node) in the

program’s OSPG. The remaining four entries correspond to two writes and two read operations.

On a memory access with lockset (lc) with a corresponding W-node Wcur, the metadata is

checked as follows. OMP-RACER iterates over the access history metadata entries to find the

corresponding list of 6-tuples, (Lockset,Node,Wr1,Wr2, R1, R2).

Data Race Detection Algorithm in Precise Mode

Algorithm 20 illustrates OMP-RACER’s data race detection algorithm in precise mode. The

algorithm comprises two parts. First, OMP-RACER checks for data races by checking if the

current memory access is involved in a data race with previous memory accesses stored in the

access history metadata (lines 4-14). Next, it updates corresponding access history metadata

entries to include the current memory access operation (lines 15-45). The data race detection
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algorithm in precise mode is similar to the algorithm used in fast mode, except each part is

slightly more involved mainly due to the increased number of access history metadata entries.

The data race detection algorithm retrieves the access history list of metadata entries at line 2.

Unlike fast mode, this operation returns a list of 6-tuple entries. Each entry is uniquely identified

by its first two entries, corresponding to a lockset and the corresponding root node or ST-node in

the program’s OSPG. The remaining four entries correspond to two reads and two writes. To

report data races, the OMP-RACER iterates over each access history list entry (lines 4-14). For

each entry, if the intersection of the entry’s lockset and current access’ lockset is non-empty

(line 5), the data race detection algorithm checks if the W-node corresponding to the current

memory access, Cur, and the entries’ 2 reads/writes are conflicting and may logically execute

in parallel. If so, it reports an apparent race (lines 5-13).

Subsequently, OMP-RACER updates the access history metadata entry list as follows.

Unlike fast mode, we modify the entries corresponding to the current lockset and all the ST-

nodes on the path to the root node. Hence, starting at line 16, the data race detection algorithm

traverses from the current W-node towards the OSPG’s root node. For every encountered ST-

node and the OSPG’s root node, Node, OMP-RACER creates or retrieves a new entry from

the list of access history entries that corresponds to the current lockset (lines 18-20). Next, the

OMP-RACER retrieves the corresponding pair of W-nodes matching the currently encountered

node, lockset, and corresponding type of access from the entry list. Each retrieved entry contains

two W-nodes, a pair of read/write W-nodes, (N1, N2), matching the type of the current memory

access (line 21). Finally, similar to fast mode, the OMP-RACER updates the pair of read

W-nodes by replacing one of the existing entries with the current W-node, if needed6 (lines

22-39 in Algorithm 20).

Time and Space Overhead. Similar to fast mode, the running time of OMP-RACER’s data

race detection is divided into three parts: First, the cost of constructing the program’s OSPG. The

asymptotic cost of OSPG construction is the same between fast and precise modes since updating

st_val values add a constant number of operations per internal OSPG node. Second, tracking

6See Section 4.3.2 for more detail on the update rule.
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Algorithm 20: OMP-RACER data race detection algorithm in precise mode.
1 function ONMEMORYOPERATION(tid, addr, type, lockset)
2 EntryList GETACCESSHISTORYLIST(addr)
3 Cur  GETCURRENTWNODE(tid)
4 foreach hLockset,Node,Wr1,Wr2, R1, R2i 2 EntryList do
5 if Lockset \ lockset = ; then
6 foreach Whist 2 hWr1,Wr2, R1, R2i do
7 if ISPARALLEL(Cur,Whist) = True then
8 if type = Write _ TYPE(Whist) = Write then
9 REPORTDATARACE(Addr, type, TYPE(Whist))

10 end
11 end
12 end
13 end
14 end
15 Node PARENT(Cur)
16 while Node 6= ; do
17 if Node.type = ST-node _Node = GETROOTNODE() then
18 if hh�,�,�,�i, Node, lockseti /2 EntryList then
19 EntryList EntryList [ hh�,�,�,�i, Node, Lockseti
20 end
21 hN1, N2i  RETRIEVEENTRY(EntryList,Node, lockset, type)
22 if N1 = h�i then
23 N1  Cur
24 else if N2 = h�i then
25 if ISPARALLEL(Cur,N1) = True then
26 N2  Cur
27 else
28 N1  Cur
29 end
30 else if

ISPARALLEL(Cur,N1) = False ^ ISPARALLEL(Cur,N2) = False
then

31 N1  Cur
32 N2  h�i
33 else if ISPARALLEL(Cur,N1) = True ^ ISPARALLEL(Cur,N2) = True

then
34 LCA12  LCA(N1, N2)
35 LCAc1  LCA(Cur,N1)
36 LCAc2  LCA(Cur,N2)
37 if LCAc1 > LCA12 ^ LCAc2 > LCA12 then
38 N1  Cur
39 end
40 end
41 Node PARENT(Cur)

42 end
43 return
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the set of locks held during program execution. Third, the cost of ONMEMORYOPERATION on

each memory operation.

To track the locks held by the program execution trace, we need to maintain a per-thread set

of locks held by the OpenMP program’s worker threads. For a program with p worker threads

and l unique locks, this results in an additional O(pl) space overhead. The additional running

time overhead is bounded by the number of lock operations in the program trace. For each

lock operation, updating the corresponding per-thread lock set requires O(1) operations. Thus

for a program with n lock operations, OMP-RACER incurs an additional O(n) running time

overhead.

Similar to fast mode, the number of times the function ONMEMORYOPERATION is called is

equal to the number of memory accesses in the program trace. However, the running time of

ONMEMORYOPERATION is higher than fast mode. The increased running time can be attributed

to the increased number of metadata entries per memory location. The loop that checks for data

races in Algorithm 20 (lines 4-14), calls the ISPARALLEL function in proportion to the size of

the metadata entry list. The metadata entry list size grows in proportion to the lockset size and

the nesting level of the program’s OSPG for a given memory location. Hence for a program with

l unique locks and a height of h. The number of entries in the metadata list is bound by O(lh).

The loop that updates the metadata entry list (lines 16-42 in Algorithm 20), performs a traversal

from a leaf node in the OSPG towards its root node, which is bound by the height of the OSPG.

In the worst case, O(h) ST-nodes may exist on the path towards the root node, which results in

the branch at line 17 to be taken up to O(h) times. The body of the branch includes a constant

number of calls to the function ISPARALLEL. Overall, the function ONMEMORYOPERATION

makes O(lh) calls to ISPARALLEL.

For an OpenMP program with an OSPG of height h and up to k sibling tasks, the running

time of ISPARALLEL is O(h) in the absence of task dependencies, and O(h+ k) in the presence

of task dependency. In precise mode, the asymptotic running time of ISPARALLEL is similar

to fast mode since the Algorithm refalg.dmhp, which is used in precise mode, only performs

a constant number of operations more than Algorithm 18, used in fast mode. Hence, in the

absence of task dependencies, the running time of the function ONMEMORYOPERATION in

precise mode is O(lh2), which is higher than its fast mode counterpart, which has a running time
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of O(h). Intuitively, in precise mode, OMP-RACER’s data race detection algorithm running

time increases by the same factor as the increase per metadata size per memory location.

The space overhead of the data race detection algorithm is bound by the access history

metadata’s size. In precise mode, each access history list grows in proportion to the lockset’s

size and the number of active ST-nodes in the program bounded by O(lh). Hence, unlike fast

mode where the algorithm’s space overhead is proportional to the program’s working set size, in

the worst case, OMP-RACER’s precise mode requires a significantly larger amount of memory.

Discussion For a given program input, OMP-RACER data race detection algorithm is

Complete; that is, for programs that use OpenMP constructs supported by OMP-RACER,

it does not report false positives. OMP-RACER is also sound for programs with supported

constructs. For unsupported constructs, OMP-RACER may miss data races. For example, as a

dynamic data race detector, OMP-RACER cannot detect data races caused by instruction-level

parallelism, namely OpenMP’s SIMD construct, without auxiliary information passed by the

compiler. Additionally, OMP-RACER does not support OpenMP’s offloading construct used

for offload computations to GPUs and other accelerators. To support offloading, we need the

ability to track memory accesses in the offloaded device, which we plan to explore in future

work.

It should be noted that this soundness and completeness guarantee applies only until the first

data race in the program is observed. After the first data race is observed, the assumptions made

by the data race detection algorithm no longer hold. In practice, if the developer’s goal is to

eliminate all data races in an application with n data races, they can identify all n data races by

running the program n times and each time eliminating the first reported data race.

