
PRACTICAL FORMAL TECHNIQUES AND TOOLS
FOR DEVELOPING LLVM’S PEEPHOLE

OPTIMIZATIONS

by

DAVID MENENDEZ

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Santosh Nagarakatte

and approved by

New Brunswick, New Jersey

January, 2018

c© 2018

David Menendez

ALL RIGHTS RESERVED

ABSTRACT OF THE DISSERTATION

Practical formal techniques and tools for developing

LLVM’s peephole optimizations

by David Menendez

Dissertation Director: Santosh Nagarakatte

Modern compilers perform extensive transformation of code in order to optimize run-

ning time and binary code size. These occur in multiple passes, including translations

between representations at different levels of abstraction and transformations which re-

structure code within a particular representation. Of particular interest are optimiza-

tions that operate on a compiler’s intermediate representation (IR), as these can be

shared across programming languages and hardware architectures. One such optimiza-

tion pass is LLVM’s peephole optimizer, which is a suite of hundreds of small algebraic

transformations which simplify code and perform canonicalization. Performing these

transformations not only results in faster software, but simplifies other optimization

passes by reducing the number of equivalent forms they must consider.

It is essential that these optimizations preserve the semantics of input programs.

Even a small transformation which changes the value computed by a code fragment

or introduces undefined behavior can result in executable programs with incorrect or

unpredictable behavior. Optimizations, and analysis of optimizations, must be partic-

ularly careful when treating undefined behavior, as modern compilers increasingly use

the knowledge that certain operations are undefined in order to streamline or eliminate

ii

code—occasionally in ways that are surprising to compiler users. Unfortunately, com-

piler developers can also overlook undefined behavior or fail to consider rare edge cases,

resulting in incorrect transformations. In particular, LLVM’s peephole optimizer has

historically been one of the buggier parts of LLVM.

To aid the development of correct peephole transformations in LLVM, we introduce

Alive, a domain-specific language for specifying such transformations. Selecting a small

yet expressive subset of LLVM IR allows for automated verification of Alive transforma-

tions, and the Alive toolkit can generate an implementation of a correct transformation

suitable for inclusion in LLVM. The correctness checks for Alive consider the various

forms of undefined behavior defined by LLVM and ensure that transformations do not

change the meaning of a program. Alive specifications can include a mixture of inte-

ger and floating-point operations, and transformations can be generalized over different

types.

Some transformations require a precondition in order to be correct. These precon-

ditions may be simple, but occasionally it is challenging to find a precondition that

is sufficiently strong while remaining widely applicable. To assist in this process, the

Alive toolkit includes Alive-Infer, a data-driven method for synthesizing preconditions.

Depending on the complexity of the transformation, the weakest precondition sufficient

to make a transformation correct may not be desirable, so Alive-Infer can provide a

choice of concise but stronger preconditions. The Alive-Infer method automatically

finds positive and negative examples to guide inference and finds useful predicates

through enumeration.

Finally, specifying transformations in Alive enables analyses of multiple transfor-

mations and their interaction. It is possible to have transformations or sequences of

transformations which can be applied indefinitely to a finite input. This dissertation

presents a method for testing whether such a sequence can be applied indefinitely to

some input.

Alive demonstrates that a properly chosen abstraction can provide the benefits of

formal code verification without the need for manually written proofs, and can enable

new techniques and analyses to assist development.

iii

Acknowledgements

This dissertation could not have been written without the assistance of many people.

Foremost among them is my advisor, Santosh Nagarakatte, who brought me into the

Alive project, helped develop my ideas, and read several of my drafts.

Alive itself is a collaboration with Nuno Lopes and John Regehr, who provided key

insights and experience with LLVM semantics and SMT solving. Aarti Gupta assisted

our investigation of ways to integrate floating-point reasoning into Alive.

The members of my doctoral committee, Rajeev Alur, Ulrich Kremer, and Thu

Nguyen, helped refine my presentation of ideas and suggested further areas of explo-

ration.

My colleagues in the Rutgers Architecture and Programming Languages Research

Group, especially Adarsh Yoga and Jay Lim, provided support and feedback throughout

the development of Alive.

In addition to the support of Rutgers University, the Alive project was funded by the

National Science Foundation, a Google Faculty Award, and gifts from Intel Corporation.

Finally, this dissertation could not have been completed without the assistance and

patience of my wife, Lisa, and my daughter, Alexandra.

iv

Dedication

In memory of my father, Ronald Menendez.

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . xii

List of Figures . xiii

1. Introduction . 1

1.1. Making Compilers Robust . 2

1.1.1. Random testing . 3

1.1.2. Formal correctness proofs . 5

Correctness of compilers . 5

Languages for automated correctness checking 7

1.2. Peephole Optimizations . 8

1.3. Problem Statement . 9

1.4. Overview of Alive . 9

1.4.1. Verifying Transformations . 11

1.4.2. Inferring Preconditions . 13

1.4.3. Checking for Non-Termination 17

1.5. Contributions to this Dissertation . 20

1.6. Organization of this Dissertation . 20

2. Background . 21

2.1. LLVM . 21

2.1.1. The LLVM Intermediate Representation 22

vi

2.1.2. Undefined behavior . 23

Deferred undefined behavior . 24

Undefined values . 25

Poison values . 26

Immediate undefined behavior 28

2.2. Satisfiability Modulo Theories . 29

2.2.1. SMT bit vector theory . 30

2.2.2. SMT floating-point arithmetic theory 31

3. Specifying Peephole Optimizations with Alive 33

3.1. The Alive Language . 35

3.1.1. Abstract syntax . 37

Variable scope . 38

Contextual restrictions . 41

3.1.2. Concrete syntax . 41

3.1.3. Type checking . 43

Types . 43

Typing rules . 44

Type ambiguity . 47

3.1.4. DAG Representation . 47

3.2. Verification . 50

3.2.1. Structure of Alive encodings . 50

3.2.2. Encoding compile-time behavior 51

3.2.3. Encoding run-time behavior . 52

3.2.4. Encoding undef values . 53

3.2.5. Encoding “undefined results” . 54

3.2.6. Encoding data-flow analyses . 56

3.2.7. Correctness conditions . 57

Justifying separate existential quantifiers 58

vii

Why Qp is universally quantified 59

Why χp occurs in the precondition safety check 60

Expressing the conditions as SMT queries 60

3.3. Encoding Expressions for Verification . 61

3.3.1. Encoding types . 61

3.3.2. Encoding variables . 62

3.3.3. Encoding arithmetic and conversion instructions 63

Assumptions about floating-point arithmetic 64

3.3.4. Encoding instruction attributes 65

3.3.5. Encoding comparison instructions 67

3.3.6. Encoding select . 68

3.3.7. Encoding constant expressions 71

Binary operators . 71

Functions . 71

3.3.8. Encoding predicates . 72

3.4. Code Generation . 73

3.4.1. Type references . 76

3.4.2. Matching the source . 77

3.4.3. Testing the precondition . 78

3.4.4. Creating the target . 79

3.5. Extensions to Alive . 79

3.5.1. Relation variables . 79

Relation functions . 80

3.5.2. Named type variables . 81

3.5.3. Multiple replacement . 82

3.5.4. Memory operations . 83

Additions to syntax and type system 84

Encoding memory operations . 86

Memory correctness condition . 88

viii

3.5.5. Combining poison and undef . 89

3.6. The Alive-NJ Toolkit . 89

3.7. Evaluation . 92

3.7.1. Translation of transformations from LLVM 93

3.7.2. Performance of generated implementation 96

3.7.3. Adoption by developers . 97

3.8. Summary . 98

4. Automated Precondition Inference . 99

4.1. Predicates and Preconditions . 101

4.2. Precondition Inference . 102

4.3. Generating Examples . 105

4.3.1. Classification of examples . 106

4.3.2. Explicit assumptions . 107

4.3.3. Generation methods . 108

Random selection . 110

Generation using a solver. 110

4.4. Predicate Learning . 111

4.4.1. Predicate behavior . 113

4.4.2. Grouping examples by behavior 114

Efficiently finding mixed groups 114

4.4.3. Learning new predicates . 115

Selecting a mixed group . 116

Sampling the mixed group . 116

Finding a predicate . 117

4.4.4. Predicate enumeration . 117

4.5. Formula Learning . 119

4.5.1. Full formula learning . 120

4.5.2. Weighted partial formula learning 122

ix

4.5.3. Safety condition learning . 124

4.6. Generalizing Concrete Transformations 125

4.7. Evaluation . 127

4.7.1. Effectiveness of Alive-Infer . 127

Inference within a time limit . 128

Comparison with initial preconditions 129

4.7.2. Finding preconditions through enumeration 130

4.7.3. Generalizing concrete transformations 131

4.8. Summary . 132

5. Detecting Non-Termination . 133

5.1. Composing Transformations . 137

5.1.1. DAG alignment . 140

5.1.2. Checking Validity . 143

5.1.3. Selecting Replacements . 145

5.1.4. Constructing the composed transformation 145

5.1.5. Off-root composition . 147

5.2. Detecting Cycles . 150

5.3. Searching for Cycles . 152

5.4. Generating Test Cases . 154

5.4.1. Shadowing of transformations . 155

5.5. Evaluation . 157

5.5.1. Methodology . 157

5.5.2. Experimental results . 158

Characterization of cycles . 159

Demonstrating non-termination 161

5.6. Summary . 163

6. Related Work . 164

6.1. Compiler Correctness . 164

x

6.2. Precondition Inference . 165

6.3. Termination Checking . 167

7. Conclusion . 168

7.1. Technical Contributions . 169

7.2. Future Work . 170

7.3. Summary . 172

xi

List of Tables

3.1. The constant and predicate functions . 39

3.2. Concrete syntax for selected Alive productions 42

3.3. Concrete syntax for rel , binop, and uop 43

3.4. Floating-point types in Alive . 44

3.5. Typing rules for Alive . 45

3.6. Relations for conversion instructions . 45

3.7. Constant function signatures . 46

3.8. Predicate function signatures . 46

3.9. Well-defined conditions for selected instructions 63

3.10. Defined result conditions . 63

3.11. Poison-free conditions for selected instruction attributes 66

3.12. Organization of LLVM’s floating-point relations 68

3.13. Constant functions based on data-flow analyses 72

3.14. Alive’s built-in predicate functions . 73

3.15. Extended typing rules for memory operations 85

3.16. Extended conversion relations for memory operations 85

5.1. Statistics for the experiment run with the Alive suite 159

xii

List of Figures

1.1. Peephole optimizations perform local optimizations, such as transforming

the code on the left into the code on the right. 8

1.2. An Alive specification for the optimization demonstrated in Figure 1.1 . 11

1.3. Combining two shifts by constants into a single shift is only valid if the

resulting shift does not overflow . 14

1.4. Learning predicates for the transformation in Figure 1.3 15

1.5. Two transformations that can be alternately applied to an input program

indefinitely . 18

1.6. Transformation AB is equivalent to applying transformations A and B

from Figure 1.5 in sequence . 19

2.1. A function to compute factorials written in C and compiled to LLVM IR 23

2.2. Two C programs that mask bits from an array of integers 25

2.3. A program fragment that has undefined behavior if c is zero 28

2.4. An SMT problem written in SMT-LIB format that is satisfiable if and

only if ∃x∈Z : x2 < 0 . 30

3.1. Alive transformations are automatically checked for correctness and can

be translated into C++ implementations for use in LLVM 34

3.2. Two transformations demonstrating several features of Alive 36

3.3. Abstract syntax of Alive . 37

3.4. A transformation including a bound symbolic constant (C2), which is

used by the precondition . 40

3.5. The optimization from Figure 1.2 represented as a DAG 48

3.6. Two transformations that are correct under the poison-like encoding, but

incorrect under the undef-like encoding 55

xiii

3.7. Computing fpMod, which has the same sign as its second argument, using

the IEEE fpRem function provided by SMT 64

3.8. An arithmetic interpretation of select 69

3.9. Five possible encodings of select . 70

3.10. An optimization involving dataflow and syntactic analyses 74

3.11. High-level structure of LLVM’s InstCombine 75

3.12. C++ code generated for the transformation in Figure 1.2 75

3.13. A wrapper function used by the translation of computeKnownOneBits . 76

3.14. A transformation with an implicit type constraint 77

3.15. A transformation using an implicit relation variable 80

3.16. Two transformations using a relation function and a relation predicate,

respectively . 81

3.17. A transformation using a named type variable and a type annotation . . 82

3.18. A multiple-replacement transformation 82

3.19. Extended abstract syntax for memory operations 84

3.20. A Python module that adds a rotl (rotate left) instruction to Alive . . 91

3.21. Incorrect integer arithmetic transformations found in LLVM 94

3.22. Incorrect floating-point transformations found in LLVM 95

4.1. Finding a good precondition for a transformation can be difficult 100

4.2. The transformation from Figure 3.21(a), with an explicit assumption and

a precondition that is full with respect to the assumption 108

4.3. Alive-Infer is able to infer the precondition shown for this transformation,

even though it contains no symbolic constants 109

4.4. An intermediate step during inference 115

4.5. Short circuit operators ∧ and ∨ in the presence of unsafe behavior (?) . 120

4.6. A Souper-generated pattern and a generalization 126

4.7. Information about the full preconditions found within 1000 seconds . . . 128

4.8. Cumulative number of preconditions that were found under a time limit 131

5.1. Two correct transformations that together cause non-termination 134

xiv

5.2. A developer testing transformation (a) in LLVM discovered that it trig-

gered an infinite loop . 136

5.3. Composition of two transformations . 138

5.4. Alignment failure due to circular dependency 144

5.5. Composition of a transformation with itself, matching the roots of the

source and target . 148

5.6. Composition of a transformation with itself, matching the root of the

first instance with a non-root node of the second 149

5.7. Composition of a transformation with itself, matching the root of the

second instance with a non-root node of the first 151

5.8. A transformation that will apply indefinitely or not at all 152

5.9. A transformation and a concrete input program that will cause non-

termination . 155

5.10. An optimization that can be applied to an input indefinitely 156

5.11. A sampling of the optimizations that form 1-cycles 160

5.12. A sampling of the optimizations that form 2-cycles 161

5.13. Four transformations participating in two 4-cycles 162

xv

1

Chapter 1

Introduction

Compilers are essential tools for software development, providing a bridge between

programmer-friendly high-level languages and the simpler, low-level instruction sets

used by computer processors. Modern compilers are large, sophisticated systems trans-

lating source code through several intermediate representations before finally produc-

ing executable software. An important part of this process is optimization, where the

compiler rewrites a fragment of code into a more efficient form while preserving its

semantics.