4.3.3 Illustrative Example

We will now show OMP-RACER’s data race detection algorithm when used to detect the data

race in the example program in Figure 4.5(a) that uses different OpenMP constructs to compute

the sum of an array in parallel. It uses worksharing and tasking constructs to add parallelism to

the program. This example has a data race due to insufficient synchronization between child

tasks and the implicit task executing the single construct (lines 12-24 in Figure 4.5(a)). To detect

this data race, we use OMP-RACER’s precise mode.
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(a) Example OpenMP Program

(c) Program’s EOSPG

(b) Program Trace
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1 int main(){
2 int a[4];
3 int psum[2];
4 int sum;
5 #pragma omp parallel num_threads(2)
6 {
7 #pragma omp for schedule(dynamic, 1)
8 for (int i=0; i < 4; ++i)
9 {
10 a[i] = i;
11 }
12 #pragma omp single
13 {
14 #pragma omp task
15 {
16 #pragma omp task
17 {
18 psum[1] = a[2] + a[3];
19 }
20 psum[0] = a[0] + a[1];
21 }
22 #pragma omp taskwait
23 sum = psum[1] + psum[0];
24 }      
25 }
26 printf(“sum = %d\n”, sum);
27 return 0;
28 }

Time Observed Trace
(Tid, Type, Addr, Node)

Access History
(Node, W, R1, R2)

1 (0,Wr,a[0],W2) (S1,W2,-,-)

2 (1,Wr,a[2],W3) (S1,W3,-,-)

3 (1,Wr,a[3],W5) (S1,W5,-,-)

4 (0,Wr,a[1],W4) (S1,W4,-,-)

5 (0,Rd,a[3],W8) (S1,W4,W8,-)(ST1,-,W8,-)(ST2,-,W8,-)

6 (0,Rd,a[2],W8) (S1,W3,W8,-)(ST1,-,W8,-)(ST2,-,W8,-)

7 (0,Wr,psum[1],W8) (S1,W8,-,-)(ST1,W8,-,-)(ST2,W8,-,-)

8 (1,Rd,a[1],W9) (S1,W4,W9,-)(ST1,-,W9,-)(ST2,-,W9,-)

9 (1,Rd,a[0],W9) (S1,W2,W9,-)(ST1,-,W9,-)(ST2,-,W9,-)

10 (1,Wr,psum[0],W9) (S1,W9,-,-)(ST1,W9,-,-)(ST2,W9,-,-)

11 (0,Rd,psum[0],W10) (S1,W9,W10,-)(ST1,W9,-,-)(ST2,W9,-,-)

12 (0,Rd,psum[1],W10) (S1,W8,W10,-)(ST1,W8,-,-)(ST2,W8,-,-)

Figure 4.5: (a) Example OpenMP program with a write-read apparent data race on variable psum[1]
at lines 18 and 23. (b) The execution trace of the example program when executed with two threads.
The first column specifies the ordering of the observed trace. The second column specifies the memory
access as a 4-tuple comprised of thread id, memory access type, memory access location, and the W-node
performing the access. The third column illustrates the access history maintained by OMP-RACER
for the corresponding memory access as a 4-tuple with the node identifier, W-node corresponding to the
latest write, and two W-nodes corresponding to two parallel read accesses (- denotes the empty set). (c)
The program’s OSPG. The code fragment each W-node represents is shown below it. The square boxes
next to some OSPG nodes represent the value indicating the nesting depth in the presence of taskwaits.
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Figure 4.5(b) provides the dynamic execution trace and the updates to the access history

metadata for each memory location using the precise mode for the example program in Fig-

ure 4.5(a). The write operation to psum[1] at line 18 of the example program corresponds to

the W-node, W8. Upon this write operation, the metadata associated with psum[1] is updated

to include W8. The path from the root of the OSPG to W8 has two ST-nodes: ST1 and ST2.

In addition, the metadata corresponding to psum[1] is also updated to include W8 for each

ST-node on the path to the root node, resulting in three entries for psum[1] in the access

history (as illustrated at time 7 in Figure 4.5(b)). Eventually, the program execution reaches the

taskwait construct at line 22 in Figure 4.5(a). OMP-RACER updates the st_val of node ST1

from 0 to -1 to record the presence of a taskwait. Later, when the implicit task executing the

single construct performs a read operation on psum[1] at line 23 in Figure 4.5(a), the W-node

representing the current read is W10. OMP-RACER retrieves the metadata for psum[1],

which includes access histories corresponding to the root node of the OSPG and ST-nodes ST1

and ST2. Since the path from W10 to the root node of the OSPG does not contain any ST-nodes,

only the metadata entry corresponding to the root node of the OSPG, S1, is updated to include

the current read access (time 12 in Figure 4.5(b)). Next, OMP-RACER looks for possible

data races by checking if the current read operation happens in parallel with any previous write

accesses recorded in the access history metadata. In our example, OMP-RACER checks if

the current read access may happen in parallel with the previously recorded write operation

corresponding to W-node W8. In this case, the LCA of W8 and W10 is S4. The left child of S4

on the path to W8 is an ST-node ST1. Next, OMP-RACER computes the sum of the st_val

values from W8 to ST1, which evaluates to 1. Thus, W8 and W10 may execute in parallel, and

one of the operations is a write operation, which results in OMP-RACER reporting an apparent

race on the memory access to psum[1].

4.4 Evaluation

In this section, we discuss the evaluation with our OMP-RACER prototype. We start by describ-

ing our prototype’s implementation details and some correctness and performance concerns that

OMP-RACER prototype must address to build an effective and usable tool. Next, we list the
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benchmarks and the experimental environment used to evaluate OMP-RACER. Subsequently,

we present our evaluation results. Our evaluation results primarily answer two research questions:

(1) Can OMP-RACER correctly identify apparent data races in different OpenMP applications?

(2) What are the performance overheads of OMP-RACER, and how does it compare to other

state-of-the-art OpenMP data race detectors?

4.4.1 Prototype Implementation

Prototype. Our OMP-RACER prototype supports C/C++ OpenMP programs. It uses LLVM-

10’s [8] OpenMP runtime and its implementation of the OpenMP tooling interface, OMPT.

The OMPT interface supports registering callbacks whenever the runtime encounters different

execution events. OMP-RACER’s prototype uses OMPT to receive callbacks whenever the

runtime encounters different OpenMP constructs and uses them to construct the program’s OSPG

on-the-fly during program execution. It also includes an LLVM pass to instrument memory

accesses. OMP-RACER has two modes: a precise and a fast mode. The precise mode detects

data races even when the program uses locks and imposes no restriction on how taskwaits are

used in the program, which can have significant overheads compared to fast mode. To safely

use fast mode, OMP-RACER first checks if the program has fully nested taskwaits. If so, it

uses a constant amount of metadata per memory location in the subsequent execution for race

detection. It is significantly faster. OMP-RACER’s prototype is publicly available [32].

OMPT callbacks. The OpenMP tooling interface is a portable solution to build perfor-

mance tools for OpenMP program that has been adopted and improved by the recent OpenMP

specifications [152, 153]. OMPT supports registering different callbacks that notify the tool

whenever different events such as entering/exiting an OpenMP construct. Our OMP-RACER

prototype uses the callbacks listed in Table 4.1. The table lists the callback’s name and provides

a short description of the callback on when it gets dispatched to the tool.

While all these callbacks are specified in the latest OpenMP 5.0 specification [153], im-

plementing some callbacks is optional as per the standard. OMP-RACER uses LLVM-10’s

OpenMP runtime implementation. The OMPT runtime implementation does not implement

the ompt_callback_dispatch callback. OMP-RACER needs this callback to correctly

model the parallel relation between dynamically scheduled loop chunks and the section regions
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Table 4.1: OMPT callbacks used by OMP-RACER prototype
Callback name Description

ompt_callback_thread_begin Called when a new low-level thread is created
ompt_callback_thread_end Called when a low-level thread ends
ompt_callback_parallel_begin Called when a parallel region starts execution
ompt_callback_parallel_end Called when a parallel region ends
ompt_callback_task_create Called when a task is created
ompt_callback_task_schedule Called when task scheduling decision are made
ompt_callback_implicit_task Called when initial tasks and implicit tasks are created
ompt_callback_dependences Called to announce the dependencies of a task
ompt_callback_work Called when a worksharing region begins-ends
ompt_callback_master Called when a master region begins-ends
ompt_callback_sync_region Called when barriers, takswaits, and taskgroups are encountered
ompt_callback_mutex_acquire Called when locks are acquired or critical regions are begun
ompt_callback_mutex_released Called when locks are released or ciritcal regions are exited
ompt_callback_dispatch* Called when a section or loop iteration begin execution

of a section construct. Hence, our prototype uses a slightly modified version of the OpenMP

runtime with support for this callback.

OSPG Data Structure Organization. OMP-RACER constructs the program’s OSPG

during program execution. Hence we need to maintain the OSPG data structure in memory.

Since the OSPG is a DAG, using graph representation such as an adjacency list is an option.

However, for OMP-RACER’s prototype, we store the OSPG by laying it on an array. Compared

to adjacency lists, this approach requires less pointer chasing, and we can limit calls to the

dynamic memory allocator when new OSPG nodes are created. For example, since OMP-

RACER works on Linux, we use mmap to reserve the space for storing OSPG array. Each

element in the array stores an OSPG node. The node’s index in the array is used as the OSPG

node’s identifier. In the default setting, OMP-RACER allocates an array with 224 elements.

Hence, to store an OSPG node identifier requires 24-bits.

The OSPG node identifier is used to store OSPG edges. We maintain the parent-child

edges in the OSPG data structure by storing the parent node’s index in the child node element.

Dependency edges are maintained by storing a node’s dependent nodes indices in each array

element. Since the maximum number of dependency edges for a node is highly program-

dependent and most programs only use a few dependencies per node, by default, we store up

to four dependency edges in each OSPG node array element. Additional dependency edges



181

are stored outside the array element by using a linked list. This approach provides better

performance for programs with a low number of dependencies per task while enabling our data

structure to support storing programs with an arbitrarily large number of dependencies per task.

Recall that the OSPG construction algorithm uses a per-thread stack that stores OSPG nodes

(see Section 3.3.1). Since the actual nodes are stored in the OSPG array, OMP-RACER stores

the node identifier on the per-thread stack.

When the program starts, the OSPG array is empty, and all elements are available. As the

OSPG is incrementally constructed, we start populating the OSPG one element at a time by

using a tail variable that contains the index of the first available OSPG element. OMP-RACER

maintains the invariant that the tail index only grows. Since OSPG construction is in parallel,

this invariant makes it straightforward to allocate new OSPG nodes from the array. We use an

atomic type for the tail variable. On every new OSPG node request, we atomically increment

the tail variable’s value to point to the next available OSPG node. Maintaining the tail invariant

raises the question of how does OMP-RACER scale to analyze long-running programs that

have an OSPG with more than 224 nodes?

OMP-RACER addresses this problem by leveraging the following simple idea: Once an

OpenMP program exits a parallel and the program’s execution is returned to the serial threads,

we deallocate all the OSPG array elements, except the first entry that represents the root node,

by moving the tail index back to the beginning of the OSPG array. Removing all these nodes

from the OSPG does not impact OMP-RACER data race detection ability since because of

the implicit barrier at the end of the parallel region, no data race can occur between a memory

operation within the parallel region and its continuation. Hence, it is safe to discard all the

OSPG nodes of the previous parallel region. By deallocating OSPG nodes after a parallel region,

OMP-RACER can be used with long-running applications. With this approach, the OSPG

array’s length limits the maximum number of OSPG nodes within a program’s parallel region.

If within a parallel region, a program’s OSPG contains more nodes than the number of elements

in the OSPG array, then OMP-RACER will run out of memory to store nodes and exits the

program. However, in the benchmarks we tested, 224 was sufficient to store the OSPG subtree

of each parallel region. Hence, in practice, this restriction does not impact the usability of the
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prototype for real-world applications. If required, OMP-RACER provides an option to use

larger OSPG arrays.

Access History Metadata Organization. OMP-RACER’s access history metadata tracks

memory locations’ accesses during the program execution. Recall that for a memory access

operation, OMP-RACER stores the W-node corresponding to the memory access. In our

prototype, OMP-RACER stores the OSPG node identifier corresponding to this W-node in the

metadata entry. OMP-RACER’s access history metadata is stored in a shadow memory. The

shadow memory is designed as a map data structure that maps each memory referenced memory

location to the corresponding access history metadata entry. We implement this map with a

two-level trie [139]. Our prototype supports x86-64 systems. Hence, we map the 48-bit virtual

address space with a two-level trie. The trie acts like a software implementation of a two-level

page table. The first level of the trie is indexed by the first 10-bits of the memory address and

is allocated using mmap during OMP-RACER’s initialization. The second level is addressed

by the next 24-bits of the memory address and is allocated based on demand during program

execution.

In fast mode, each metadata entry is comprised of three W-nodes, one write, and two reads.

Hence, the metadata entry size in fast mode is three times the size of W-node identifiers. By

default, in the OMP-RACER prototype, W-node identifiers are 24-bit values, resulting in 9

bytes of required storage per metadata entry in fast mode. Updates to each metadata entry must

be performed atomically. One approach is to use a lock, which depending on the lock used,

adds at least 4 bytes to the size of each metadata entry7. Thus, instead of using locks fast mode,

we use the 128-bit atomic compare-and-swap (CAS) instruction to update metadata entries.

This change requires using a 128-bit alignment for the metadata entries. In practice, the CAS

instruction provides lower overheads than using common lock objects.

In contrast, precise mode’s metadata entry size is no longer constant and comprises a list of

entries, where each entry comprises one OSPG internal node (the root S-node or an ST-node), a

lockset, and four W-nodes (two reads and two writes). This requires storing five OSPG node

identifiers and a lockset for each entry in the access history list. By default, OMP-RACER

7For example, pthread_spinlock_t and pthread_mutex_t respectively use 4 and 40 bytes on x86-64
machines.
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uses 128-bits to store an element of the entry list when using precise mode. We use 120 bits

to store the OSPG node identifiers and use the remaining 8 bits to encode locksets of up to

seven different locks8. To represent the metadata entry list, OMP-RACER stores the first seven

elements (112 bytes) of the list directly in the metadata object while using an indirect pointer (8

bytes) to store additional elements. We also need to use a lock object to ensure that metadata

entry updates are performed atomically. Overall, in precise mode, OMP-RACER uses 128

bytes for an access history metadata entry.

By default, OMP-RACER keeps an access history metadata entry at a 4-byte memory

address granularity. Using a 4-byte granularity implies that OMP-RACER may report false data

races when the program performs memory accesses at a 1-byte granularity, e.g., Initializing a

character array in a parallel loop. The default option of 4-byte granularity is chosen since it offers

a good trade-off between usability and lower memory overheads. Further, to prevent running out

of memory for long-running applications, similar to the program’s OSPG, OMP-RACER has

an option to clear the access history metadata at the end of a parallel region.

Caching ISPARALLEL Queries. Computing the ISPARALLEL relation requires performing

an LCA query in the program’s OSPG (See Section 4.3). Performing an LCA query on a

OSPG with a large height can be costly, e.g., task-parallel programs with a large nesting level.

OMP-RACER provides an option to cache the recently used OSPG LCA queries. By default,

this option is disabled in our prototype since, as our evaluation results indicate, the cache did not

have a high enough hit-rate to amortize the cost of managing it.

Avoiding False Data Races Caused by Task-local Memory. An OpenMP program may

create many logically parallel sibling tasks, e.g., in a divide-and-conquer algorithm with a large

nesting level. The OpenMP runtime executes these tasks by scheduling them for execution on

a smaller number of worker threads. Once a task completes execution, the OpenMP runtime

schedules the next task. Most OpenMP runtime implementations optimize this step by recycling

and reusing the completed tasks object, including task-local heap and stack regions. Since

these memory regions are task-local, they do not constitute a data race between two logically

8We use 1-bit to encode when the memory operation holds no locks.
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Table 4.2: List of applications used for evaluating OMP-RACER’s performance overheads
Benchmark Application Description

Coral amgmk Algebraic multigrid solver microkernel
PBBS Convex Hull (CH) Compute convex hull of a set of points in 2D plane
PBBS Delaunay Triangulation (DT) Compute Delaunay triangulation of a set of points in 2D plane
PBBS Minimum Spanning Forest (MSF) Compute minimum spanning forest of for input weighted undirected graph
PBBS Nbody Forces (NBODY) Solve n-body force calculation problem for a set of points in 3D space
Coral2 Quicksilver Monte Carlo transport benchmark
BOTS Alignment Align a sequences of proteins
BOTS FFT Compute a Fast Fourier Transformation
BOTS Floorplan Compute the optimal placement of cells in a floorplan
BOTS Health Simulates a country health system
BOTS Sort Use a mixture of sorting algorithms to sort a vector
BOTS NQueens Finds solutions of the N Queens problem
BOTS Sparselu Compute the LU factorization of a sparse matrix
BOTS Strassen Compute matrix multiplication with Strassen’s method
PBBS BFS Run a breadth first search on a directed graph
PBBS CompSort Sort a sequence given a comparison function
PBBS Delaunay Refinement (DR) Refine a Delaunanay triangulation given in input angle
PBBS Dictionary Perform dictionary operations
PBBS Integer Sort (ISORT) Sort fixed-length unsigned integer keys
PBBS Maximal Independent Set (MIS) Compute maximal independent set of the input graph
PBBS Maximal Matching (MM) Compute maximal matching of the input graph
PBBS K-Nearest Neighbors (KNN) Find k nearest neighbors of a set of points
PBBS Ray Cast Find the intersection of input rays and triangles
PBBS Remove Duplicates Remove duplicate items from a sequence of input objects
PBBS Spanning Forest (SF) Compute a valid spanning forest for input undirected graph
PBBS Suffix Arrays (SA) Generate suffix array of input string

parallel tasks. However, since both tasks are using the same memory ranges, a dynamic data race

detector, unaware of this issue, may falsely report data races on these reused memory locations.

To address this issue, when a task is created, OMP-RACER tracks the address ranges used

by a task’s stack and heap. Further, it updates the stack address range as the stack grows during

the task’s lifetime. once the task finishes execution, OMP-RACER clears the access history

metadata corresponding to the stack and heap address ranges to avoid reporting false races on

subsequent accesses to the same task-local memory ranges. Handling this issue is not unique

to OMP-RACER. Recent versions of other state-of-the-art dynamic data race detectors use

different techniques to avoid reporting such false data races [159].