Compilers should be trustworthy. A buggy compiler may change the semantics of

a program as it compiles it, producing an executable that behaves incorrectly, even

when the source program is correct. Errors caused by compiler bugs are particularly

frustrating for software developers to diagnose, as they must first determine that the

fault is not in their own code. Worse yet, the error may appear or disappear depending

on the version of the compiler being used, or may only occur for certain semantically

equivalent forms of a program.

The complexity of modern compilers provides many opportunities for errors. Main-

stream compiler systems such as GCC and LLVM support multiple languages and

dialects and target hundreds of popular and obscure machine architectures. Input lan-

guages such as C and C++ have highly complex semantics and sophisticated features

that can interact in surprising ways. Architectures such as Intel’s X86 series include

hundreds of different instructions, each of which may have side effects such as setting

condition codes in addition to their primary function. Language standards evolve, and

new architectures are created. Between the source and target languages, compilers have

multiple intermediate representations and optimization passes. Mistakes may occur at

2

any of these points, due to misunderstood semantics, overlooked boundary conditions,

or simply incorrect implementation.

Indeed, a look at the bug trackers for GCC and LLVM will show multiple open

compiler bugs. These range from formatting errors and suggestions for improvements, to

compiler crashes, to miscompilation. Sometimes, a claim that a compiler has produced

an incorrect program stems from a misunderstanding of the programming language’s

semantics, but other times this reflects a genuine error in the compiler.

Many methods have been developed to detect or prevent compiler bugs. Some, such

as testing, are simple to implement but limited in the guarantee they provide. Others

provide very strong guarantees, but are cumbersome to implement. Our goal is to

develop methods that are easy to use and provide strong guarantees.

1.1 Making Compilers Robust

Compiler developers employ several methods for detecting bugs. Most compiler projects

will require some assurance before accepting new code. This may involve a manual

inspection of the new code or the creation of test cases to demonstrate correctness.

Compiler projects include extensive test suites that are run frequently, using the latest

in-development versions of the compiler, in order to detect recently introduced prob-

lems.

LLVM, for example, has two major test suites. The regression tests check individ-

ual features for correctness and test for specific bugs by compiling several thousand

short code fragments. These are expected to always pass, and are performed whenever

changes are committed. When a new bug is found, one or more regression tests are

created to ensure it is not reintroduced later. LLVM’s larger test suite, sometimes

called the nightly tests, comprise several hundred complete programs written in C and

C++. The programs are compiled and executed with specific inputs, and their outputs

are compared with expected outputs. These tests not only check whether LLVM has

compiled the programs correctly, but also measure the efficiency of compilation and the

efficiency of the compiled programs.

3

While these methods are effective at catching bugs, they have limits. It is difficult

to create a test suite that exercises all execution paths. Some bugs may arise from

the interaction between different components only when certain compilation options

are chosen. Testing code generation requires test machines for every target hardware

platform, or cross-compilation support (which may itself be a source of bugs). It is even

conceivable that a bug could depend on the compiler used to compile the compiler.

1.1.1 Random testing

One way to address the problems of creating large numbers of test cases and increas-

ing coverage of the compiler is to randomly generate test cases [15, 49, 100, 107]. A

well-designed test generator can generate any desired number of test cases distributed

uniformly among some space of possible programs. These are especially useful if they

meet some minimal criteria for being interesting (e. g., having valid syntax or not hav-

ing undefined behavior) without being biased towards program patterns common in

existing software or test cases. This increases the chances that a test case will involve

combinations of features not found in existing test suites.

One challenge when randomly generating an input program, compiling it, and ob-

serving its execution, is determining whether its behavior is correct. One possible

method is to generate programs that behave in a particular way and check whether

that behavior is observed. This method works well when testing specific features, such

as calling conventions [73] or arithmetic expressions [91, 92], where the correct behavior

is easily determined through other means.

Another approach is differential testing [33, 82, 113, 129], which does not require

foreknowledge of a test program’s behavior. Instead, the test program is compiled

multiple times using different compilers. If the program is deterministic, the compiled

versions should all have the same behavior. Differences in behavior among the compiled

programs indicate that one or more of the compilers did not preserve the meaning of the

test program. The behavior seen in the majority of compiled programs is most likely

to be correct, as the chances that a majority of compilers introduce the same error is

small.

4

CSmith [127] is a differential testing system for C compilers that generates programs

using multiple language features while avoiding programs whose behavior depends on

undefined or unspecified aspects of C. As it is impractical to avoid certain forms of

undefined behavior, CSmith uses a combination of static and dynamic checks to ensure

that the generated test programs have only one expected behavior. CSmith has found

more than 400 bugs in GCC, LLVM, and other tools.

Instead of generating entirely new programs, it is also possible to create new pro-

grams by modifying existing programs. Using the idea of equivalence modulo in-

puts (EMI), we can define a class of programs that have identical behavior for inputs

within a particular set. For example, given a set of inputs I, we can define a set of

programs such that, for every input i ∈ I, all programs in the set will have the same

behvior when given i. However, two programs P and Q whose behaviors coincide for

inputs in I may have different behaviors for inputs not in I. When compiling P and

Q, the compiler must consider their behavior for all possible inputs, which may ex-

ercise different parts of the compiler, as different static analyses will lead to different

optimizations being performed. The compiled versions of P and Q should still behave

identically for inputs in I, but it is possible that the differences in compilation will

cause an incorrect transformation to be applied to one but not the other, leading to

divergent behavior for some input in I.

Orion [64] uses EMI by observing the execution of a program P on inputs in I and

noting which fragments of P are not executed for any input in I. Orion generates

variants of P by randomly removing some of these unused fragments. Since these

deleted fragments were unused for the inputs in I, the variants should have the same

behavior as P for all inputs in I. However, these smaller variants may trigger different

optimizations, such as inlining or loop invariant motion, which can lead to different

behavior if the newly-triggered optimizations have bugs. Orion has been used to find

more than 1500 bugs in GCC, LLVM, CompCert, and other tools.

5

1.1.2 Formal correctness proofs

The primary limitation of any testing system is the impracticality of testing all possible

behaviors. A higher level of assurance is provided through the use of formal methods

to prove the correctness of code.

A proof of correctness for a program has three parts. First, the desired property that

the program should have must be specified. This will be a logical statement about the

program’s behavior (e. g., all allocated resources are deallocated exactly once). Second,

the behavior of the program must be determined. This will typically involve a formally

specified semantics for the language used to write the program, which can then be used

to describe the behavior of specific programs in a logical notation. Finally, there must

be a formal proof that the behavior of the program has the desired property.

Correctness of compilers

Compilers are a natural subject of formal correctness proofs, as they are not only large

software projects themselves, but part of the chain of trust for the programs compiled

with them. Compilers can be more challenging to prove correct than other programs. A

correctness proof effectively must reason about three programs: the compiler itself, the

program being compiled, and the result of compilation. Each program may be given in

a different language, with semantics specified at a different level of abstraction.

A compiler can be modeled as a function Comp that maps an input program S to

either a compiled program C or an error condition, indicating that compilation failed

(e. g., because S has a syntax error). We will write Comp(S) = OK(C) to indicate a

successful compilation.

A typical correctness condition for a compiler requires that some semantic property

of a source program S be preserved in its corresponding compiled program C. A strong

semantics preservation property is bisimulation, in which a behavior is possible for C if

and only if it is possible for S. Bisimulation is too strong to be used for languages with

any non-determinism, such as the order of evaluating subexpressions in C. A weaker

property is preservation of a specification, where the behaviors of C must meet some

6

specification if all behaviors of S do. We will write S ≈ C to indicate that C preserves

the semantics of S according to a chosen property.

There are several methods for proving a compiler to be correct. A verified compiler

has a formal proof that Comp(S) = OK(C) =⇒ S ≈ C, meaning successful compila-

tion produces a compiled program that preserves the semantics of the source program.

This provides a very high level of assurance, but the complexity of modern compilers

and their input and output language semantics means it is often not feasible to write

such a proof.

An alternative approach is translation validation [93, 99, 105]. In addition to the

compiler, we provide a separate validator, which computes a predicate V alid(S,C)

that holds when S ≈ C. Because S and C are specific, concrete programs, it is pos-

sible to perform validation using methods such as abstract interpretation and model

checking [32]. A verified validator accompanies the validator with a formal proof that

V alid(S,C) =⇒ S ≈ C. An unverified compiler equipped with a verified validator

provides as much assurance as a verified compiler, if it only returns validated output

programs and reports an error when validation did not succeed. Naturally, the disad-

vantage of this approach is that validation must be performed each time a program is

compiled.

CompCert [68–70, 90, 120] is a C compiler written using the proof assistant Coq [23].

Its input and output languages, and each of its multiple intermediate representations,

have formally specified semantics. The functions that translate from one representation

to the next each are verified or include a verified validator. Coq ensures that the proof

both reflects the implementation of the function and is itself valid. This is a monumental

achievement, requiring many programmer-years of proof development, and results in a

compiler with a very high assurance of correctness. For this reason, CompCert is

popular with embedded systems developers.

One disadvantage of this approach is the difficulty of extending the compiler. Adding

support for new platforms or optimizations requires further proof engineering by expert

developers. Changes to the language standards may require extensive re-engineering, if

7

they result in changed semantics. Nevertheless, efforts have been made to simplify ex-

tending CompCert, using techniques such as verifiable domain-specific languages [120].

Languages for automated correctness checking

Even if fully proving the correctness of a compiler is impractical, it is still useful to prove

the correctness of individual passes within a compiler. The transformations performed

by a single pass may fit a more specific pattern than the compiler as a whole, simplifying

the reasoning that must be done.1 For optimization passes, the input and output

languages are the same, simplifying the semantics preservation properties.

Further simplification can be achieved by changing how the transformations are

written. Instead of writing transformations in a general-purpose programming lan-

guage, with its corresponding complex semantics, transformations can be specified in

a domain-specific language (DSL) designed to express a class of transformations and

simplify reasoning about their correctness [46, 62, 66, 67, 79, 125]. The challenge to

designing such a DSL is making it flexible enough to specify many transformations

while keeping it simple enough for automated or semi-automated correctness checking.

Unlike verified code in an environment like Coq, the proof of correctness for a DSL-

specified transformation is not necessarily checked against its implementation. Thus, a

transformation may be correct by specification, but a mistake in the implementation—

written in a different language, possibly by different developers—would render this

verification meaningless. This vulnerability can be reduced by designing the language

so that an implementation can be automatically generated from the specification, thus

ensuring that the implementation and specification are kept in sync. A tool that proves

the correctness of a transformation and produces an implementation is an example of

a verifying compiler [52], which checks the correctness of its input programs.

1CompCert is divided into separately verified stages for this reason.

8

int foo(int x) {

int z = x * 51;

return z / 3;

}

(a) Source program

define i32 foo(i32 %x) {

%z = mul nsw i32 %x, 51

%r = sdiv i32 %z, 3

ret i32 %r

}

(b) IR translation

define i32 foo(i32 %x) {

%r = mul nsw i32 %x, 17

ret i32 %r

}

(c) After optimization

Figure 1.1: Peephole optimizations perform local optimizations, such as transforming
the code on the left into the code on the right.

1.2 Peephole Optimizations

Peephole optimizations are local transformations of intermediate representation (IR)

code. They perform algebraic simplification and enable other optimizations by rewrit-

ing code into a normal form. Individually, peephole optimizations provide only small

improvements to code, but they are typically applied repeatedly, until the code reaches

a steady state, and one optimization may create an opportunity for another. In this

way, complex operations can be transformed and simplified.

Figure 1.1 shows a typical application of a peephole optimization. The input C

program in Figure 1.1(a) is first translated into IR, represented by the LLVM IR code

in Figure 1.1(b). Next, the peephole optimizer recognizes a pattern in the program:

a multiplication by a constant a followed by a division by a constant b, where a is a

multiple of b, i. e., a = bc for some integer c. These operations can safely be replaced

with a multiplication by c, which will compute the same value, as shown in Figure 1.1(c).

The need for a to be a multiple of b comes from the fact that these are integer opera-

tions, but these are fixed-width, two’s-complement machine integers, not mathematical

integers. We also must consider what happens if the input is too large and the first

multiplication overflows. This would result in a negative value in the original program,

but (potentially) a positive value in the optimized program. So is this optimization

unsound?

As it happens, C declares any operation on signed integers that overflows to have

undefined behavior. Thus, a compiler would be free to assume that the multiplication in

Figure 1.1(a) never overflows. This is reflected in the IR translation in Figure 1.1(b): the

nsw attribute (or, “no signed wrap”) on the mul instruction promises that the result

9

will fit in 32 bits. Therefore, we can ignore what happens when the multiplication

overflows, because no particular behavior is required in those cases.

This example illustrates some of the challenges of writing correct peephole optimiza-

tions. The semantics of LLVM’s integer types seem simple at first glance, but it is easy

to confuse the rules for modular integer arithmetic with regular integer arithmetic, and

it is even easier to lose sight of how LLVM handles undefined behavior.

1.3 Problem Statement

We want a method for creating peephole optimizations that are provably correct. Fur-

thermore, we want a method that is easy to use. Ideally, developers should be able to

reason directly about the structures being manipulated—IR instructions, in this case—

instead of being concerned with the specific representation of those structures or the

formal semantic interpretation of those structures. Thus, we propose a domain-specific

language for specifying peephole optimizations.

Now our question becomes: How can we design a language to enable automated

verification of transformations? In general, it is impossible to prove that an arbitrary

program is correct for all inputs, so we must restrict the expressiveness of our language

to something that we can reason about. We should also restrict our language to be

constructive: a transformation should indicate a specific target for the transformation,

rather than providing constraints that could be fulfilled in several ways.

1.4 Overview of Alive

We develop a domain-specific language, Alive, for verifying LLVM IR peephole opti-

mizations. Its constructs are instructions and other IR values, but generalized to the

abstraction level used by LLVM’s peephole optimizer. (For example, values in LLVM IR

have concrete types, but peephole optimizations are typically generic over types.) Alive

optimizations include a source, which describes what code patterns the optimization

applies to, a target, which describes the new code that replaces the source, and precon-

ditions, which prevent applying the optimization when it would be invalid or otherwise

10

undesirable. The source and target are expressed as LLVM IR–like instructions, which

may include uninterpreted variables. Their semantics are designed to match the code

fragments to which they apply, and must include the values computed by the instruc-

tions and the conditions where those values are undefined. Alive optimizations also have

operational semantics that describe the specific transformations applied to LLVM’s IR

data structures.

Alive assists developers by automating the process of checking an optimization’s

correctness and ensuring its implementation meets its specification. What other assis-

tance can we offer to optimization developers? Consider a developer who has found

a seemingly desirable optimization that Alive deems invalid. This optimization may

be wrong in all circumstances, or it may be valid to apply in some, but not in oth-

ers. Building on Alive, we create a tool that can detect whether an optimization is

ever valid and infer preconditions that indicate those circumstances where it is valid.

We also support the converse situation, where an optimization has a precondition that

is too strong, preventing the optimization from applying in situations where it would

be valid. Using our tool, a developer can find weaker preconditions that still ensure

correctness.

Finally, we examine whether the validity of individual optimizations is sufficient to

show the correctness of a compiler. Is it possible to add a correct optimization to a

correct compiler and create an incorrect compiler? One problem that can arise involves

non-termination in the peephole optimizer. Peephole optimization typically proceeds

until no further opportunities for optimization remain. If an optimization can apply to

its own output, or if one optimization undoes the work of another, then the compiler

may never reach a state where no further optimization can be performed. That is,

compilation of certain programs may run indefinitely without producing a result. In a

sense, producing no output is less serious than producing incorrect output, but both are

undesirable and difficult for compiler users to diagnose and fix. Building on Alive, we

develop a method for determining whether a sequence of optimizations can be performed

indefinitely on a finite input. Using it, we are able to search collections of optimizations

for potential interactions between optimizations that could lead to non-termination.

11

Pre: C2 != 0 && C1 % C2 == 0

%m = mul nsw %X, C1

%r = sdiv %m, C2

=>

%r = mul nsw %X, C1 / C2

Figure 1.2: An Alive specification for the optimization demonstrated in Figure 1.1

These three applications of Alive—transformation verification, precondition infer-

ence, and non-termination detection—are discussed in more detail in the following

sections.

1.4.1 Verifying Transformations

Our language for specifying LLVM IR peephole optimizations, Alive, is designed to

resemble the IR. It relaxes some requirements of the IR for generality, while restrict-

ing its coverage to instructions that are amenable to automated reasoning: primarily

arithmetic and logical operators, comparisons, and conversions.2 It does not address

control flow instructions, such as branches and phi nodes, thus avoiding the need to

reason about loops.

Figure 1.2 shows an Alive specification for the peephole optimization discussed in

Section 1.2. It has three parts: a precondition, which limits when the optimization may

apply, a source pattern, which indicates the form of IR code where the optimization may

transform, and a target, which indicates the result of the transformation. Compare

the source and target with the LLVM IR code shown in Figures 1.1(b) and 1.1(c),

respectively.

Alive generalizes LLVM IR in several ways. First, it is parametric over types. While

IR programs have fixed, concrete types, peephole optimizations usually do not require

their input to have specific types. An algebraic rewrite is generally the same, no matter

the width of the integers involved. Second, compile-time constants may be left abstract.

C1 and C2 are examples of symbolic constants, which correspond to values that will be

known at compile time, but are not restricted to specific concrete values. Because they

2Some implementations of Alive have limited support for basic memory operations.

12

are known at compile time, the precondition and target of the optimization may use

them to compute new values and make judgements.

Alive optimizations are verified through translation into first-order logical proposi-

tions augmented with operations and predicates over fixed-width integers and floating-

point values. These formulae are constructed so that they are satisfiable if and only if

the optimization is invalid, having the general form “the precondition is satisfied and

the source and target compute different values”. This formula is passed to a solver for

Satisfiability Modulo Theories (SMT), which determines whether any value assignment

to the variables and symbolic constants satisfies the formula. If no such assignment

exists, the optimization is valid. Otherwise, the assignment generated by the solver can

be reported to the user as a counter-example for the optimization.

There are some additional points that must be considered when verifying Alive

optimizations. First, Alive optimizations may be type parametric. Reassociating two

integer addition instructions, for example, is valid regardless of the bit width of the

instructions involved. In contrast, SMT formulae must have fixed types. Unfortunately,

there appears to be no general way to use the correctness of an optimization at one type

assignment to show its correctness at another. Thus, to prove an optimization is correct,

it must be verified separately for each type assignment.3 Second, Alive optimizations

must correctly handle LLVM instructions that have undefined behavior for some inputs.

In particular, the target of an optimization must never introduce undefined behavior

for an assignment of variables where the source is well-defined. For those assignments

where the source has undefined behavior, any behavior in the target is considered valid.

Third, we must ensure that applying the optimization cannot crash the compiler.

If any constant expressions in the precondition or target involve division or remainder,

the precondition must prevent compile-time division by zero.

Finally, there are some ambiguities in the IR specification, as its semantics are

given informally, often by example. In some cases, such as LLVM’s optional reassocia-

tion of floating-point operations, it is unclear what correctness conditions—if any—an

3Often, it is only practical to verify a subset of possible type assignments, as LLVM includes more
than eight million integer types.

13

optimization must meet. Similarly, LLVM’s select instruction can be reasonably inter-

preted in at least two distinct ways that are identical except in the presence of certain

restricted forms of undefined behavior (see Section 3.3.6).

While developing the prototype implementation of the Alive toolkit, we extracted

334 transformations from LLVM and translated them to Alive. This represented roughly

a third of the estimated number of transformations in InstCombine at the time; the

remainder mostly involve instructions not included in Alive. In doing this transla-

tion, we discovered eight previously unknown bugs in LLVM, which have since been

confirmed and fixed by LLVM developers. At least fifteen additional bugs have been

found subsequently, and Alive has been used to prevent the introduction of incorrect

optimizations [54].

We also created a version of LLVM that replaced its peephole optimization pass with

code generated by the Alive toolkit that implemented the 334 transformations. This

modified compiler was used to build LLVM’s test suite and the SPEC INT 2000 and

2006 benchmarks. Compilation time of the benchmarks was comparable to the hand-

written code. The compiled executables showed only a small performance regression

compared to the full InstCombine pass.

1.4.2 Inferring Preconditions

Some optimizations are not valid for all input programs where they could apply. For

example, consider a program that takes an integer and shifts its bits left c1 places, and

then left again by c2 places. It might seem reasonable to replace these shifts with a

single shift left by c1 + c2 places, but such a replacement may not preserve the meaning

of the program. For example, shifting a 32-bit integer left by more than 31 places has

behavior that may vary widely across processor architectures, and for this reason is

explicitly undefined in LLVM IR. On Intel’s X86 platform, for example, shifting a 32-

bit integer left by 16 places twice will produce zero, but shifting left by 32 places leaves

the input untouched. Thus, in order to be correct, our transformation must include

a precondition that restricts it to applying when the shift amount is less than the bit

width. Figure 1.3 shows this optimization specified in Alive.

14

Pre: C1 + C2 u< width(%x)

%y = shl %x, C1

%z = shl %y, C2

=>

%z = shl %x, C1 + C2

Figure 1.3: Combining two shifts by constants into a single shift is only valid if the
resulting shift does not overflow

Finding the best precondition for an optimization can be tricky. Developers must

balance several requirements. First, the precondition must be strong enough to prevent

the optimization from applying where it would in invalid. Second, the precondition

should not be too strong. A weaker precondition allows the optimization to apply in

more circumstances than a stronger one. Third, the precondition should not be too

complex. The precondition must be evaluated for each code fragment that matches the

source pattern, and a lengthy precondition may negatively affect compilation time.

To assist developers in finding preconditions, we introduce a data-driven method for

precondition inference based on the Precondition Inference Engine [96]. The method

uses a set of examples to learn predicates that help distinguish the cases where a

transformation is correct from those where it is incorrect. These are then assembled

into a precondition for that transformation.

In order to infer a precondition for a transformation, we must first find a set of

examples that demonstrate its behavior. Each example represents a situation where the

transformation may be applied and contains the information available to the compiler

during optimization: type assignments for the values and value assignments for the

symbolic constants. A positive example represents a situation where the transformation

is correct, meaning the target refines the source when the assigned types and values are

specialized into the transformation. Conversely, a negative example is one where the

optimization is incorrect.

Note that examples are classified in terms of refinement. In particular, for an exam-

ple to be positive, the transformation must be a refinement for all possible assignments

of the run-time variables. For the transformation in Figure 1.3, an example will fix the

types and the values of C1 and C2, but we must check whether the optimization is valid

15

τ C1 C2 ± C2 < C1 C1 + C2 u<= width(%x)

i8 3 2 + > >
i8 3 5 − ⊥ ⊥

i32 18 15 − > ⊥
i64 18 15 + > >

Figure 1.4: Learning predicates for the transformation in Figure 1.3. The first three
columns show four possible examples, each comprising a type (τ) and the values for C1
and C2. The fourth column indicates whether the example is positive or negative. The
fifth and sixth columns show two predicates that might be learned during inference,
and whether they return true (>) or false (⊥) for each example.

for all values of %x to classify it as positive. The first three columns in Figure 1.4 show

some examples, with column four indicating whether they are positive or negative.

Examples are obtained using random selection. For a sample of possible type as-

signments, we choose arbitrary values for each symbolic constant and then classify the

example. To ensure that we always have both positive and negative examples—and

to determine whether such examples exist—we also use an SMT solver to find further

examples.

Some examples represent program fragments that are unlikely to appear. For ex-

ample, additions involving a constant zero are removed early on. Being able to ignore

certain examples can sometimes lead to simpler preconditions. Some optimizations are

valid if a condition holds, or if any symbolic constant is zero. If the optimization is

only applied in situations where the constants are non-zero, then there is no advantage

to weakening (and complicating) the precondition to accept those examples. We pro-

vide a method for developers to provide explicit assumptions about what examples to

consider.

Using these examples, we next learn predicates. These predicates are comparisons

of arithmetic expressions involving symbolic constants. For a given example, each

predicate will evaluate to true or false. The goal is to find enough predicates so that

every pair of positive and negative examples will be evaluated differently by at least one

predicate. That is, the set of predicates are sufficient to distinguish the positive and

negative examples. If this is not the case, we take a set of positive and negative examples

that all have identical evaluations for the previously learned predicates and search for

16

a predicate that helps distinguish this set. The fifth and sixth columns of Figure 1.4

show two predicates that might be learned for the transformation in Figure 1.3 and

their behavior for four examples.

The search for new predicates is based on enumeration. Using the symbolic con-

stants and type constraints from the optimization, we generate well-typed, parametric

constant expressions and predicates. We make some effort to avoid unnecessary dupli-

cation. For example, fixed-width integer addition is commutative and associative, so

there is no need to generate both a+ b and b+ a.

Once we have learned enough predicates, we find a formula using the predicates

that accepts all the positive examples and rejects all the negative examples. We use

two different Boolean formula learners in this part. The first finds increasingly-large

disjunctions of predicates that accept all positive examples until it is able to reject every

negative example with at least one disjunction. This is used to find full preconditions,

and may produce very complex preconditions. The second formula learner searches for

a formula that accepts as many positive examples as it can while keeping its complexity

below a certain bound. This can result in far simpler partial preconditions at the cost

of rejecting a few edge cases.

Finally, having learned a precondition, we attempt to verify the transformation

using it. If the transformation and precondition are correct, we report them to the

user. Otherwise, we generate a few counter-examples where the precondition holds and

the transformation is incorrect, add these to the set of negative examples, and resume

predicate learning. Similarly, if the precondition is intended to be full, we check for

examples where the transformation is correct but the precondition does not hold, and

add any we find to the set of positive examples.

This method can be used to strengthen a precondition or find a precondition for a

possibly-valid transformation. It can also be used to weaken an existing precondition

by finding new positive examples. (To speed up predicate learning, the predicates in

the existing precondition can be used as the initial learned set.)

We used a prototype implementation to re-infer preconditions for 174 transforma-

tions derived from LLVM that required a precondition but did not require the results

17

of any dataflow analysis. The prototype inferred full preconditions within 1000 sec-

onds for 133 transformations, and inferred partial preconditions for an additional 31

transformations. The prototype was additionally used to find preconditions for 71 trans-

formations generalized from patterns found by the Souper super-optimizer [57]. The

prototype inferred full preconditions for 51 transformations, and partial preconditions

for an additional three.

1.4.3 Checking for Non-Termination

The primary advantage of specifying peephole optimizations in Alive is that Alive-

expressed transformations are easier to reason about than programs written in a general-

purpose language. We have seen this with automated verification and precondition in-

ference, but there are further ways to analyze Alive transformations. In particular, we

need not restrict ourselves to examining transformations in isolation. LLVM’s InstCom-

bine checks each instruction against a list of transformations and applies the first one

that matches. Changing the order of the list may change the results of optimization,

as two transformations may apply to the same input but only one will be performed.

LLVM repeatedly applies peephole optimizations until none apply, i. e., the opti-

mization reaches a fixed point. But this assumes that such a fixed point always exists.

It is possible that one transformation may undo the work of another, or that a sequence

of one or more transformations will result in a program where the sequence can be ap-

plied again. If the list of transformations in InstCombine is not carefully designed, some

input programs may never reach a fixed point and the transformation process will run

indefinitely without producing a result.

Figure 1.5 shows a pair of transformations that can lead to nontermination. The

first, transformation A, moves an and operation inside an xor, possibly reducing the

number of bits flipped. The second, transformation B, reduces the number of references

to the value %Y by moving an xor inside an and. An input program matching A will

result in a program matching B if C2 and C1 & C2 are equal. The result of applying B

will be a program matching A, and the process of optimization will continue indefinitely,

alternating applications of A and B.

18

Name: A

%p1 = xor %W, C1

%r1 = and %p1, C2

=>

%q1 = and %W, C2

%r1 = xor %q1, C1 & C2

Name: B

%p2 = and %X, %Y

%r2 = xor %p2, %Y

=>

%q2 = xor %X, -1

%r2 = and %q2, %Y

Figure 1.5: Two transformations that can be alternately applied to an input program
indefinitely. Note that A and B are not exact inverses.

We develop a technique for detecting sequences of transformations that may lead

to non-termination. First, we show how to compose two transformations, producing

a new transformation equivalent to sequentially applying the transformations. Using

this, we can produce a single transformation representing the action of a sequence of

transformations. Next, we describe the conditions that must hold for an transformation

to cause non-termination: (1) it must compose with itself, (2) the precondition of

the self-composition must be satisfiable, and (3) the self-composition must not have a

larger source pattern. The first two conditions are necessary for the transformation (or

sequence of transformations) to be applied repeatedly. The third condition is necessary

for this repetition to continue indefinitely.