4.4.2 Evaluation Setup

Benchmarks. We evaluate OMP-RACER with two sets of benchmarks. To check the ef-

fectiveness of OMP-RACER at detecting data races, we use DataRaceBench 1.2.0 [116].

DataRaceBench is a collection of 116 OpenMP microbenchmarks designed to evaluate OpenMP

data race detection tools. Each microbenchmark is related to a specific use of an OpenMP
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Table 4.3: Data race detection report on DataRaceBench 1.2.0
Tool Accuracy Recall Precision

OMP-RACER 1.00 1.00 1.00
Archer 0.95 0.91 1.00
Coderrect 0.91 0.93 0.89

construct and contains zero or one data races. Since we know the ground truth for each

DataRaceBench microbenchmark, it enables us to check the accuracy, precision, and recall of

OMP-RACER and compare its results to other OpenMP tools.

To measure OMP-RACER’s performance overheads, we use a suite of 26 OpenMP ap-

plications from Coral, BOTS, and PBBS benchmarks suites are shown in Table 4.2. These

applications are taken from OpenMP benchmarks. We use these benchmarks to show the us-

ability of OMP-RACER in real-world OpenMP applications. Unlike the microbenchmarks in

DataRaceBench, these application’s data races are not labeled with their data races’ location, if

any. To the best of our knowledge and using manual inspection of the applications based on the

data races reported by other OpenMP data race detectors indicate that these applications do not

have a data race. However, these are large programs, and understanding their intricacy requires

domain-knowledge. Hence, unlike DataRaceBench where we trust the ground truth, we preface

that the absence of data races in the applications in Table 4.2 is a product of a best-effort manual

inspection and does not prove the absence of data races.

Test Setup. We performed all experiments in an Ubuntu 16.04 machine with a 16-core Xeon

6130 processor running at 2.1GHz and with 32GB of memory. All tests were performed with

the LLVM-10 release branch with the included OpenMP runtime implementation. When testing

OMP-RACER, we used a modified version of LLVM-10’s OpenMP runtime to add the missing

OMPT callbacks listed 4.4.1 to the OpenMP runtime. When comparing to Archer, we used

the tool that was included in the LLVM-10’s release 9. When using Coderrect static data race

detector [7, 181], we used version 0.7.0.



186

4.4.3 OMP-RACER Evaluation Results

Data Race Detection Effectiveness. DataRaceBench 1.2.0 is comprised of 116 microbench-

marks, where each microbenchmark is designed to check a tool’s data race detection ability in

a specific use of an OpenMP construct. OMP-RACER prototype does not support detecting

instruction-level SIMD data races, and it does not support instrumenting memory accesses on

accelerators. Hence it does not detect data races on programs that use the offload construct to run

code on accelerators. Overall, out of the 116 microbenchmarks, OMP-RACER supports 106 of

them that do not contain these constructs. Each microbenchmark in DataRaceBench is labeled

with yes or no depending on if the microbenchmark has a data race. A data race detection

tool that correctly identifies the existence or lack of a data race in a given microbenchmark

is considered a true positive (TP) or true negative (TN), respectively. In contrast, a tool may

misclassify a microbenchmark with a false positive (FP) or a false negative (FN). Hence, we can

measure the accuracy10, precision11, and recall12 of a data race detector based on the results it

reports over the set of DataRaceBench’s microbenchmarks.

The results in Table 4.3 show the effectiveness of OMP-RACER and other state-of-the-art

data race detectors when run on these set of microbenchmarks. We ran Coderrect up to five

times. However, as a static data race detector, its results do not change across different runs. For

OMP-RACER, we run each application five times with 16 worker threads using precise mode.

Since OMP-RACER is a per-input data race detector, we do not need to run it with a different

number of threads. For Archer, we follow DataRaceBench test harness defaults and run each

application five times with a different number of threads ranging from 3 to 25613.

As shown in Table 4.3, since OMP-RACER correctly identifies data races across all tested

microbenchmarks, it outperforms Archer and Coderrect over all three metrics. This version of

Coderrect does not support several task-based constructs such as taskwait and task dependencies.

Hence it fails to identify data races in microbenchmarks that use these OpenMP constructs.

9Available at https://github.com/llvm/llvm-project/tree/release/10.x/openmp/tools/archer
10Accuracy is defined as TP + TN / (TP + FP + TN + FN)
11Precision is defined as TP / (TP + FP)
12Recall is defined as TP / (TP + FN)
13DataRaceBench test harness uses 3, 35, 45, 72, 90, 180, 256 threads to evaluate a data race detector.
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Figure 4.6: Performance slowdown over parallel execution of OMP-RACER and Archer with
our performance overhead benchmarks.

When comparing OMP-RACER to Archer, the state-of-the-art dynamic data race detector

for OpenMP, both tools do not detect any false positives and have a precision of 1.00. However,

Archer reports false negatives on five microbenchmarks. The reason for these false positives

is caused by Archer being a per-schedule data race detector. For example, microbenchmark

DRB008-indirectaccess4-orig-yes.c has a data race that only manifests if the program is run

with more than 180 threads on a per-schedule data race detector. Hence, Archer misses this data

race on approximately 80% of our runs. In contrast, since OMP-RACER is a per-input data

race detector and captures the program’s logical series-parallel relations, it can detect the data

races in these microbenchmarks with only 16 threads and in a single execution.

Overall, our results indicate that OMP-RACER effectively detects data races in a set of

OpenMP applications using that use a variety of OpenMP constructs. Further, in DataRaceBench

1.2.0, OMP-RACER slightly outperforms both state-of-the-art dynamic and static OpenMP

data race detectors.

Performance overheads in Fast Mode. Figure 4.6 reports the performance overhead of

OMP-RACER in fast mode and Archer with our performance benchmarks. Each bar indicates

the slowdown incurred by the tool over the parallel execution of the application. The runtime

overhead of OMP-RACER in its fast mode, on average14, is 20.04⇥. The overhead of Archer

is 21.67⇥. This result indicates that the OMP-RACER’s fast mode performance overhead is

comparable to Archer, a state-of-the-art OpenMP data race detector.

Compared to Archer, OMP-RACER has higher runtime overhead in BOTS Strassen,

Sparselu, FFT, and NQueens. All four programs use OpenMP tasking to solve a problem

14Using geometric mean
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using recursive decomposition. The nesting level of these programs is higher than other bench-

marks in this set. Since these programs perform a significant amount of recursive decomposition,

OMP-RACER has higher runtime overhead compared to Archer and other applications tested

with OMP-RACER. The height of the OSPG is proportional to the nesting level of the program.

An increase in the height of the OSPG increases the cost of performing LCA queries used to

compute ISPARALLLEL queries, resulting in higher overheads compared to other benchmarks

we tested.

We considered a caching solution for LCA queries to remedy this issue. When tested,

Caching LCA results lead to slight overhead reductions in Strassen and Sparselu. However,

overall, it increased OMP-RACER’s average runtime overhead across our performance bench-

marks. Further investigations indicate the ineffectiveness of using a cache is caused by a lack

of a sufficient per-thread locality, which results in a low cache hit ratio, which is not sufficient

to amortize the cost of managing a cache. Thus by default, OMP-RACER does not cache

LCA queries. However, the option is available in our prototype, and it is useful in task-based

applications with a large nesting level. Overall, while comparable to other tools, we would still

like to investigate solutions that can reduce the performance overheads of OMP-RACER in fast

mode to improve its usability as a debugging tool.

Performance overheads in Precise Mode. Table 4.4 compares the performance overhead

of using OMP-RACER in fast mode and precise mode over the set of our OpenMP benchmarks.

All values reported in the table denote the performance slowdown compared to the program’s

parallel execution on our test setup’s 16-core machine (See Section 4.4.2).

The data in Table 4.4 show that compared to fast mode, OMP-RACER’s precise mode has a

significantly higher slowdown. By comparison, the cost of performing the check to determine if

it is safe to use fast mode over precise mode, shown in column Check, is negligible. Thus, using

this check before running OMP-RACER is justified since it can offer significant time-savings

if an application is determined to be safe to use with OMP-RACER’s fast mode.