Figure 1.6 shows transformation AB, the composition of transformations A and B,

and transformation ABAB, the composition of AB with itself. The precondition for AB

reflects the condition necessary for B to follow A. The precondition for ABAB, while

longer, is equivalent, because the additional clause is a tautology. Because ABAB was

created by matching the target of AB with the source of AB, this means that AB can

be applied twice anywhere it can be applied once, and thus it can be applied arbitrarily

many times.

In contrast, transformations where self-composition increases the size of the source

pattern can only be applied finitely many times. For example, reassociating two ad-

dition instructions may create further opportunities to reassociate, but reassociating

twice requires three addition instructions. This puts an upper limit on the number of

times the reassociation transformation can be applied to a given input program.

To check whether two transformations compose, we attempt to match the target

of the first transformation with the source of the second. To match, instructions must

19

Name: AB

Pre: C2 == C1 & C2

%p1 = xor %X, C1

%r1 = and %p2, C2

=>

%q2 = xor %X, -1

%r1 = and %q2, C2

Name: ABAB

Pre: C2 == C1 & C2 && C2 == -1 & C2

%p1 = xor %X, C1

%r1 = and %p2, C2

=>

%q2 = xor %X, -1

%r1 = and %q2, C2

Figure 1.6: Transformation AB is equivalent to applying transformations A and B from
Figure 1.5 in sequence. Its precondition ensures that the result of applying A will be
matched by B. Transformation ABAB is equivalent to applying AB twice. Note that it
applies in exactly the same circumstances as AB.

have the same op-code, symbolic constants can match any constant (including constant

expressions), and input variables may match anything. Because we are interested in

cases where the second transformation is enabled by the first, we require that at least

one instruction in the second’s source match an instruction in the first’s target. When

two transformations compose, we may create a new transformation from the source of

the first and the target of the second. We replace input variables with the instructions

or constants they matched, if any. See Section 5.1 for further details that must be

considered.

Once we implement composition, we can test whether a sequence of transformations

can cause non-termination. Once we have that test, we can search for such sequences,

given a set of transformations. Using 416 transformations derived from LLVM, our

prototype termination checker exhaustively searched sequences of up to four transfor-

mations and sampled further sequences of up to seven transformations, finding 184

sequences that could cause non-termination. Test cases generated from these sequences

were given to a version of LLVM with an Alive-generated peephole optimizer, confirming

non-termination in 179 cases. The remaining five cases did not cause non-termination,

due to interaction between transformations (see Section 5.4.1).

By specifying the peephole optimizations in Alive, we have enabled a high-level

analysis of a set of peephole optimizations. Performing a similar analysis on LLVM’s

InstCombine pass, which is twenty-thousand lines of C++, is considerably more diffi-

cult.

20

1.5 Contributions to this Dissertation

The material in this dissertation is drawn from four previously published papers written

in collaboration with my advisor Santosh Nagarakatte, Nuno Lopes, John Regehr, and

Aarti Gupta. They are:

1. “Provably correct peephole optimizations with Alive” [76], which introduces Alive

and describes the process for automatically verifying optimizations and generating

implementations.

2. “Termination checking for peephole optimizations in LLVM” [85], which describes

composition of Alive optimizations and how to determine whether an optimization

can be applied indefinitely to an input program.

3. “Alive-FP: Automated verification of floating-point–based peephole optimizations

in LLVM” [87], which extends Alive with reasoning about floating-point values

and discusses semantics for some of LLVM’s fast-math flags, which permit some

optimizations by making additional assumptions.

4. “Alive-Infer: Data-driven precondition inference for peephole optimizations in

LLVM” [86], which shows methods for generating preconditions for Alive opti-

mizations that are as widely applicable as possible, or that meet a bound for

precondition complexity.

1.6 Organization of this Dissertation

Chapter 2 describes LLVM and its IR in more detail and gives some background on

satisfiability modulo theories. Chapter 3 discusses the Alive language and the Alive-

NJ prototype, including the SMT translations used for verification, code generation,

and the extension to floating-point optimizations. Chapter 4 discusses precondition

inference. Chapter 5 discusses composition of Alive optimizations and the method for

detecting potential non-termination.

21

Chapter 2

Background

Alive specifies peephole optimizations that apply to the LLVM Intermediate Represen-

tation (IR). Section 2.1 provides q quick introduction to the IR, with particular em-

phasis on its handling of undefined behavior. The Alive toolkit checks the correctness

of a transformation with the aid of a solver for Satisfiability Modulo Theories (SMT).

Section 2.2 gives an overview of SMT, with additional details about the theories of bit

vector and floating-point arithmetic, which are used by Alive.

2.1 LLVM

The LLVM Compiler Infrastructure is widely used, both as a working compiler and

as a subject for research. Its component technologies are designed to be modular and

reusable, making it a useful basis for many external compiler-related projects.

Broadly, LLVM can be divided into three parts. A front end takes source code

and translates it into LLVM’s internal representation (IR). Next, LLVM applies several

optimization passes, implemented as IR-to-IR translations and analyses over IR. Finally,

the back end translates the optimized IR to assembly language or machine code for a

target architecture.

LLVM provides one front end, Clang, which handles C, C++, and Objective-C.

Additional front ends are provided by other projects, such as JavaScript and Swift,

which can then take advantage of LLVM’s optimizer and code generation stages. LLVM

provides back ends for many processor architectures, such as Intel X86 and ARM. These

may be used as a stand-alone compiler, or can be incorporated into larger software

projects, for example, to provide just-in-time compilation of scripts in a web browser.

22

2.1.1 The LLVM Intermediate Representation

The LLVM Intermediate Representation (IR) is a common interface between LLVM’s

various front-ends, back-ends, and “middle-end” optimization passes. Unusually, the

LLVM IR is itself a low-level programming language with concrete syntax and an

independently-specified semantics [2]. This modularity makes it easier for other projects

to reuse parts of LLVM: compiler front-ends for new languages can target LLVM IR

and take advantage of LLVM’s low-level optimizations and architecture-specific back-

ends. Consumers of LLVM IR include LLVM’s existing back-ends, an interpreter, and

a just-in-time compiler.

The IR resembles a typed assembly language. A program contains one or more

functions, each of which has formal parameters and one or more basic blocks containing

instructions. Each block has a single entry point and concludes with a conditional or

unconditional branch instruction. Instructions have one or more arguments, and may

have an additional return value. The return value of an instruction is stored in a unique

temporary register variable and may be used as an argument to later instructions.

LLVM IR programs are expressed in static single-assignment (SSA) form: each variable

is defined exactly once and its value is never reassigned. In order to express control

structures such as loops, LLVM IR includes special instructions called φ nodes. These

always occur at the start of a black and assign a value to a variable based on how

control reached the block.

Figure 2.1 shows a function defined in C and its translation to LLVM IR. Note-

worthy features include the branch instruction, br, which takes a destination label for

unconditional branches, and a Boolean value and two destination labels for conditional

branches. Block test contains two phi instructions, which select values for %z1 and

%x1 based on whether control reached test from entry or body.

The IR is strongly typed. Each value (instruction result, formal parameter, or con-

stant) has a type, and each instruction has rules that determine whether its arguments

are properly typed. Many IR instructions are type parametric and can be used with

different types, as long as typing rules are satisfied. For example, the add instruction

23

int factorial(int x) {

int z = 1;

while (x > 1) {

z = z * x;

x = x - 1;

}

return z;

}

(a)

define i32 @factorial(i32 %x0) {

entry:

br label %test

test:

%z1 = phi i32 [1, %entry], [%z2, %body]

%x1 = phi i32 [%x0, %entry], [%x2, %body]

%b = icmp sgt i32 %x1, 1

br i1 %b, label %body, label %exit

body:

%z2 = mul nsw i32 %z1, %x1

%x2 = sub nsw i32 %x1, 1

br label %test

exit:

ret i32 %z1

}

(b)

Figure 2.1: A function to compute factorials written in C and compiled to LLVM IR

can accept arguments of arbitrary integer types, as long as both arguments and the

result have the same type. LLVM includes many integer types, which are bit vectors

of a specific width. Figure 2.1 includes both 32- and 1-bit integers, the types for which

are written i32 and i1 respectively. The maximum bit width for an integer is 223 − 1.

LLVM provides six floating-point types. Pointer types in LLVM specify the type of

the pointer target, e. g., i32* is a pointer to a 32-bit integer. There are also multiple

aggregate types, including constant-length arrays of arbitrary values, structures, and

vectors. Many instructions that are defined for integers or floating-point values also

work with integer or floating-point vectors.

2.1.2 Undefined behavior

The LLVM IR is designed to enable efficient compilation of C and C++ programs

to a processor’s instruction set. Both the input and output languages leave certain

operations undefined. Sometimes, operations are left undefined because they cannot

be defined, such as division by zero. Other times, leaving an operation undefined gives

more freedom to the implementation of a processor or compiler. Leaving behavior

undefined for certain inputs simplifies the architecture of a processor by eliminating the

24

need for checking the inputs: it is the program’s responsibility to avoid those inputs, and

no behavior by the processor in response can be considered incorrect. For a compiler,

undefined behavior can enable optimizations that change a program’s behavior only in

those cases where it has no defined behavior. For example, signed addition overflow is

undefined in C, so a compiler is free to rewrite a+b > a to b > 0, because the only cases

where those expressions are not equal are ones where a + b overflows. The LLVM IR

also leaves some operations undefined, in order to accurately capture the semantics

of C and C++, to take advantage of optimization opportunities, and to simplify the

translation to machine instructions.

For example, the behavior of shift operations when the shift amount exceeds the bit

width of its result varies wildly between processor architectures. If LLVM mandated

a particular behavior—even something seemingly reasonable, such as returning zero—

it would need additional instructions on architectures with different behavior in order

to preserve its semantics. This would be especially unfortunate when compiling C

programs, as C also does not define semantics for shifts when the shift amount is too

large. By over-defining shifts, LLVM would require itself to produce slower programs

on some architectures in order to control its behavior under circumstances that, in a

correctly written program, should never occur anyway.

The presence of undefined behavior in LLVM IR does not prevent it from safely

compiling languages where behavior is more defined. Instead, the IR allows splitting a

safe operation, such as an array access with bounds-checking, into two parts: the bounds

check and the (potentially undefined) memory access. If a function repeatedly accesses

a specific array element, LLVM can optimize by consolidating the bounds checks and

leaving the individual memory accesses unguarded.

Deferred undefined behavior

Although undefined behavior gives a compiler freedom when transforming code, compil-

ers must be careful to avoid introducing undefined behavior. If a transformation results

in a program that is not defined for some input where the original program was defined,

then there is no guarantee that the transformed program will have the same behavior

25

for (i = 0; i < N; i++) {

a[i] = a[i] & (1 << B);

}

(a)

int m = 1 << B;

for (i = 0; i < N; i++) {

a[i] = a[i] & m;

}

(b)

Figure 2.2: Two C programs that mask bits from an array of integers. Unlike (a), (b)
is undefined when N is zero and B is larger than the width of an integer.

as the original for that input. The possibility of introducing undefined behavior can

prevent certain optimizations, such as speculative execution.

Consider a loop that contains a loop-invariant computation that might be undefined

for some inputs, such as the shift in Figure 2.2(a). Moving this common computation

outside the loop, as in Figure 2.2(b), avoids duplicating work, but introduces undefined

behavior in the case where the computation is undefined but the loop does not execute:

the original program does nothing, but the optimized program has undefined behavior.

To allow for speculative execution and similar optimizations, LLVM distinguishes

between undefined behavior that occurs immediately and undefined behavior that is

delayed until its result is used. If the result of a computation with deferred undefined

behavior is not used in an externally visible way, the program as a whole is still defined.

If shifting has deferred undefined behavior when the shift amount is too large, then the

programs in Figure 2.2 have the same behavior for all values of N and B.

Undefined values

What is the behavior of an instruction that has deferred undefined behavior? One

possibility in LLVM is to return an undefined value, or undef. This represents a non-

deterministic bit pattern or, equivalently, a set of possible values. LLVM uses undef

to represent uninitialized variables, the initial contents of memory, padding bits in

structures, and the results of certain instructions, such as shifts where the shift amount

is too large (but see Section 3.2.5).

A fully-undefined value may be any value of its type, but subsequent operations may

partially define it. If a 32-bit value %a is undefined, then shl i32 %a, 1 will result

26

in a value where the low bit is 0 and all higher bits are undefined. When interpreting

undefined values as sets of possible values, %a is a set A containing all 32-bit values, and

the result of the shift will be {a× 21 : a ∈ A}, i. e., the set of all even 32-bit integers.

Notably, undefined values are not required to make consistent non-deterministic

choices. That is, xor i32 %a, %a may take any value if %a is undefined. In terms of

sets, its possible values are {a1 ⊕ a2 : a1 ∈ A, a2 ∈ A} (where ⊕ is exclusive or). This

can be surprising, as it violates the interpretation of LLVM IR as machine instructions

manipulating concrete values, but this frees LLVM from having to remember the specific

arbitrary bit pattern chosen for an undefined value. Additionally, optimizations are free

to choose convenient replacements for undefined values without needing to consider all

uses of the undefined value.

This freedom does make other transformations problematic. A transformation that

increases the number of uses for a value may introduce new behavior when that value

is undefined. For example, replacing a× 2 with a+ a introduces odd numbers when a

is an undefined value.

Poison values

Another way to represent deferred undefined behavior is specially mark the results of

an operation that has or relies on deferred undefined behavior. If a marked value is

used with an operation that has visible side-effects, such as a write to volatile memory

or a conditional branch, the operation has undefined behavior. In LLVM, this marked

value is called a poison value.

Poison values were introduced to model signed arithmetic in C. Initially, this was

modeled by adding nsw (“no signed wrap”) attributes to certain arithmetic instructions,

which indicated that the instruction returned an undefined result if signed overflow

would have occurred. This turned out to be insufficient to allow some optimizations,

such as widening [41]. Because signed arithmetic overflow is undefined, it is possible to

perform operations in a larger type that is efficient for the processor without changing

27

their semantics. For example, int in C has 32 bits,1 but on a 64-bit architecture it may

be more convenient to treat int values as 64-bit long values (this avoids the need for

sign extension when calculating an array offset, for example).