The main reason for this increased slowdown in precise mode is attributed to the large

increase in the amount of metadata maintained per memory location. Since the amount of

metadata entries per memory location grows with the number of active ST-nodes in the program,

task-based OpenMP programs in the BOTS benchmark suite incur a larger increase in slowdown
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Table 4.4: Performance overhead comparison between OMP-RACER’s fast mode and precise
mode

Application Check Fast Precise
amgmk 1.15⇥ 45.42⇥ 156.58⇥
Convex Hull (CH) 1.01⇥ 7.86⇥ 48.80⇥
Delaunay Triangulation (DT) 1.03⇥ 9.62⇥ 26.54⇥
Minimum Spanning Forest (MSF) 1.02⇥ 17.52⇥ 100.52⇥
Nbody Forces (NBODY) 1.00⇥ 7.82⇥ 10.42⇥
Quicksilver 1.07⇥ 40.69⇥ 196.32⇥
Alignment 1.10⇥ 12.67⇥ 194.43⇥
FFT 5.13⇥ 24.04⇥ OOM
Floorplan 1.07⇥ 11.07⇥ OOM
Health 1.32⇥ 8.75⇥ OOM
Sort 1.47⇥ 10.12⇥ 537.00⇥
NQueens 1.02⇥ 110.93⇥ 205.17⇥
Sparselu 1.06⇥ 58.22⇥ 823.00⇥
Strassen 1.03⇥ 32.38⇥ 984.10⇥
BFS 1.02⇥ 25.56⇥ 180.67⇥
CompSort 1.01⇥ 23.18⇥ 84.22⇥
Delaunay Refinement (DR) 1.01⇥ 9.01⇥ 34.71⇥
Dictionary 1.07⇥ 29.78⇥ 59.22⇥
Integer Sort (ISORT) 1.00⇥ 24.64⇥ 245.61⇥
Maximal Independent Set (MIS) 1.04⇥ 23.74⇥ 196.00⇥
Maximal Matching (MM) 1.01⇥ 21.93⇥ 207.32⇥
K-Nearest Neighbors (KNN) 1.02⇥ 18.51⇥ 58.75⇥
Ray Cast 1.01⇥ 20.28⇥ OOM
Remove Duplicates 1.02⇥ 21.42⇥ 172.29⇥
Spanning Forest (SF) 1.01⇥ 18.12⇥ 138.55⇥
Suffix Arrays (SA) 1.01⇥ 19.91⇥ 40.06⇥
Geo Mean 1.12⇥ 20.04⇥ 124.62⇥
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compared to other tested applications (e.g., Strassen and Sparselu). Precise mode’s increased

size in the number of metadata entries per memory location results in more time spent reading

and updating the access history metadata per memory access, contributing directly to increased

overhead. Further, the increased size of the access history metadata necessitates the use of locks

instead of atomic CAS operations when updating the access history metadata. This change also

contributes to the increased runtime overheads compared to fast mode. The increased size of the

access history metadata in precise mode also causes OMP-RACER to run into memory issues

when testing four applications from our benchmarks suite15.

Hence, due to its significant runtime and memory overheads, OMP-RACER’s precise mode,

in its current state, is not usable with large or long-running OpenMP applications. However,

we found OMP-RACER’s precise mode useful for testing subsets of OpenMP programs

with parallel regions that use task and task synchronization constructs in an intricate manner.

Currently, the user can manually annotate such regions for data race detection. We intend to

explore ideas that use static analysis to identify such regions instead of manual inspection.

4.5 Summary

Detecting data races in OpenMP applications with high accuracy and low overheads is challeng-

ing. In this chapter, we proposed OMP-RACER, our data race detector that uses the OSPG

to encode the logical series-parallel relations of the OpenMP program trace. We showed that

OMP-RACER effectively identifies data races, and when using its fast mode, it has comparable

overhead with state-of-the-art OpenMP dynamic data race detectors. Further, a key novelty of

OMP-RACER is in designing an apparent data race detector with support for both worksharing

and tasking construct. By detecting apparent data races for a given input, OMP-RACER can

identify data races that manifest in other thread interleavings. Thus alleviating the need for

repeated execution of the program under test and exploring different thread interleavings. OMP-

RACER relies on the OSPG to precisely encode the series-parallel relations in an OpenMP

application, highlighting the usefulness of the OSPG data structure in designing debugging

tools for OpenMP applications. While OMP-RACER in fast mode has comparable runtime

15indicated with OOM (out of memory) in Table 4.4
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overheads to other data race detectors, its runtime overheads in precise mode leave room for

improvement. We plan to explore ideas to reduce the overhead of precise mode and investigate

hybrid data race detection with static analysis.
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Chapter 5

Related Work

Correctness and performance are the main concerns of application developers. Throughout the

years, many techniques to analyze the correctness and performance of serial and parallel appli-

cations have been proposed. The work presented in this dissertation aims to tackle performance

issues for OpenMP applications by proposing a parallelism centric performance analysis tool

OMP-ADVISER and take on the correctness issues by exploring apparent data race detection in

OpenMP application, proposing OMP-RACER. The key enabler in these two solutions is the

OSPG, a series-parallel graph for OpenMP applications that precisely encodes the logical-series

parallel relations between fragments of an OpenMP program’s dynamic trace.

5.1 Series-Parallel Graphs

Capturing the execution of a parallel application is required to analyze its correctness and

performance. One approach is to use graphs to capture the execution of the application. The

graph is designed based on the type of analysis, information captured, and the underlying

parallelism abstractions.

Some works capture time and space requirements of a multithreaded applications as a

computation graph [28, 190]. Such a computation graph aims to capture a given execution

trace as a DAG of instructions. In a computation graph, a node represents an instruction in the

program trace. The computation graph is comprised of three types of edges: (1) continue, (2)

spawn, and (3) dependency. Continue edges represent the sequential ordering of instructions

within a thread. A spawn edge is used to denote the creation of a new thread by its parent

thread. Lastly, dependency edges are used to model the data and control dependency between

different threads, such as synchronization primitives, including locks. Similar to an OSPG, a

computation graph can be used to capture the work and the critical work of an application. In a
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computation graph, the application’s work can be computed as the total cost of the instructions in

the instruction nodes in the graph. The critical work is defined as the total cost of instruction on

an execution schedule on a system with a hypothetically infinite number of processors. Inspired

by computation graphs, the program activity graph (PAG) has been used to capture the execution

trace and critical path of shared memory and message passing parallel programs [91, 172].

Compared to the OSPG, the PAG does not provide a way to measure parallelism at finer

granularities.

With the increasing popularity of high-level parallel programming languages such as

OpenMP [153], Cilk [47, 70], TBB [163], X10 [41], and OpenACC [151], several lines of

work propose data structures aimed at capturing the execution of programs written in these

parallel programming languages. Compared to thread-based programming, these languages

introduce higher-level abstractions and parallelism primitives that either forbid or discourage

ad hoc use of threads and synchronization primitives with no structure. Hence, there has been

different lines of research work aimed at encoding the series-parallel relations in more structured

parallel programming models [27, 58, 68, 132, 148, 160, 162].

For the fork-join programming model, where each fork operation has a corresponding join,

the program’s computation graph [28, 190] can be encoded by the series-parallel (SP) parse

tree [68]. Similar to the OSPG, each fragment of execution has a corresponding leaf node in

the (SP) parse tree. The (SP) parse tree captures the logical series-parallel relations between

program fragments using two types of internal nodes, S-nodes and P-nodes. The (SP) parse tree

constructions algorithm requires a serial, depth-first execution of the Cilk program. In contrast,

the OSPG can be constructed in parallel and encodes the logical series-parallel relations in

OpenMP programs that are not limited to the fork-join programming model.

Instead of constructing a series-parallel graph, the English-Hebrew labeling [148] proposes

a labeling technique to encode the logical series-parallel relations in fork-join programs. When

using the English-Hebrew labeling, each program fragment is assigned two labels: English and

Hebrew. Each type of label is assigned to a program fragment by using a different traversal

of the program’s (SP) tree. By comparing the labels of a pair of program fragments, it is

possible to determine their logical series-parallel relation. Offset-span labeling [132] is another

labeling technique for encoding the logical series-parallel relations in fork-join programs using
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numeric labels. Offset-span label sizes grow in proportion to the program’s nesting level. For

English-Hebrew labeling, each label size grows in proportion to the number of logical threads in

the program. When using offset-span labeling, determining the series-parallel relations for a

pair of program fragments is proportional to the program’s nesting level, which improves upon

English-Hebrew labeling.

ROMP expands the offset-span labeling technique to support OpenMP constructs [81].

Similar to the OSPG, ROMP’s offset-span labeling captures the logical series-parallel relations

between different fragments of an OpenMP application. Asymptotically, for basic worksharing

and tasking constructs, the cost of operations in the OSPG are comparable to ROMP’s offset-span

labeling since the length of labels and the depth of the OSPG grow proportional to the nesting

level of the program. However, it is not clearly described how ROMP models some OpenMP

constructs such as taskwait.

The OSPG is inspired by the Dynamic Program Structure Tree (DPST) [160, 162]. The

DPST encodes the logical series-parallel relations in task-parallel programs. It was initially

proposed for data race detection in explicit async-finish programs written in Habanero Java

(HJ) [38] and X10 [41]. Later the DPST was adapted to support task-parallel programs in

TBB for data race detection [194] and performance analysis [192, 193]. The OSPG and DPST

have similar properties. Except, since the OSPG is designed to model OpenMP applications,

it advances the DPST design to support a larger class of parallel programs. The following is a

list of parallelism constructs that the OSPG supports over the DPST. First, the OSPG supports

encoding OpenMP worksharing constructs. Second, while the DPST support task-parallelism, it

only supports structured task-parallelism where each task synchronization implies a wait for

all descendant tasks. In contrast, the OSPG supports taskwaits and task dependencies, which is

not categorized as structured parallelism. While the OSPG can encode a larger class of parallel

applications than the DPST, it maintains the DPST’s nice properties. Similar to DPST, the

OSPG is incrementally constructed in parallel. Further, the time and space overheads during

construction and different operations are similar for both data structures.
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5.2 Performance Analysis Tools

The design of different performance analysis techniques has been an active area of research

for many decades. Traditional profiling tools monitor the execution trace of the program and

measure metrics of interest. Such profilers aggregate their measurements at different granularities

and identify program hotspots, which are parts of the program where it spends most of its time.