Consider two int variables, a and b, and the expression (long)(a + b), which adds

them and then extends the value to a 64-bit type. This would be translated to:

%0 = add nsw i32 %a, %b

%1 = sext i32 %0 to i64

After widening, %a and %b will become i64 values and the sext (sign-extend) instruction

is dropped. But can this transformation introduce new behavior? Before widening, the

upper 33 bits of %1 will be all ones or all zeros, depending on the sign of a + b. Even

if the addition overflows, an undefined 32-bit value sign-extended to 64 bits will have

this property. After widening, an addition that previously overflowed will easily fit

into 64 bits, resulting in no overflow but producing values that are not the result of

sign-extending any 32-bit value. If a is 1 and b is 231− 1, their sum after widening will

be 231, which is not representable as a signed 32-bit integer.

Instead, add nsw returns a poison value when signed overflow occurs. Unlike unde-

fined values, poison values never become partially defined: an instruction with a poison

argument will always return poison or have immediate undefined behavior (but see Sec-

tion 3.3.6). Thus, sign-extending a poison value results in a larger poison value, which

the compiler may replace with any value in the larger type, including those that cannot

be produced by sign-extending an arbitrary value in the smaller type.

Unfortunately, LLVM has not always been consistent with how optimizations in-

terpret poison values. For example, certain optimizations are valid only if conditional

branches have undefined behavior when the condition is poison, while others require

them to select one of the destinations non-deterministically. Recent work [65] has pro-

posed a more consistent semantics, and combined the ideas of undef and poison values,

but those changes have not yet been adopted.

1Formally, int may have any size no smaller than 16 bits, but C compilers on many 64-bit architec-
tures use 32 bits to save space and remain compatible with 32-bit code.

28

if (c != 0) {

erase_hard_drive();

} else {

greet_friends();

d = x/c;

}

(a)

%b = icmp ne i32 %c, 0

br i1 %b, label %then, label %else

then:

call void @erase_hard_drive()

br label %after

else:

call void @greet_friends()

%d = sdiv i32 %x, %c

br label %after

(b)

Figure 2.3: A program fragment that has undefined behavior if c is zero. The compiler
can conclude that else is only executed when %c is zero, so the conditional branch can
be replaced with an unconditional branch to then.

Immediate undefined behavior

Not all undefined behavior can be deferred. Division by zero, for example, will typically

cause the processor to interrupt the current process and invoke a trap handler. Specu-

latively executing division operations will therefore change the behavior of a program

unless the compiler can show that the divisor is always non-zero.

In general, an operation that has undefined behavior may be replaced with the

unreachable instruction, which indicates to the compiler that control flow will never

enter a particular basic block. This means that an operation with undefined behavior

can change the behavior of previous operations. Consider the program in Figure 2.3,

which erases your hard drive if c is zero, and otherwise greets your friends and then

divides by c. The compiler can show that c is always zero in the else block (label else

in the IR code), and thus the computation of d always has undefined behavior, meaning

that the entire else block is unreachable. The conditional branch can be replaced with

an unconditional branch to true. The program instead always erases your hard drive

and never greets your friends. In effect, the division by zero has not only erased your

hard drive, it has cancelled the preceding function call to greet friends.

In C, if a program execution includes an operation with undefined behavior, the

behavior of the entire execution is undefined: there is no guarantee that any event will

or will not happen before or after the undefined operation. It is unclear whether the

29

LLVM IR has similar freedom, but it is clear that (1) any behavior after an operation

with undefined behavior is also undefined, and (2) the compiler is free to assume that

control never reaches a block that has undefined behavior.

2.2 Satisfiability Modulo Theories

Satisfiability, or SAT, problems are Boolean formulae containing free Boolean variables

and logical connectives. For example, ¬p ∨ (q ∧ ¬p) includes the Boolean-valued vari-

ables p and q. If there is an assignment of truth values to the variables such that the

formula evaluates to true (i. e., is satisfied), the problem is satisfiable. Otherwise, it is

unsatisfiable.

In general, solving a SAT problem is NP-complete, with the best known algorithms

requiring time exponential in the size of the formula in the worst case. Fortunately,

many applications of SAT solving have been found that do not require solving these

worst-case formulae, and SAT solving is now considered tractable for many purposes.

Satisfiability modulo theories (SMT) extends the scope of SAT solving by intro-

ducing non-Boolean variables and expressions, which are defined by a theory. For

example, the theory of quantifier-free linear integer arithmetic (QF-LIA) introduces

integer variables, integer-valued functions such as addition and multiplication by an in-

teger constant, and Boolean-valued functions such as equality testing of integer-valued

expressions.

As with SAT problems, algorithms exist to efficiently solve some SMT problems.

There is a standard format for specifying SMT problems, SMT-LIB, and multiple SMT

solvers exist that focus on solving SMT problems using a particular theory, or use

heuristics to choose strategies for solving general SMT problems. Figure 2.4 shows an

SMT problem specified in the SMT-LIB format, which declares an integer variable x

and asserts that x · x < 0. The assertion is not true for any integer, so an SMT solver

will report that the problem is unsatisfiable.

SMT solvers check whether any valuation of variables will satisfy a formula. That

is, the formula implicitly has an existential quantifier. To prove that a property holds

30

(declare-fun x () Int)

(assert (< (* x x) 0))

(check-sat)

Figure 2.4: An SMT problem written in SMT-LIB format that is satisfiable if and only
if ∃x∈Z : x2 < 0

for all values, for example ∀x∈Z : x2 ≥ 0, an SMT solver can be asked for a valuation

where the property does not hold, such as ∃x∈Z : x2 < 0. If that negated problem is

unsatisfiable, this proves the correctness of the original statement.

In many cases, an SMT solver given a satisfiable problem can show that the problem

is satisfiable by providing a concrete valuation of the variables such that the formula

evaluates to true. This valuation is called a model. In this context, the problem can

be considered a query that requests the solver to find a model satisfying a condition.

When the query is the negation of a desired universal property, any models represent

counter-examples demonstrating that the property does not hold.

The Alive toolkit discussed in this dissertation uses the Z3 SMT solver [28] to check

the correctness of transformations of LLVM IR code. To represent the semantics of

integer and floating-point operations, it encodes them into SMT using the theories of

quantified bit vectors and floating-point arithmetic.

2.2.1 SMT bit vector theory

The quantified and quantifier-free bit vector theories of SMT (BV and QF-BV, respec-

tively), describe modular integer arithmetic and bit-wise logical operations that can be

used to model fixed-width machine integers. A bit vector is simply a list of n Boolean

values, where n is fixed by the vector’s sort (i. e., type). Functions that accept bit vec-

tor arguments are often parametric over sorts. For example, the arguments and return

value of addition (bvadd) may be bit vectors of any width, so long as all three have the

same width.

Bit vectors may be interpreted as unsigned integers or as signed integers in 2’s-

complement format. For several operations, such as addition, subtraction, and multi-

plication, these interpretations coincide and a single function is used for both. Other

31

operations, such as division, have separate signed and unsigned variants. Inequality

tests similarly provide signed an unsigned variants.

A bit vector with width w represents unsigned values between 0 and 2w−1, inclusive,

and signed values between −2w−1 and 2w−1 − 1, inclusive.

2.2.2 SMT floating-point arithmetic theory

The floating-point theory in SMT (SMT-FPA) [17] models arithmetic over fractional

values with semantics similar to those specified by IEEE 754 [3]. The sort of floating

point numbers FE,M is parameterized by two positive integers, the exponent width E

and the significand width M . The floating-point sorts include the (binary) floating-

point types defined by IEEE 754, as well as other types with similar behavior.

A value of FE,M is either NaN or a triple 〈s, e,m〉 containing three bit vectors: the

sign bit s has 1 bit; the exponent e has E bits, and the mantissa m has M − 1 bits.

The missing bit in m is the implicit integer part, which is always 0 or 1 depending on

the exponent. Non-NaN values in FE,M can be mapped to the extended real numbers

R ∪ {+∞,−∞} using the function vE,M :

vE,M (〈s, e,m〉) =

(−1)s · 21−bias(E) · (0 + m

2M−1) if e = 0

(−1)s · 2e−bias(E) · (1 + m
2M−1) if 0 < e < 2E − 1

(−1)s · ∞ if e = 2E − 1 ∧m = 0

(2.1)

where bias(E) = 2E−1 − 1, and the bit vectors are interpreted as unsigned integers.

Arithmetic over values in FE,M returns the exact value that would be computed in

the extended reals, if that value is in FE,M . Otherwise, it will return one of the two

values in FE,M that are immediately greater or smaller. The specific choice is made

according to the rounding mode, which is one of: round towards zero, round towards

positive, round towards negative, round to nearest (ties toward zero), and round to

nearest (ties toward even). All arithmetic operations in SMT-FPA have an explicit

rounding mode parameter, except for remainder.

Certain operations that are not defined in real arithmetic will return infinite values

in floating-point, such as dividing a non-zero value by zero. Similarly, operations that

32

return results too large to be represented as finite values may also produce infinite

values.

Finally, NaN represents an error condition or ill-defined expression, such as ∞−∞

or 0÷ 0. All floating-point arithmetic operations return NaN if any of their arguments

are NaN. All floating-point comparisons are false if one or more argument is NaN. That

is, NaN is not greater than, less than, or equal to any floating-point value including

itself.

SMT-FPA models IEEE 754 at the floating-point data specification level, which

has a single NaN value, rather than the representation or bit-string specification levels,

which have multiple NaN values. This prevents SMT-FPA from meaningfully reasoning

about certain operations, such as copying the sign of a NaN value or the total ordering

predicate.

33

Chapter 3

Specifying Peephole Optimizations with Alive

Peephole optimizations rewrite small portions of intermediate representation (IR) code

in order to improve efficiency or to present code in a canonical form expected by other

optimization passes. To be considered correct, this rewrite must not change the behavior

of the program as a whole. It can be difficult to ensure that a peephole optimization is

correct, due to the complexity of the IR semantics—especially when that IR includes

undefined behavior.

Alive1 is a domain-specific language for specifying peephole optimizations over the

LLVM IR intended to simplify the creation of correct transformations. Transformations

specified in Alive can be automatically checked for correctness, even in the presence of

one or more of LLVM’s forms of undefined behavior. When the Alive toolkit determines

that a transformation is incorrect, it returns an example to the user showing how the

transformation changed the behavior of the program. To ensure that the implementa-

tion of the transformation is kept in sync with its correctness-checked specification, the

toolkit can translate the transformation into a C++ implementation. Figure 3.1 shows

the process of verifying and generating code for a transformation specified in Alive.

Transformations in Alive have three parts. The source and target describe an IR

code fragment, or a set of code fragments that have a similar structure. These fragments

include free variables, which represent constants or the results of other operations that

are not part of the pattern. The transformation indicates that code matching the source

should be replaced by the target. The precondition specifies additional requirements

for the transformation. A code fragment that matches the source but does not satisfy

the precondition will not be replaced.

1Automatic LLVM’s Instcombine Verifier.

34

Verifier

Code
Generator

SMT
Solver

LLVM
Source
Code

Transfor-
mation

Correctness
Conditions

Results

C++

Alive

Figure 3.1: Alive transformations are automatically checked for correctness and can be
translated into C++ implementations for use in LLVM

A transformation is considered correct if performing the transformation does not

change the behavior of a program. Because some operations in LLVM have undefined

behavior, the source and target are not always deterministic. Thus, a more precise

requirement is that the behaviors of the source for a particular valuation of inputs

include every possible behavior of the target, or

∀I : B(S) ⊇ B(T), (3.1)

where B(S) and B(T) represent the sets of possible behaviors for the source and target,

respectively, for a valuation of the variables in I. That is, the target refines the source

for all input values.

For example, a transformation that rewrites 0 ÷ x to 0 is correct, even though the

source has undefined behavior when x = 0. Because 0÷0 is undefined, its set of possible

behaviors includes all behaviors. Rewriting it to 0 refines the set of possible behaviors

when x = 0 to a single behavior.

Alive is designed so that transformations can automatically be checked for correct-

ness, without any user intervention. Correctness checking is performed by encoding the

correctness conditions for the transformation into logical statements and using an SMT

solver to check for counter-examples, where the correctness conditions do not hold.

Sections 3.2 and 3.3 describe this process in more detail.

35

Additionally, Alive is designed so that transformations can automatically be trans-

lated into C++ implementations suitable for use in LLVM. This ensures that the im-

plementation of the transformation matches its specification. Section 3.4 describes the

specifics of this translation.

This chapter primarily describes the dialect of Alive accepted by the Alive-NJ proto-

type. This includes the floating-point extensions that were introduced by Alive-FP [87],

but does not include some experimental features mentioned in the original Alive pa-

per [76]. These features are briefly discussed in Section 3.5. Alive-NJ itself is described

in more detail in Section 3.6.

Alive has been adopted by LLVM developers, who use it to check the correctness of

proposed additions to the peephole optimizer. Additionally, Alive has been used to find

bugs in existing LLVM code. While developing Alive, we extracted 334 transformations

from InstCombine and expressed them in Alive. Doing so uncovered eight previously

unknown bugs. Subsequent work has found fifteen additional bugs. Section 3.7 pro-

vides additional information about bugs found with Alive and the performance of its

verification engine and of its generated code.

3.1 The Alive Language

An Alive transformation describes a process for recognizing an instruction and replacing

it with a new instruction. The task of recognizing an instruction is broken into two

parts. The source pattern describes an instruction, known as the root, by giving its

opcode and describing its arguments, which may be other instructions or variables. The

precondition describes conditions that must be satisfied by the variables and instructions

mentioned in the source pattern. The target pattern describes the instruction or value

that will replace the root, and may also describe new instructions that must be added

to the program in order to create the new root.

Figure 3.2 shows two transformations. Each has the structure source =⇒ target,

optionally preceded by a precondition. The source patterns are given as a list of dec-

larations assigning register names to instructions. The final instruction in the source

36

Pre: C1 == C2 + 1 && \

countTrailingZeros(C1) == 0

%Y = and %Z, C2

%LHS = xor %Y, C1

%r = add %LHS, %RHS

=>

%or = or %Z, ~C2

%r = sub %RHS, %or

(a)

%c = icmp ult %x, 0

%r = select %c, %A, %B

=>

%r = %B

(b)

Figure 3.2: Two transformations demonstrating several features of Alive

pattern is the root, named %r in these examples. The other instructions describe the

values mentioned in the arguments to the root. In Figure 3.2(a), the arguments to the

root are %LHS and %RHS. The former is declared to be an xor operation whose argu-

ments are %Y and a symbolic constant C1. Symbolic constants are values that will be

constant in the program being compiled.2 This means their values will be known during

compilation, in contrast to register variables such as %RHS, which may not be known

until the code is executed.

The target pattern, located after the arrow, is also given as a list of declarations.

The final declaration uses the same name as the source root and indicates the value

that will replace it. This may be a new instruction, as in Figure 3.2(a), or some other

value such as a constant or a register declared by the source, as in Figure 3.2(b). The

target may also define additional instructions, which are used by the target root. These

will be added to the program before the source root is replaced by the target root.

If present, the precondition is located before the source pattern and indicated by

the prefix Pre:. It is a Boolean-valued formula using the logical connectives && (and),

|| (or), and ! (not), as well as comparisons and named predicate functions. The

precondition is considered to be satisfied if it evaluates to true.

Note that the application of an Alive transformation only rewrites the root instruc-

tion, and potentially adds additional instructions. The other instructions referenced in

the source must be left in place, in case their results are used by other parts of the

2LLVM’s constant expressions also include values that will not be known until link-time (i. e., after
optimization), but Alive does not represent these as symbolic constants.

37

trans : : = pre stmt =⇒ stmt
stmt : : = reg = inst | reg = val | sym = const

val : : = reg | const | undef | poison

inst : : = binop attr type val , val | fbinop fattr type val , val
conv type val to type | select val , type val , type val |
icmp rel type val , val | fcmp fattr frel type val , val

type : : = ? | int w | half | float | double | fp128 | x86 fp80
binop : : = bop | ibop

bop : : = add | sub | mul | sdiv | srem |
ibop : : = udiv | urem | shl | ashr | lshr | and | or | xor
attr : : = nsw | nuw | exact

fbinop : : = fadd | fsub | fmul | fdiv | frem
fattr : : = ninf | nnan | nsz
conv : : = zext | sext | trunc | ZextOrTrunc | fpext | fptrunc |

fptosi | fptoui | sitofp | uitofp | bitcast
rel : : = eq | ne | ugt | uge | ult |

ule | sgt | sge | slt | sle
frel : : = oeq | one | oge | ogt | ole | olt |

ueq | one | uge | ugt | ule | ult

const : : = sym | lit | flit | uop const | const binop const | cfun(val)
uop : : = not | neg

pre : : = true | const rel const | pfun(val) |
! pre | pre && pre | pre || pre

Figure 3.3: Abstract syntax of Alive. Arguments to cfun and pfun must follow the
syntax given in Table 3.1. Lexical syntax for the metavariables reg and sym and the
literals lit and flit is given in Table 3.2. The production w may be any positive integer.

program. If, after replacing the root, these results are no longer used, the instructions

will be removed by a separate dead code elimination pass.

3.1.1 Abstract syntax

Figure 3.3 shows the abstract syntax of Alive. A transformation (trans) is a precondition

(pre), a list of statements (stmt) representing the source pattern, and a list of statements

representing the target pattern. Statements assign a value to a variable, either a register

(reg) or a symbolic constant (sym).

Register names have two purposes in Alive. Registers that occur in the left side of

a statement are used to refer to an instruction or other value in subsequent instruc-

tions. Registers that only occur on the right sides of statements are input variables,

which represent arbitrary values that might be the results of unspecified instructions,

constants, or function parameters.

38

Symbolic constants and literal constants (lit ,flit) represent in-line constants that

will be present in the program being transformed. Literal constants (e. g., 0 and 1) and

floating-point only literals (e. g., 0.0 and Inf) represent exactly those constants. Sym-

bolic constants represent constants whose values will not be known until compilation.

The remainder of the grammar can be divided into four parts. The precondition

language (pre), which represents Boolean predicates that are evaluated at compile-

time, the constant language (const), which represents compile-time computations that

produce LLVM values, the instruction language (inst), which represents computation

performed by the program being transformed, and the type language (type), which

classifies the results computed by the constant and instruction languages.

Both the precondition and constant languages include a set of built-in functions.

Each function has a fixed number of parameters, each of which may be a constant

expression or an arbitrary value. Table 3.1 lists all the built-in functions according to

the forms of argument they accept. Functions that have non-constant parameters may

rely on the syntactic structure of a program (e. g., hasOneUse) or on a dataflow analysis

(e. g., isPowerOf2).

Variable scope

Alive variables may be classified in two ways. First, they may belong to one of two

grammatical forms, reg (register variable) or sym (symbolic constant). Second, they

may be bound, meaning they occur to the left of an equal sign in a statement, or free,

meaning they do not. Variables in Alive are not pre-declared. Instead, they are defined

by the first statement that uses them.

All free variables must be defined by the source. When applying a transforma-

tion, these variables will be matched with values in the program being transformed.

The target and precondition cannot define new free variables, as they do not perform

matching.

Variables are introduced by statements. The variable to the left of the equals sign is

bound, while any new variables on the right side will become free variables. Variables

introduced in a statement are in scope for any subsequent statements.

39

cfun pfun

(const)
abs isShiftedMask
countLeadingZeros isSignBit
countTrailingZeros fpInteger
fpext
fptosi
fptoui
fptrunc
log2
trunc
sext
sitofp
uitofp
zext

(const , const)
max fpIdentical
min WillNotOverflowSignedMul
umax WillNotOverflowUnsignedMul
umin WillNotOverflowUnsignedShl

(val)
computeKnownOneBits CannotBeNegativeZero
computeKnownZeroBits isConstant
ComputeNumSignBits isPowerOf2
fpMantissaWidth isPowerOf2OrZero
width

(val , val)
WillNotOverflowSignedAdd
WillNotOverflowSignedSub
WillNotOverflowUnsignedAdd
WillNotOverflowUnsignedSub

(val , const)
MaskedValueIsZero

(reg)
hasNoInf*
hasNoNaN*
hasNSW*
hasNSZ*
hasNUW*
hasOneUse
isExact*

Table 3.1: The constant and predicate functions (cfun and pfun, respectively), grouped
according to syntax of their parameters. For example, abs takes a single parameter
that must be a const .
* The argument must be bound to an instruction that can have this attribute.

40

Pre: fpext(C2) == C1

%x = fpext %a

%r = fcmp ole %x, C1

=>

C2 = fptrunc(C1)

%r = fcmp ole %a, C2

Figure 3.4: A transformation including a bound symbolic constant (C2), which is used
by the precondition

Alive represents fragments of code in static, single-assignment (SSA) form, so no

variable may be defined more than once. Therefore, it is an error if, say, a register

is used as an argument in one statement (defining it as an input variable) and later

used in the left side of a statement (re-defining it as a bound register variable). This

requirement also prevents circular references, as an attempt to refer to an instruction

before the statement it occurs in will be interpreted as an attempt to re-define an input

variable and rejected.

All variables defined in the source are in-scope in the precondition. All variables

excluding the source root are in-scope in the target. The final statement in the target

must define a bound variable with the same name as the source root.

All bound variables in the source, excluding the root, must be used by at least

one subsequent instruction in the source. Similarly, all bound variables in the target,

excluding the root, must be used by at least one subsequent instruction in the source.

Bound symbolic constants may only be defined by the target, but are made available

in the precondition. Because they represent computation performed by the compiler

using information derived from the source pattern, it is feasible to use these values in

the precondition, as though the variable had been replaced by its definition. However,

not all a bound symbolic constants can be replaced by their definitions. For example, in

Figure 3.4, expanding the definition of C2 in fpext(C2) yields fpext(fptrunc(C1)),

which is ambiguously typed and would make the transformation type incorrect (see

Section 3.1.3).

41

Contextual restrictions

To simplify the grammar, certain restrictions are not explicitly stated. The lists of

statements in the source and target must be non-empty. The attribute lists (attr and

fattr) should not contain duplicates. The attributes for the integer binary operator

instructions must be appropriate to the opcode. The nsw and nuw attributes may

occur with the add, sub, mul, and shl opcodes. The exact attribute may occur with

the sdiv, udiv, srem, urem, ashr, and lshr opcodes.

More significantly, constant expressions in the source may only include symbolic

constants and literals. This restriction avoids ambiguous variable definitions. For ex-

ample, an expression such as C1 + C2 that occured in the source would match an in-line

constant in an LLVM IR program, but would not uniquely determine the values of C1

and C2, making the behavior of the precondition and target of the transformation im-

plementation dependent. If C1 and C2 are also constrained by other parts of the source,

then the expression can be rewritten to use a new variable C3 and a new predicate

C3 == C1 + C2 can be added to the precondition.

3.1.2 Concrete syntax

The grammar of written Alive is very similar to the abstract syntax given in Figure 3.3,

with a few changes and additions.

An Alive transformation may optionally begin with a name declaration. This is

indicated with the prefix Name:. The rest of the line (excluding any whitespace imme-

diately following the prefix) is considered the name. The contents of the name have

no direct impact on a transformation, but may be used when reporting information to

the user. Names must be used when giving multiple transformations in a single file, in

order to make it clear where a transformation begins.

Whitespace characters, such as spaces and tabs but excluding newlines, may delimit

grammatical tokens, but are otherwise not significant. Alive is line-oriented, so the

precondition and each statement will be terminated by a newline. Lines that are too

long can be continued by ending the line with a backslash (\).

42

Grammar production Lexical form

reg %[0-9A-Za-z_.]+

sym C[0-9]*

lit -?[0-9]+

flit -?[0-9]+.[0-9]+ | -?inf | nan

int width i[0-9]+

Table 3.2: Concrete syntax for selected Alive productions. The production width may
be any positive integer.

Comments are introduced by a semicolon (;) and continue to the end of the line.

The source and target of a transformation both contain a list of statements. These

statements are presented on separate lines, with the => separator also on its own line.

The lists of attributes are separated by whitespace. The lists of arguments to constant

and predicate functions are separated by commas.

The variable productions reg and sym, literal productions lit and flit , and type form

int width must conform to the lexical rules given in Table 3.2. For flit , the strings nan,

inf, and -inf, represent Not A Number, infinity, and negative infinity, respectively.

For int, the digits following the i indicate the width.3

The type production is always optional. When the type is omitted, its production

is ?. For example add %x, %y becomes add ? x, y. Conversion instructions include a

to keyword that is only used if the second (destination) type is explicitly given. Thus,

zext int 16x to ? is written zext i16 %x.

For brevity, the abstract grammar re-uses the rel production to represent comparison

predicates, and re-uses binop opcodes to represent binary constant expressions. The

concrete syntax uses operators for these. Table 3.3 maps the productions in the abstract

grammar to operators in the concrete grammar.4 Thus, for example, the production

C1 ultC2 would be written C1 u< C2.

3The syntax allows a zero-width i0, but this will be rejected by the type checker.

4The concrete syntax for urem used in a constant expression, %u, is also a valid variable name.
Fortunately, it is always clear from context which is intended.

43

eq == ne != add + udiv /u and &

slt < ult u< sub - urem %u or |

sle <= ule u<= mul * lsh << xor ^

sgt > ugt u> sdiv / ashr u>> neg -

sge >= uge u>= srem % lshr u>> not ~

Table 3.3: Concrete syntax for rel when used in comparison predicates and binop and
uop when used in a constant expression.

3.1.3 Type checking

In addition to being syntactically correct, an Alive transformation must be well typed.

Like LLVM IR, Alive is strongly typed. Unlike LLVM IR, Alive transformations are

parametric over types, meaning they can have multiple valid type assignments. The

typing rules for Alive determine whether a particular assignment of concrete types to

values (instructions and variables) is valid. If no feasible assignment of types is possible,

the transformation is ill typed.

Types

The concrete types in Alive are a subset of the types provided by LLVM IR. These

include fixed-width integers (i. e., bit vectors) and floating-point values.5

Alive permits integers to have any width. For example, int 32 (abbreviated i32) is

the type of 32-bit integers and i1 is the type of 1-bit integers (used to represent Boolean

values). Each width is considered a different type. Converting an i1 value to an i32

requires an explicit conversion.

Alive has five floating-point types, given in Table 3.4. Four are based on IEEE

floating-point types: half , float (single precision), double, and fp128 (quad precision).

The last, x86 fp80, is an 80-bit floating-point type that represents Intel’s extended

precision format. It diverges from the IEEE format by including an explicit integer bit,

which is normally determined by the class of value: 0 for zero and denormal values, 1

for all other values.

5All implementations of Alive also have some support for pointer types. The dialect discussed in
this chapter does not exclude pointer types, but also does not include instructions that make use of
them beyond icmp and select.

44

Type Width Exponent Mantissa

half 16 5 11
float 32 8 24
double 64 11 53
x86 fp80 80 11 64
fp128 128 15 113

Table 3.4: Floating-point types in Alive

Each type has a width, corresponding to the number of bits used to represent it.

Two distinct types that have the same width are width-equal, e. g., i16 =w half . Two

distinct integer types, or floating-point types, can be ordered by width,6 e. g., i16 <w

i32. These relations are needed to determine whether certain conversion instructions

are correctly typed.

Typing rules

Each value in Alive, including instructions, variables, and constant expressions, can be

assigned a type. Predicates are not assigned types, as they always evaluate to true

or false, but may include typed subexpressions. An assignment of types to the typed

values must conform to the typing rules given in Tables 3.5 to 3.8.

The abstract syntax represents omitted type annotations as ?. Each instance of ?

may be replaced by any type as necessary. Thus, we can infer add ? x, y : i32 if x and

y are appropriately typed.

Integer literals, the five arithmetic operators in bop, unary negation, and the function

abs may be used for both integer and floating-point types.

Integer literals impose an additional constraint for integer types: the type must be

wide enough to represent the literal value. That is, the necessary width for a non-zero

integer literal n is at least log2 |n|. This prevents surprises where Alive attempts to

verify a transformation containing a literal constant using a truncated form of that

6The floating-point types supported by Alive are naturally ordered by size. This would become less
clear if support were added for LLVM’s ppc fp128 type or for arbitrarily-defined floating-point types,
such as a 16-bit representation with 4 exponent bits and 12 mantissa bits.