Gprof [76, 77] pioneered this type of tools by introducing a call graph profiler, where the

execution time and the number of function calls in the program are measured and presented to

the developer as a ranked list of program hotspots. Path profiling [23, 24] is a variation of call

graph profiling, where the calling context of a function is used to distinguish between different

invocations of the function.

Many of the current profiling tools are inspired by gprof. Common between these profilers

is that their measurements are primarily used to identify program hotspots [4, 5, 14, 50, 53,

59, 71, 105, 189]. These tools primarily differ from each other based on the programming

model they support, how they perform measurements, and how they summarize and present their

measurements to the user.

There has been a large body of work focused on profiling parallel applications. Some of

these works support profiling OpenMP programs [4, 5, 14, 49, 53, 71, 105, 176, 189]. There

are two common approaches used by profiling tools to measure the computation in the program.

First, some tools use instrumentation to precisely record the events of interest, such as entering

and exiting a function, accessing a lock, or changing wait states [5, 57, 59, 105, 174, 177, 189].

Second, to reduce runtime measurement overheads and the probe effect, some profiling tools

such as Intel VTune [50] and HPCToolkit [14] use hardware event-based sampling to compute

performance metrics and associate the metrics to the source code calling context [49, 53, 79, 174].

Lowering the sampling rate can result in lower overheads. However, it may result in missing

some events of interest [19].

Traditional profiling tools provide insight into the program’s performance issues. While

all these tools measure the amount of work performed by the program, they vary in their

approach to presenting developer feedback. The common views include a thread-based view of

execution or function call graphs [14, 49, 52, 189]. While effective at identifying bottlenecks,
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these tools are less capable of identifying which regions of the program must be optimized to

improve performance. Further, while a thread-based view of the program’s execution is useful in

identifying what type of bottlenecks the program is experiencing and are effective in identifying

load imbalance and lock contention [43, 55, 195], the insight is limited to a specific execution

trace of the program. The performance issues identified in a specific execution may shift as the

program is executed with a larger amount of threads. In contrast, OMP-ADVISER uses logical

parallelism at the core of its profiling analysis techniques. Logical parallelism is execution

independent and can be used to assess the performance of the program when run at scale. Further,

OMP-ADVISER’s what-if analysis technique assists developers in identifying regions that matter

for improving the parallelism of the program. Hence, OMP-ADVISER analysis techniques

complement traditional profiling techniques.

Some performance analysis techniques focus on identifying certain performance and scal-

ability bottlenecks. There exists a line of work on identifying load imbalance [30, 56, 72, 95,

149, 167, 182] and threading inefficiencies [17, 60, 61, 67, 184] in parallel programs. Tallent

et al. [183, 184] propose a blame shifting technique that is used to identify the cause of thread

inefficiencies caused by lock contention in the application. To determine which regions in the

program are suspects for causing thread idleness, blame shifting attributes a thread’s idleness

caused by lock contention to threads holding the lock. The key insight provided by blame

shifting is that an idle thread is a symptom of a performance issue rather than its cause. Initially,

blame shifting was designed for Cilk programs. Later, it was extended for use in OpenMP

applications [122] and heterogeneous systems [39]. While these approaches help identify perfor-

mance bottlenecks, their main drawback is that their analysis results are execution specific and

may not be applicable when changing the runtime scheduler or the number of processors.

Parallel applications may be subject to different performance bugs. Studying what perfor-

mance bugs are common in parallel applications [85, 157] can guide performance tool designers

to create tools that can effectively identify or address such bugs. These studies can help improve

OMP-ADVISER’s design to identify other performance bottlenecks in OpenMP applications

and provide more detailed feedback about the cause of bottlenecks in the program.

Many performance analysis tools listed so far, including our work with OMP-ADVISER,

focus on identifying bottlenecks, and leave the task of addressing such bottlenecks to the
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developers. Addressing some performance bottlenecks may require domain expertise and

changes to the program’s data structures and algorithms. Complementary to our work, some

research proposals aim to assist developers by providing parallel libraries that provide efficient

and scalable implementations of parallel data structures and algorithms [64, 163].

Parallelism and Speedup Estimates. The role of parallelism in determining the scaling

of a parallel application has long been known by researchers [18]. Some early works focused

on discovering instruction-level parallelism in a serial application [22, 106] using dependency

analysis. Other lines of work aim to determine parallelism opportunities at other granularities

such as basic blocks [101] and functions [84].

Some approaches focus on identifying and reducing the program’s critical path to improve the

program’s parallelism [16, 36, 93, 135, 155, 171, 172, 190]. Some proposals use post-mortem

analysis of the program trace to identify the program’s critical path [36, 87, 93, 135]. Yang and

Miller [134, 190] generate a critical path profile consisting of each function’s contribution to the

program’s critical path. They identify the program’s critical path by constructing its program

activity graph (PAG) using collected program traces in the IPS [134] performance analysis tool.

Slack [93] and Logical Zeroing [92] are two performance metrics that are derived from critical

path in the program’s activity graph that aim to estimate the impact of optimizing a function on

the critical which were added to IPS-2 [135]. Bohme et al. [36] develop a post-mortem analysis

technique to identify the critical path in MPI programs. They provide a critical path profile that

identifies which program activities (i.e., the call path and the process id) constitute the critical

path. They propose other metrics targeting SPMD and MPMD programs that use the critical

path to quantify the imbalance among MPI processes. Some research proposals compute the

program’s critical path on-the-fly [90, 91, 155]. Hollingsworth proposes an online algorithm

that computes the program’s critical path by keeping track of different variables at each process

during program execution without the need to construct the program’s activity graph [90, 91].

Oyama et al. [155] propose an online algorithm to compute the program’s critical path in parallel.

Compared to OMP-ADVISER, most of these tools identify a trace-specific critical path that may

change by varying the number of processes or thread interleavings in the program. Further, these

techniques provide little information on changes to the program’s critical path after optimizing

functions on the critical path.
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There exists significant prior research on performance tools that use parallelism as a metric

of interest to identify performance issues. ParaGraph [87] is an early performance visualization

tool that illustrates the program’s critical path when providing a process-based (i.e., space-time

diagram) view of the execution trace of the program. Grain graphs [137] visualizes the execution

of an OpenMP program. It uses "instantaneous parallelism" as one of its performance metrics to

identify if processor cores are being underutilized.

Kremlin [73] and Kismet [100] use parallelism measurement of program regions to paral-

lelize and estimate the speedup of a serial program when parallelized, respectively. Similarly,

DiscoPoP [115] discovers parallelism opportunities in serial programs. Unlike Kremlin, it uses

a bottom-up approach to find parallelism at different granularities. Additionally, some works

attempt to parallelize discovered parallelism opportunities automatically [185]. In contrast,

OMP-ADVISER does not focus on the feasibility of parallelizing a code region. Instead, OMP-

ADVISER aims to provide developer insight into the impact of parallelizing different regions on

the program’s performance.

Parallel Prophet [104] projects potential parallel speedup in serial programs. Similarly, Intel

Advisor’s [48] suitability analysis provides speedup estimates using different threading models,

including OpenMP. Unlike Kremlin, both tools require annotations to specify which regions

should be hypothetically parallelized. This type of analysis is similar to OMP-ADVISER’s

what-if analysis. In practice, identifying which regions in the program to annotate to assess

speedup can be difficult. In contrast, OMP-ADVISER also provides an automatic what-if analysis

technique that does not require user-defined annotations and can be useful to developers in

finding which regions must be parallelized to reach a given threshold.

The idea of using logical parallelism measurements to identify scalability bottlenecks in

parallel applications has been explored by prior research [86, 169, 192, 193]. Cilkview [86] uses

Pin binary instrumentation framework [126] to construct the program’s computation graph [28,

190] and computes a Cilk program’s logical parallelism. Cilkprof [169] builds on the approach

taken by Cilkview, and in addition to the program’s logical parallelism, it computes the logical

parallelism at each call site, assisting users to identify which call sites are the program’s

scalability bottlenecks. Both of these solutions require a serial execution of the program under

test. In contrast, OMP-ADVISER can generate a program’s parallelism profile in parallel and
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on-the-fly. Further, OMP-ADVISER’s performance model enables its what-if analysis technique

to estimate the impact of parallelizing a region of code on the program’s parallelism. Neither of

these tools provides such a feature.

Taskprof [192] and its successor Taskprof2 [193] are closely related to our work with OMP-

ADVISER. Taskprof measures logical parallelism and supports what-if analysis for task-parallel

TBB programs. Additionally, Taskprof2 enables automatic what-if analysis and differential

analysis. Taskprof uses the DPST [160, 162] to encode the logical series-parallel relations in

a task-parallel TBB application. OMP-ADVISER’s design is inspired by Taskprof. Compared

to Taskprof, OMP-ADVISER uses a novel series-parallel graph data structures that enable it to

support OpenMP programs that use both worksharing and tasking constructs. Further, OMP-

ADVISER captures the semantics of task-parallel synchronization constructs such as OpenMP’s

taskwait and task dependencies that are not supported by Taskprof.