45

Γ, x : τ ` x : τ var
Γ ` x : τ1 τ1

conv
./ τ2

Γ ` conv τ1 x τ2 : τ2
conv

Γ ` x : τ Γ ` y : τ τ ∈ I
Γ ` binop τ x, y : τ binop

Γ ` x : τ Γ ` y : τ τ ∈ F
Γ ` fbinop τ x, y : τ fbinop

Γ ` x : τ Γ ` y : τ τ ∈ I
Γ ` icmp rel τ x, y : int 1 icmp

Γ ` x : τ Γ ` y : τ τ ∈ F
Γ ` fcmp frel τ x, y : int 1 fcmp

Γ ` x : int 1 Γ ` y : τ Γ ` z : τ

Γ ` selectx, τ y, τ z : τ select
Γ ` ci : τi sigcfun(τ, τi)

Γ ` cfun(ci) : τ cfun

Γ ` c : τ τ ∈ I ∪ F
Γ ` neg c : τ neg

Γ ` c : τ τ ∈ I
Γ ` not c : τ

not

Γ ` c : τ Γ ` d : τ τ ∈ I ∪ F
Γ ` c bop d : τ bop

Γ ` c : τ Γ ` d : τ τ ∈ I
Γ ` c ibop d : τ ibop

τ ∈ I ∪ F
Γ ` lit : τ

lit
τ ∈ F

Γ ` flit : τ flit

Γ ` c : τ Γ ` d : τ τ ∈ I ∪ F
Γ ` c rel d ok

comp
Γ ` ci : τi sigpfun(τi)

Γ ` pfun(ci) ok pfun

Table 3.5: Typing rules for Alive. The judgement Γ ` t : τ indicates that t can be
assigned type τ . The judgement Γ ` t ok indicates that t and its subterms are type-
correct.

conv τ1
conv
./ τ2

bitcast τ1 =w τ2
fpext τ1 ∈ F τ2 ∈ F τ1 <

w τ2
fptosi τ1 ∈ F τ2 ∈ I
fptoui τ1 ∈ F τ2 ∈ I
fptrunc τ1 ∈ F τ2 ∈ F τ2 <

w τ1
sext τ1 ∈ I τ2 ∈ I τ1 <

w τ2
sitofp τ1 ∈ I τ2 ∈ F
trunc τ1 ∈ I τ2 ∈ I τ2 <

w τ1
uitofp τ1 ∈ I τ2 ∈ F
zext τ1 ∈ I τ2 ∈ I τ1 <

w τ2
ZextOrTrunc τ1 ∈ I τ2 ∈ I

Table 3.6: Relations for conversion instructions

46

cfun sigcfun(τ, τi)

abs τ = τ1 τ ∈ I ∪ F
computeKnownOneBits τ = τi τ ∈ I
computeKnownZeroBits τ = τi τ ∈ I
ComputeNumSignBits τ ∈ I τ1 ∈ I
countLeadingZeroes τ ∈ I τ1 ∈ I
countTrailingZeroes τ ∈ I τ1 ∈ I
fpext τ ∈ F τ1 ∈ F τ1 <

w τ
fpMantissaWidth τ ∈ I τ1 ∈ F
fptosi τ ∈ I τ1 ∈ F
fptoui τ ∈ I τ1 ∈ F
fptrunc τ ∈ F τ1 ∈ F τ <w τ1
log2 τ ∈ I τ1 ∈ I
max τ = τ1 = τ2 τ ∈ I
min τ = τ1 = τ2 τ ∈ I
sext τ ∈ I τ1 ∈ I τ1 <

w τ
sitofp τ ∈ F τ1 ∈ I
trunc τ ∈ I τ1 ∈ I τ <w τ1
uitofp τ ∈ F τ1 ∈ I
umax τ = τ1 = τ2 τ ∈ I
umin τ = τ1 = τ2 τ ∈ I
width τ ∈ I τ1 ∈ I
zext τ ∈ I τ1 ∈ I τ1 <

w τ

Table 3.7: Constant function signatures

pfun sigpfun(τi)

CannotBeNegativeZero τ1 ∈ F
fpIdentical τ1 = τ2 τ1 ∈ F
fpInteger τ1 ∈ F
isPowerOf2 τ1 ∈ I
isPowerOf2OrZero τ1 ∈ I
isShiftedMask τ1 ∈ I
isSignBit τ1 ∈ I
MaskedValueIsZero τ1 = τ2 τ1 ∈ I
WillNotOverflowSignedAdd τ1 = τ2 τ1 ∈ I
WillNotOverflowSignedSub τ1 = τ2 τ1 ∈ I
WillNotOverflowSignedMul τ1 = τ2 τ1 ∈ I
WillNotOverflowUnsignedAdd τ1 = τ2 τ1 ∈ I
WillNotOverflowUnsignedSub τ1 = τ2 τ1 ∈ I
WillNotOverflowUnsignedMul τ1 = τ2 τ1 ∈ I
WillNotOverflowUnsignedShl τ1 = τ2 τ1 ∈ I

Table 3.8: Predicate function signatures. Functions not listed here have unconstrained
signatures.

47

constant.7 It is unusual for Alive transformations to use literals other than 1, 0, and

−1, so this restriction rarely arises.

Type ambiguity

Certain expressions, such a literal constants and the function width, do not have a

uniquely-determined type even when all variables have been assigned types. Instead,

the context of the expression determines its type. However, comparison predicates and

some constant and predicate functions do not fully constrain their arguments. Thus,

in the expression C + trunc(zext(C)), the type of zext(C) is only constrained to be

wider than the type of C.

An expression has an ambiguous type if it has more than one type consistent with

any type assignment for the values in the source. If a transformation contains an

ambiguously typed expression, then its implementation would have to arbitrarily choose

a type for that expression when testing the precondition or creating the target. To avoid

this situation, Alive forbids most ambiguous types.

Ambiguously typed comparison predicates are permitted, in order to allow predi-

cates of the form width(%x) u> 1. If a comparison predicate has an ambiguous type,

Alive fixes it to a default type, usually i64. This reflects the implementation of LLVM,

where the equivalent of width returns an unsigned 64-bit integer.

If an ambiguously typed constant expression is used in multiple places, at least one

of which determines its type, it can be named using a symbolic constant to force its

uses to have the same type, as in Figure 3.4.

3.1.4 DAG Representation

The abstract and concrete syntaxes for Alive describe the source and target patterns

as a list of statements. The rules for scoping ensure that instruction results are not

referenced prior to their definition, thus preventing circular dependencies. However, this

7Note that 8 and −8 both require at least four bits, but in the i4 case will have the same represen-
tation. Some versions of Alive require an additional bit for positive literals, so that for example 8 6= −8
holds for all feasible types, but this proved surprising in other ways, such as 1 requiring two bits.

48

sdiv

mul

%XC1 C2

/

mul

!=

0

&&

==

% 0

Source TargetPrecondition

Figure 3.5: The optimization from Figure 1.2 represented as a DAG. Instructions and
input variables are in white, symbolic constants and constant expressions are in gray,
and predicates are in black. The dashed lines indicate the source sub-DAG.

presentation can be misleading: the source pattern presents a single, ordered block of

instructions, but instructions matched by the source pattern may occur in different basic

blocks, non-matched instructions may be interleaved with the matched instructions, and

instructions that do not refer to each other may occur in any order.

The source and target describe a code fragment in SSA form, so it is also possible to

represent them as a directed, acyclic graph (DAG). The source, target, and precondition

all refer to certain nodes in common, such as the free variables, so the transformation as

a whole can be represented as a DAG with three root nodes, representing to the roots of

the source and target and the precondition. Figure 3.5 shows the DAG representation

of the optimization from Figure 1.2.

The nodes of the DAG representation correspond to instructions, variables, constant

expressions, and predicates. The arcs represent data dependency: an arc from node x

49

to node y indicates that the computation of x depends on the result of y. The out-

going arcs from a node are ordered, corresponding to the order of parameters for an

instruction, function, or operator. Leaf nodes, with no out-going arcs, represent the

free variables and symbolic constants. Root nodes, with no in-coming arcs, represent

the roots of the source and target and the precondition.8

Nodes can be categorized according to the sub-languages of Alive, indicated by

shading in Figure 3.5. Arcs within a sub-language are common, as are arcs from in-

structions and predicates to constant expressions. Arcs from predicates and constant

expressions indicate an indirect dependence: because predicates and constant expres-

sions are evaluated at compile time and instructions are not evaluated until run time,

constant expressions and predicates cannot depend on the result of an instruction or

input variable. Instead, these arcs indicate that the predicate or constant expression

depends on a static analysis of the instruction or input variable.

The DAG for a transformation can be divided into three sub-DAGs, representing

the source, target, and precondition. The primary sub-DAG is the source DAG, which

includes all nodes that the source root depends on, transitively. The source sub-DAG

represents the fragment of a program that the optimization will transform. It may

contain only instructions and free variables; the scoping rules guarantee that it contains

all free variables. Similarly, the sub-DAGs for the target and precondition are the

transitive dependencies of the target and precondition roots. Both may contain constant

expressions. Only the precondition sub-DAG may include predicates.

The target sub-DAG may include instructions not present in the source sub-DAG:

these are new instructions that will be created after the precondition is evaluated. The

precondition sub-DAG will only refer to instructions in the source sub-DAG. Named

constant expressions may be shared between the precondition and target sub-DAGs.

Two transformations may present the same instructions in a different order while

remaining consistent with the scoping rules. These will have the same DAG represen-

tation, with the orders of instructions corresponding to different linearizations of the

8If arcs were drawn in the reverse direction, so that data flows in the direction of the arrow, these
roots would be leaf nodes and the free variables would be root nodes.

50

DAG. When using the DAG representation, the order in which statements are presented

can be ignored, making it simpler to reason about Alive transformations.

3.2 Verification

An important design goal for Alive is automated verification of transformations. That

is, it should be possible to determine the correctness of an Alive-specified transformation

without requiring user input beyond the specification itself. A correct transformation

will have two properties. The first is that applying the transformation must not change

the behavior of a program. Because the semantics of LLVM has some nondeterministic

aspects, it is possible for a single program to have multiple possible behaviors. In those

cases, transforming a program must not introduce new possible behaviors, but may

eliminate some behaviors (i. e., the target must refine the source).

The second, less obvious property is that applying the transformation itself must be

a well-defined process. The precondition and target of a transformation may include

constant expressions. These will be evaluated by the compiler when it tests the pre-

condition and creates the target instructions. The constant language for Alive includes

four division-like operators, which are undefined when their divisors are zero. If the

compiler divides by zero while attempting to apply a transformation, it may crash.

Determining whether a transformation is correct requires checking whether the tar-

get refines the source for all possible valuations of its free variables. This can be

accomplished by expressing the correctness conditions as queries to a solver for sat-

isfiability modulo theories (SMT), but Alive transformations may have multiple type

assignments while terms in an SMT query must have fixed types. These correctness

conditions must also model LLVM’s three forms of undefined behavior and its imprecise

dataflow analyses.

3.2.1 Structure of Alive encodings

Using an SMT solver to check the correctness of an Alive transformation requires encod-

ing its correctness conditions as propositions in a logic involving one or more theories,

51

such as the SMT theories of bit vectors, floating-point arithmetic, and arrays. These

propositions are not type parametric, so each feasible type assignment must be encoded

and checked for correctness separately.9

The correctness conditions are quantified logical propositions generated from the

encodings of the source, target, and precondition of a transformation, which are encoded

by recursively encoding individual instructions, variables, constant expressions, and

predicates. Quantification applies to the correctness conditions as a whole, so the

encodings for individual parts of a transformation will include free variables.

Alive expressions are encoded as SMT expressions and propositions describing their

compile-time behavior (σ) and run-time behavior (δ, ρ, ι). Subscripts are used to

indicate the expression being encoded. By convention, the roots of the source, target,

and precondition are indicated with −s, −t, and −p.

The value computed by an instruction, variable, or constant x is written ιx. This

will be an arithmetic expression of an SMT sort corresponding to the type of x. For

a predicate p, ιp is a logical formula indicating whether p holds. By convention, ιp is

written φ when p is the precondition.

3.2.2 Encoding compile-time behavior

The target and precondition of an Alive transformation may include constant expres-

sions, which represent computation performed by the compiler, rather than the program

being transformed. Constant expressions may include four distinct division-like oper-

ators that are not defined when used with integer types and their divisors are zero,

and their corresponding implementations in C++ are similarly undefined. To keep

the behavior of the compiler defined, the precondition must prevent any evaluation

of undefined constant expressions. To distinguish undefined behavior in the compiler

from undefined behavior in the program being transformed, the former is called unsafe

behavior.

9Alive transformations appear to have an inductive property where, for some type assignment, assign-
ments using concrete types of the same size or larger will be all correct (or all incorrect). Unfortunately,
the specific details of this property are unknown.

52

The safety condition (σ) for an Alive expression indicates that the expression does

not have unsafe behavior or depend on a value that has unsafe behavior. Expressions

that do not include a constant expression or depend on one, such as the source, will

have trivial safety conditions (i. e., σs ≡ >, where > is always satisfied).

3.2.3 Encoding run-time behavior

The source and target of a transformation describe a fragments of LLVM IR code.

In order to check correctness, it is necessary to model their run-time behavior. These

behaviors include the three forms of undefined behavior defined by the LLVM semantics.

Certain instructions in LLVM are not defined for all inputs. For example, udiv ? x, y

is undefined when y = 0. To model this, each expression in Alive has a well-defined

condition (δ). An instruction will have undefined behavior if and only if δ is unsatisfied.

The well-defined condition is trivial for non-instruction expressions. If an instruction

has undefined behavior, then all subsequent instructions are undefined. Alive instruc-

tions are not totally ordered, but an instruction that refers to another instruction is

guaranteed to occur after it. Thus, a particular instruction is well-defined only if its

arguments are well-defined.

Certain instructions may return a special poison value for some inputs. For example,

add nsw ? x, y returns poison if x + y causes a signed overflow. To model this, each

expression in Alive has a poison-free condition (ρ). An instruction returns poison if

and only if ρ is unsatisfied. The poison-free condition is trivial for non-instruction

expressions. Instructions usually return poison if any of their arguments are poison.

The well-defined and poison-free conditions for an expression must be satisfied for

its value to be meaningful. If δx is not satisfied for some input, then x may have any

behavior, including returning a poison value or returning any possible value in its type.

Because any undefined behavior in the source or target will cause the source or target as

a whole to be undefined, it is sufficient to note when undefined behavior has occurred.

Returning a poison value is similarly non-deterministic, as x is free to return any possible

value if ρx is not satisfied. This must be modeled, as an instruction returning a poison

value may violate the well-defined condition for a subsequent instruction.