The causal profiler Coz [54] measures optimization potential in programs. By using a novel

virtual speedup technique, Coz measures the effects of optimizing user-defined program on the

program’s performance. The key idea used by Coz’s virtual speedup technique is that a selected

program region, specified by progress points, can be virtually sped up by slowing down all other

threads running concurrently with it. To reduce overheads, Coz uses sampling to perform each

performance experiments without the requirement of adding delays to all threads in the program.

To gather enough samples, Coz may need to be run multiple times. Unlike Coz, OMP-ADVISER

can predict the effect of parallelizing different user-defined program regions by running the

program once and constructing its performance model. Further, Coz’s predictions are specific to

the program execution with a given number of threads. This enables Coz to accurately estimate

performance improvements for the current system and help developers find which program

regions impact the program’s speedup the most. In contrast, OMP-ADVISER’s measurement of

logical parallelism enables it to identify if a program will scale to systems with more threads.

Some works use probabilistic and statistical approaches to identify and fix scalability

bottlenecks [37, 110, 111, 164, 197, 198]. Analytical performance modeling techniques aim

to predict the program’s scalability by providing a model that expresses execution time as a

function of the number of processors in the system [37]. Calotoiu et al. [37, 164] propose a

technique that uses statistical methods to automatically generate performance models that are
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used to identify which parts of the program impact the program’s scalability when run on a

larger number of processors. AutomaDeD [109] uses a distributed probabilistic algorithm to find

MPI tasks with the least amount of progress with low overheads. Other works, build statistical

models and train them with small-scale executions of applications to diagnose scalability issues

in large-scale deployment of the application [110, 111, 197, 198]. These solutions use different

statistical methods to estimate performance on a larger number of cores. The quality of their

predictions is dependent on the number of data points observed. In contrast, OMP-ADVISER’s

use of logical parallelism provides an upper on the program’s performance. It can be computed

without running the program with a different number of cores to generate.

Parallelism Granularity and Runtime Design. A common problem in parallel program-

ming is to take a high-level parallel program and run it efficiently on actual hardware [11].

Prior research in this domain takes two general approaches to address this problem. First, to

reduce average runtime overheads, there have been different lines of work centered around

identifying the optimal parallelism granularity [82, 97, 143, 165, 166]. Second, the design of

parallel runtimes with lower overheads or the ability to alleviate specific performance problems

during program execution [10–12, 147].

A line of work focuses on reducing runtime overheads by automatically optimizing the

program under test. For recursive task-parallel programs, Nandivada et al. [143] propose a range

of program transformations for optimizing task parallelism by reducing the number of task

creation and synchronization operations in the program. The DECAF framework [82] extends

these transformations to find further opportunities to reduce runtime overheads. Iwasaki et

al. [97] propose a compiler-based technique to find tasking cut-offs that identify the optimal

task granularity. Compiler based optimizations to reduce runtime overheads [125] are comple-

mentary to our work with OMP-ADVISER. Applying some transformation in the program may

excessively reduce its parallelism, which could result in lower performance. OMP-ADVISER’s

parallelism profile, which includes the average tasking overhead for each static directive in the

program, helps identify such issues.

Another line of research aims to identify tasking granularities using profiling [165, 166].

Tgp [166] is a task granularity profiler for Java applications. It uses metrics collected in

the Java Virtual Machine (JVM) to profile every task spawned and provides an aggregate
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report highlighting the program’s task granularities. Rosa et al. [165] expand on this profiling

technique by providing performance estimates at different spawn sites in the program. Similar

to these approaches, OMP-ADVISER provides feedback on the program’s tasking overheads

by estimating the cost of every OpenMP task created. However, unlike these solutions, OMP-

ADVISER’s logical parallelism measurement helps developers identify the right balance between

lowering runtime overheads and achieving sufficient parallelism for scalable speedups.

One research direction focuses on designing runtimes that can mitigate the runtime paral-

lelization costs [10–12, 147]. Noll et al. [147] propose a customized JVM that can lower the cost

of parallel execution by merging concurrent tasks during program execution. Acar et al. [12]

propose an oracle-guided scheduling technique to control the granularity of parallel programs.

Using a combination of static and dynamic information, the runtime approximates the work

performed by a given thread and decides if the current task should execute the current thread

serially or parallel by scheduling it to another thread. A follow-up work [10] extends oracle-

guided scheduling to support nested-parallel programs. Oracle-guided scheduling requires the

programmer to annotate every parallel call with an expression for computing its asymptotic cost

for the runtime to choose if a task should execute serially or in parallel. In contrast, Heartbeat

scheduling [11] delivers provably efficient results without the need for programmer annotations.

Broadly runtime techniques to control task granularity rely on task-coarsening [62, 96] or lazy

splitting [75, 89, 136, 186]. Using task-coarsening, in an attempt to reduce runtime overheads,

the runtime reduces parallelism by serializing logically parallel tasks. Lazy splitting adjusts

task granularities by postponing the creation of new parallel tasks until worker threads become

available. These runtimes alleviate the need for the programmer to tune the tasking granularities

of their programs. However, heuristics to estimate runtime costs and the additional runtime

overhead to make granularity control decisions can lead to suboptimal results compared to

hand-tuned parallel applications. Hence, profiling techniques that provide feedback on runtime

overheads remain in demand by developers.

Identifying Unintended Resource Contention. A parallel application’s scalability can be

limited by unintended resource contention caused by secondary effects of execution. Different

profiling techniques have been proposed in identifying different types of resource contention.

These works can be broadly categorized into the following: (1) identifying cache contention
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in the program [35, 40, 65, 99, 118, 119, 127, 142, 188, 196], (2) identifying performance

bottlenecks caused by Non-Uniform Memory Access (NUMA) systems [108, 121, 129], (3)

detecting lock contention [43, 55, 184, 195], and (4) identifying and pinpointing data locality

issues [120, 123] . These techniques are effective at finding specific performance bottlenecks.

In contrast, OMP-ADVISER’s differential analysis technique has the potential to detect and

pinpoint program regions that are experiencing different types of resource contention. For

OMP-ADVISER to identify a program region with a specific type of contention, the oracle

execution must produce different results than the parallel execution in some metric of interest

correlated to the source of contention.

Prior works have explored the idea of using differential analysis to identify performance

bottlenecks [45, 94, 124, 130, 138, 173, 193]. In an early work, Mckenney [130] proposes

differential profiling for parallel programs as a technique where profiling data from different

program executions is compared to pinpoint performance bottlenecks in the program. In this

work, differential profiling is used to pinpoint program regions with lock contention and cache-

thrashing. EGprof [173] is an extension to the seminal profiling tool gprof [76, 77] that adds

support for differential profiling. Through its differential analysis, eGprof provides support

for comparing two gprof profiles observed during two executions. Coarfa et al. [45] propose

a differential profiling technique to identify scalability bottlenecks in SPMD programs. This

differential analysis technique uses call path profiles collected from different program executions.

It compares them with the program’s expected scalability and reports the function call paths

with scalability bottlenecks.

OMP-ADVISER’s differential analysis technique is inspired by Taskprof2 [193]. OMP-

ADVISER builds on Taskprof2’s differential analysis technique by supporting OpenMP paral-

lelism constructs that do not exist in task-parallel programs analyzed by Taskprof2.

5.3 Data Race Detection Tools

There exists a large body of work studying the problem of data race detection in parallel

applications. In this section, we describe closely related work.
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Static data race detection tools. These tools aim to detect data races in a program using

static analysis techniques. The use of static analysis enables these tools to identify data races for

all inputs with low overheads. However, their main drawback is reporting many false positives

caused by the conservativeness of static analysis. Some tools identify races in multithreaded

programs [9, 66, 140, 158]. There have been several lines of work that utilize static analysis

to identify data races in OpenMP programs [25, 42, 181, 191]. Since these tools exclusively

target OpenMP, generally, they can identify more data races in OpenMP compared to their

more general-purpose counterparts. OmpVerify [25], PolyOMP [42], Draco [191] use poly-

hedral analysis to identify data races or verify that certain OpenMP loops are data race free.

OMPRacer [181], not to be confused with our work OMP-RACER, is a recent static data race

detector that uses a novel value-flow analysis and happens-before tracking to identify a broader

category of data races in OpenMP applications. In contrast to static data race detectors, OMP-

RACER is able to identify data races in a larger class of OpenMP programs that use tasking

constructs. Moreover, compiler techniques that verify loops to be data race free complement

dynamic data race detectors, including our work, OMP-RACER. Since there is no need to

instrument memory shared memory accesses within a data race free loop.

Dynamic data race detection tools. Dynamic data race detection uses analysis of the

program’s execution to detect data races. A body of work aims to identify data races in

multithreaded programs [69, 168, 175]. Eraser [168] introduced the lockset algorithm to identify

data races in programs that only use locks for synchronization. Some dynamic data race detectors

capture the happens-before relation [112] to identify data races. FastTrack [69] improves upon

the vector clock based method of capturing happens-before relations to reduce data race detection

overheads. ThreadSanitizer [175], uses a hybrid approach with the aim of targeting large-scale

applications. For example, by maintaining a fixed set of access histories, ThreadSanitizer

achieves constant memory overhead, a trade-off between performance and accuracy.

Our work is inspired by works that capture the happens-before relation using series-parallel

graphs [68, 161]. Subsequent works expand upon these techniques to support a larger class of

parallel programs and perform data race detection in parallel [162, 194]. Offset-Span labeling

[132] uses a labeling scheme in fork-join programs to summarize the series-parallel graph. In
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contrast, OMP-RACER uses a novel series-parallel graph, OSPG, that captures the execution

of OpenMP programs with a larger variety of parallelism constructs.

Our work is closely related to prior dynamic data race detection tools that target OpenMP

programs. Archer[20], builds upon ThreadSanitizer by extending it to support OpenMP seman-

tics. Compared to Archer, OMP-RACER is able to identify data races for all possible program

schedules for a given input. ROMP [81], expands upon offset-span labeling by adapting it to

support OpenMP constructs, including tasking and task synchronization. Asymptotically, the

operations in the OSPG are comparable to ROMP’s offset-span labeling since the length of

labels and the depth of the OSPG grow proportional to the nesting level of the program. In

practice, certain checks may be handled more efficiently in either approach.
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Chapter 6

Conclusion

In this dissertation, we present the design for the OpenMP series-parallel graph (OSPG), a novel

data structure that precisely captures the logical-series parallel for a large class of OpenMP

applications. We show that the OSPG is useful for building OpenMP performance analysis

tools and debuggers. Our parallelism profiler, OMP-ADVISER, uses the OSPG in its design

for a parallelism centric performance model. This novel performance model enables our

what-if analysis technique that mimics the effects of parallelization to estimate performance

improvement in OpenMP before attempting to optimize the program. Further, OMP-ADVISER

uses our performance model to perform fine-grained identification of regions with parallel work

inflation using its differential analysis technique. Overall, making a case for measuring logical

parallelism to identify performance and scalability bottlenecks in OpenMP applications. OMP-

RACER, our proposed apparent data race detector, uses the OSPG to check if two memory

access operations logically execute in parallel. For a given input, OMP-RACER can detect

possible data races for different thread interleavings. OMP-ADVISER and OMP-RACER have

proven useful in identifying performance bottlenecks and data races in OpenMP benchmarks

representing realistic OpenMP applications.

6.1 Summary of Contributions

The OpenMP series-parallel graph (OSPG), described in Chapter 2 encodes the logical series-

parallel relations between each serial fragment of execution in the dynamic execution trace

of an OpenMP application. OSPG is inspired by prior series-parallel graphs. However, the

OSPG is the first series-parallel data structure that supports modeling the execution of OpenMP

applications that use both worksharing and tasking constructs. Further, the OSPG precisely
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encodes the logical series-parallel semantics of certain task-based OpenMP constructs, such as

taskwait and task-dependency, that are not categorized as structured parallelism.

Our design goal with the OSPG was to make it suitable for use with on-the-fly OpenMP

analysis tools that can leverage the program’s parallelism. Hence, an OpenMP program’s OSPG

can be constructed incrementally on-the-fly and in parallel.

Our performance analysis tool, OMP-ADVISER, is described in Chapter 3. OMP-ADVISER

uses the OSPG alongside fine-grained measurements to construct a novel performance model

for the application under analysis. This performance model enables its what-if and differential

analysis techniques. OMP-ADVISER parallelism profiling algorithm aggregates measurements

in the performance model to generate a parallelism-centric performance profile of the appli-

cation. The parallelism profile can assist developers in pinpointing serialization bottlenecks

in the application. OMP-ADVISER’s what-if analysis technique uses its performance model

to estimate the performance improvements in an OpenMP application when selected program

regions are parallelized. This technique enables developers to assess the impact of parallelizing

different program regions and prioritizing which regions to optimize before concrete optimiza-

tion strategies are devised. Our automatic region identification technique expands on what-if

analysis by providing a list of regions to optimize to reach a user-specified target parallelism.

OMP-ADVISER also introduces a differential analysis technique that uses its performance model

with differential profiling to identify performance bottlenecks caused by unintended resource

contention.

Chapter 4 presents OMP-RACER, an apparent on-the-fly data race detector for OpenMP

applications. To detect apparent data races, OMP-RACER uses the OSPG to identify if two

memory operations may execute in parallel. Further, by devising two different strategies, fast and

precise modes, to manage previous memory accesses in the program, OMP-RACER can identify

apparent data races for a given input, alleviating the need for exploring other interleavings in the

program. Since OMP-RACER’s use of the OSPG enables it to precisely encode the logical

series-parallel relations in a large class of OpenMP programs, it can identify data races with

higher accuracy and precision than prior state-of-the-art OpenMP data race detection tools.
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6.2 Future Work

In our tests, the OMP-ADVISER has successfully helped us identify performance bottlenecks

and regions that matter to address these performance bottlenecks. However, there are different

directions that we can explore to improve its efficacy and usefulness.

By design, the regions reported by OMP-ADVISER’s automatic region identification lie

on the program’s critical path. Most often, optimizing these regions results in performance

improvements. However, our automatic what-if analysis technique does not consider the

feasibility of parallelization. Parallelizing and optimizing some program regions are significantly

more challenging than other program regions. A program region may have some inherent

dependencies that limit its parallelization or require algorithmic changes. Instead of using a

greedy algorithm for automatic what-if analysis, we would like to explore an algorithm that

takes the feasibility of parallelizing a program region into account, taking inspiration from prior

works in this domain [133].

When implementing large-scale applications, the parallelism from the application can be

realized at different levels. These include multi-node, single-node host, and single-node offloaded

parallelism. However, for an application to utilize the parallelism provided by all layers, it first

needs to have high enough parallelism to saturate the capacity provided by each level, which

OMP-ADVISER’s inherent parallelism measured by OMP-ADVISER can be useful in ensuring

that the application has sufficient parallelism. However, the current OMP-ADVISER design

focuses on single-node parallelism with no offloading. We want to explore ideas that can expand

OMP-ADVISER to support multi-node parallelism or offloading computation to heterogeneous

accelerators such as GPUs and FPGAs.

To expand OMP-ADVISER for use in offloading or multi-node systems, the costs of data

movement are communication is no longer negligible compared to computation costs. Hence,

we need to augment our performance model to take communication costs into account. In

the context of OpenMP offloading, measuring a close upper bound on data transfer costs

between host and the offloading device is challenging. However, this challenge is mitigated

when analyzing high-level languages such as OpenMP. When using offloading in OpenMP, the

developer must explicitly specify the data mapping between the host and device. Otherwise, the
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host data gets moved via implicit rules defined in the OpenMP specification. We want to explore

extending OMP-ADVISER to track all the data mappings between host and target devices and

asymptotically estimate the data movement cost. With an updated performance model, we can

expand OMP-ADVISER what-if analysis to answer the following question. First, does offloading

a program region to an accelerator improves performance? Second, among suitable candidates

for offloading, which candidates should be prioritized to run on the accelerator first? Answering

these questions requires work on the current OMP-ADVISER design.

Our experience using OMP-RACER shows that in its precise mode, it can identify data

races that use task dependencies and different task synchronization constructs that currently,

no other OpenMP data race detector can identify. However, OMP-RACER’s precise mode

overhead is significant and limits its usability to small applications. One possible approach to

reduce this overhead, inspired by prior tools such as RaceMob [103], is to combine static data

race detection with OMP-RACER’s dynamic data race detection. When using the approach,

we run OMP-RACER’s data race detection algorithm only in program regions that the static

analyzer cannot prove the absence of data races, effectively combining the completeness and

soundness of both approaches to create a more effective data race detector.

6.3 Concluding Thoughts

Initially, we started designing the OSPG data structure to create a parallelism profiler for

OpenMP applications. Our first performance analysis tool, OMP-WHIP, made a case for

measuring inherent parallelism and what-if analysis for identifying serialization bottlenecks

in OpenMP applications. During this time, we learned about the intricacies of the OpenMP

parallelism constructs and their series-parallel semantics. When designing OMP-RACER,

we improved upon the OSPG design to precisely model the series-parallel relations in the

presence of different task-based OpenMP synchronization constructs. We also had to devise

different access history management strategies to correctly detect data races in a large class of

OpenMP programs. Later, we revisited our performance analysis tool design with task-creation

costs measurement, automatic what-if analysis, and differential analysis. The results of these

enhancements, OMP-ADVISER, proved to be better equipped with identifying regions that
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matter for performance in OpenMP applications. Realizing OSPG, OMP-ADVISER, and OMP-

RACER were only made possible by building upon decades of prior research in the parallel

programming domain. We hope that our work can also help form the basis for the design of

additional performance analysis and debugging tools.
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