53

Consider this program fragment:

%a = and %x, 1

%b = udiv %y, %a

Ignoring poison, %b is always well-defined (assuming all prior instructions are also well-

defined): the and with 1 guarantees that %a is non-zero. However, if %x is poison,

then %a will return poison, and one of its possible behaviors is returning 0. Thus, the

well-defined conditions for %b require %x to be poison-free.

3.2.4 Encoding undef values

A computation that is well-defined and poison-free may still be non-deterministic in

LLVM. The undef value and instructions that return undef have a set of behaviors

that include returning all normal values of a type, but not returning poison or having

true undefined behavior. An instruction with an undef input may non-deterministically

choose which value to use, creating a new set of behaviors.

Note that it is not sufficient to indicate whether a value is undef with a flag. It

is possible that an instruction will return a value chosen non-deterministically from a

subset of possible values. For example, the possible return values of mul undef, 2

include only even numbers.

If an instruction has multiple arguments with non-deterministic values, it may select

each argument independently—even if those arguments refer to the same instruction.

If x has two behaviors, then x⊕ x may have up to four.

Rather than represent ιx as a set, it is encoded as an arithmetic expression that

may contain additional free variables. In particular, undef will be encoded as a fresh

variable u that has not been used for any other value in the transformation. In order

to ensure independence, a value which is referenced multiple times must use different

variables each time. For example, when encoding these instructions

%a = mul undef, 2

%b = xor %a, %a

54

the proper encoding will have ιb = 2u1 ⊕ 2u2 (where ⊕ is exclusive or). Note that

the two references to ιa are replaced by expressions using different fresh variables to

represent the undef.

The correctness conditions require that the set of possible behaviors exhibited by

the target be a subset of the possible behaviors of the target. That is, for every choice

that may be made for the target, there must be a choice for the source that makes

them equal. This implies that these variables will be quantified separately, based on

whether they occur in the source or the target. To allow for this, the encoding of an

Alive expression x also includes a set Qx of free variables used for encoding undef and

undef-like behavior.

3.2.5 Encoding “undefined results”

The LLVM Language Reference describes several circumstances where an instruction

has “an undefined result”, a phrase that is not explicitly defined but is used in contrast

to “undefined behavior” in some cases. This could be interpreted as returning an undef-

like value or as returning poison. The former seems likely to be the original intent, but

the latter leads to simpler correctness conditions.

Let ψ be the condition for an instruction to have a defined result. Under an undef-

like interpretation, the instruction will return its usual result when ψ is satisfied, and

a fresh variable u ∈ Q otherwise. Under the poison-like interpretation, ψ is part of the

poison-free condition.

For example [83], the LLVM’s left shift instruction shl has an undefined result if

the shift amount exceeds the width of the result. Under the undef-like interpretation,

this would be encoded as

ι =

 ιx << ιy if ιy <u w

u if ιy ≥u w
(3.2)

ρ ≡ ρx ∧ ρy (3.3)

δ ≡ δx ∧ δy (3.4)

Q = Qx ∧Qy ∧ {u}, (3.5)

55

%Op0 = shl 1, %Y

%r = mul %Op0, %Op1

=>

%r = shl %Op1, %Y

(a)

Pre: C == 0.0

%y = fsub nnan ninf C, %x

%z = fadd %y, %x

=>

%z = 0

(b)

Figure 3.6: Two transformations that are correct under the poison-like encoding, but
incorrect under the undef-like encoding

where x and y are the arguments, w is the bit width, and u is a fresh variable. Under

the poison-like interpretation, it would be encoded as

ι = ιx << ιy (3.6)

ρ ≡ ρx ∧ ρy ∧ ιy <u w (3.7)

δ ≡ δx ∧ δy (3.8)

Q = Qx ∧Qy. (3.9)

While a strong argument can be made that the undef-like encoding is the intended

meaning of the language reference, some parts of LLVM implicitly assume poison-like

behavior. Both the transformations in Figure 3.6 are based on code in InstCombine,

and both are correct under the poison encoding but not under the undef encoding. In

Figure 3.6(a), the if the shift amount %Y is too large and %Op1 is zero, the source and

target are both poison under the poison encoding, but the source is zero and the target

is undef under the undef-like encoding.10 In Figure 3.6(b), if %x is NaN, the source

will be poison under the poison-like encoding, but NaN under the undef-like encoding.

A poison value can be refined to 0, but a NaN cannot. Under the undef-like encoding,

the nnan attribute on %y is not enough to prevent %z from being NaN.11

Alive-NJ is designed to support multiple encodings, which users may choose from

when verifying a transformation. The undef-like encoding is used by default.

10The undef-like encoding could be fixed here by adding an exception that zero shifted by any number
of places always yields zero.

11This transformation would also be correct if the nnan attribute were interpreted as making a
guarantee about %x, not just about %y. That is, if any use of %x has a nnan attribute, then %x can be
considered non-NaN everywhere it is referenced. This sort of non-local encoding is possible, but it is
not clear whether it has any advantage over the poison encoding.

56

3.2.6 Encoding data-flow analyses

Several Alive predicates, such as WillNotOverflowSignedAdd, and constant func-

tions, such as ComputeNumSignBits, rely on static analyses performed by LLVM.

Several of these analyses are imprecise, meaning that they over- or under-approximate

the correct result. For example, a must-analysis is satisfied when the compiler can

prove that a certain condition holds. A negated must-analysis is true when the analysis

fails, not necessarily when the condition is false.

An imprecise analysis is encoded in two parts: a variable representing the analysis

result, and an auxiliary condition (χ) that relates the analysis result to the analyzed

values.

For example, consider a transformation with the precondition !isPowerOf2(%a). A

näıve encoding of this precondition would be

φ ≡ ¬[a& (a− 1) = 0 ∧ a 6= 0], (3.10)

writing & for bit-wise and. This assumes that the transformation will not apply if it is

possible for %a to be a power of two. However, the precondition actually requires that

the compiler fail to prove %a to be a power of two, which does not constrain %a in any

way. Under the correct encoding,

φ ≡ ¬b (3.11)

χp ≡ b =⇒ a& (a− 1) = 0 ∧ a 6= 0, (3.12)

the precondition constrains b to be false, in which case the auxiliary condition is con-

sistent with any value of a. (Both encodings have been simplified by ignoring poison.

See Section 3.3.8 for the full encoding.)

Imprecise constant functions are encoded similarly. A fresh variable represents the

function result, and the auxiliary condition defines which values the result may have

(see Section 3.3.7).

Imprecise analyses should give the same result when a predicate or function is re-

peated. That is, the precondition isPowerOf2(%a) && !isPowerOf2(%a) should never

57

be satisfiable, as it would require the analysis to fail and succeed for the same in-

struction. This can be approximated by remembering the variables used to encode

each imprecise function for a particular argument list, and re-using that variable if the

combination occurs again.

3.2.7 Correctness conditions

In order to be correct, an we must show that the transformation is safe to execute and

that it does not introduce new behaviors. These correctness conditions can be defined

using the encodings of the source, target, and precondition.

The encodings have six parts. The value (ι) gives the result of evaluating the

source, target, or precondition (written φ). The safety condition (σ) indicates when the

compile-time computation in the target or precondition can be performed safely. The

well-defined (δ) and poison-free (ρ) conditions limit the possible behaviors of the source

and target. The set Q gives the variables used to encode non-deterministic results from

undef and undef-like behavior. Finally, an auxiliary condition χ limits the range of

variables used to encode imprecise analyses.

Let I be the set of variables representing input variables and C be the set of variables

representing symbolic constants. Let P be the variables used to represent imprecise

analyses. These, along with Qs, Qt, and Qp, contain all the free variables used in the

encodings.

Of these sets, only Qs requires special handling. The remaining sets can be treated

collectively:

V = I ∪ C ∪ P ∪ Qt ∪Qp. (3.13)

The correctness conditions are universally quantified over the variables in V, but

existentially quantified over the variables in Qs. If Qs is non-empty (i. e., the source is

potentially non-deterministic), it is sufficient to show that every behavior of the target

is a refinement of some behavior in the source. If Qs were universally quantified, it

would require every behavior of the target to refine every behavior of the source, which

would be impossible if the source had more than one well-defined, poison-free behavior.

58

The correctness conditions can be expressed as a single constraint, but we present

them as five constraints for ease of understanding. Testing these constraints individually

allows for better error messages.

1. The precondition must always be safe to evaluate.

∀V : χp =⇒ σp (3.14)

2. When the precondition holds, the target must be safe to create.

∀V : χp ∧ χt ∧ φ =⇒ σt (3.15)

3. When the precondition holds and the source is well-defined, the target must be

well-defined.

∀V∃Qs : χp ∧ χt ∧ φ ∧ δs =⇒ δt (3.16)

4. When the precondition holds and the source is well-defined and poison-free, the

target must be poison-free.

∀V∃Qs : χp ∧ χt ∧ φ ∧ δs ∧ ρs =⇒ ρt (3.17)

5. When the precondition holds and the source is well-defined and poison-free, the

source and target must compute the same value

∀V∃Qs : χp ∧ χt ∧ φ ∧ δs ∧ ρs =⇒ ιs = ιt (3.18)

Justifying separate existential quantifiers

One might expect the correctness condition to be given as a single proposition, such as

∀V∃Qs : χp =⇒ σp∧ [χt∧φ =⇒ σt∧ (δs =⇒ δt)∧ (δs∧ρs =⇒ ρt∧ ιs = ιt)]. (3.19)

This can be rewritten as a conjunction of the five correctness conditions given above,

but it may not be clear whether the reverse is true because of the existential quantifiers.

In general, (∃x : P) ∧ (∃x : Q) does not imply ∃x : P ∧Q. This suggests the possibility

of a transformation that only satisfies the correctness conditions by choosing different

valuations for Qs in the different conditions.

59

However, the structure of the Alive encoding prevents this. First, the variables in

Qs only occur in δs, ρs, and ιs. Beacause of the way undef-like values are encoded, any

reference to source values in the target or precondition will use fresh variables collected

in Qt or Qp, respectively. Next, because δs and ρs are logical formulae, the distinction

between two valuations of Qs which both satisfy or do not satisfy them is irrelevant. If,

for a particular valuation of V, there are multiple valuations of Qs such that ¬δs, it does

not matter which one is chosen because any would be sufficient to satisfy conditions

3–5. In contrast, the valuation chosen for Qs will affect the value of ιs, but ιs occurs

only under one existential quantifier, so there is no possibility of choosing inconsistently.

Therefore, it is not possible for the encoding of an Alive transformation to satisfy

conditions 1–5 without also satisfying Equation (3.19).

Why Qp is universally quantified

The need for Qp might be surprising, as undef does not generally occur in the pre-

condition. However, some instructions may have undef-like behavior, and their results

can be analyzed by some predicates. Because each direct or indirect reference to an

undef-like value receives a fresh variable, the variables used to encode the precondition

will be distinct from those in Qs or Qt.

It might seem reasonable for Qp to be existentially quantified: after all, any analysis

in the precondition that relies on undef should be able to choose a convenient value.

But existential quantification actually allows the correctness check to choose the value,

not the (simulated) analysis. In fact, we need to show that the optimization is correct

no matter what value the analysis chooses for the undef.

Consider this (contrived) transformation:

Pre: isPowerOf2(%a)

%a = shl i4 1, %x

%b = select 1, %x, %a

%c = icmp ult %b, 4

=>

%c = true

60

Does the precondition permit %x to be 4? Under the undef-like interpretation, the

left shift would overflow and %a would be undef, so the analysis behind isPowerOf2

would be free to pick a power of two and say the condition is satisfied. (In fact, the

analysis as implemented always returns true given a left-shift of one.)

The value check for this optimization simplifies to:

∀x,u :

 pow2(1 << x) =⇒ 1 = 1 if x <u 4

pow2(u) =⇒ 0 = 1 if x ≥u 4
(3.20)

It is easy to find a counter-example (x = 4 ∧ u = 1), so we can conclude this

optimization is incorrect.

In contrast, if Qp were existentially quantified, the case where x ≥u 4 would become

∃u : pow2(u) =⇒ 0 = 1, which is true.

Why χp occurs in the precondition safety check

As χp is used to constrain run-time inputs under the assumption that an analysis has

succeeded, it may be surprising that it is needed to check the safety of the precondition,

a property that relies only on compile-time data. However, the safety condition may

also include variables from P, and χp may limit their range.

Consider the expression C1 % (1 << ComputeNumSignBits(%a)), which might oc-

cur in a precondition. The safety condition for this expression is 1 << b 6= 0. If b is

unconstrained, then this condition can be violated by choosing b larger than the bit

width of C1, as shifts in SMT return zero when the shift amount exceeds the bit width.

However, the auxiliary condition for this expression is b ≤u signBits(ιa), where signBits

will never return a value larger than the bit width of %a. Therefore, this expression is

only unsafe if %a has a larger width than C1.

The auxiliary conditions for the target (χt) occur in the target safety check for the

same reason.

Expressing the conditions as SMT queries

The correctness conditions were given above as statements that must be proven true

in order to show that an optimization is correct. However, SMT solvers operate by

61

finding variable assignments that satisfy a formula. In order to use an solver to prove

the correctness conditions, we negate them and ask for counter-examples.

Thus, the actual queries given to the solver are

1. ∃V : χp ∧ ¬σp

2. ∃V : χp ∧ χt ∧ φ ∧ ¬σt

3. ∃V∀Qs : χp ∧ χt ∧ φ ∧ δs ∧ ¬δt

4. ∃V∀Qs : χp ∧ χt ∧ φ ∧ δs ∧ ρs ∧ ¬ρt

5. ∃V∀Qs : χp ∧ χt ∧ φ ∧ δs ∧ ρs ∧ ιs 6= ιt

3.3 Encoding Expressions for Verification

To check the correctness of a transformation, its source, target and precondition must

be encoded into logical formulae and arithmetic expressions. The encoding process

is recursive: the encoding of an instruction or constant expression will include the

encodings of its arguments. In terms of the abstract syntax, each production of val ,

inst , and pre is encoded, with bound variables using the encoding of the expression

they are assigned. In terms of the DAG representation, each node is encoded.

Encoding is performed with respect to a specific type assignment. The encoding of

an expression contains three logical propositions indicating whether the expression is

safe (σ), well-defined (δ), and poison-free (ρ). Additional requirements are given by the

auxiliary conditions (χ). The value computed by an instruction, variable, or constant

(ι) will be an SMT expression of a sort corresponding to the Alive expression. The value

computed by the precondition (φ) will be another logical proposition. Finally, the set

Q contains any variables used to represent non-deterministic behavior from undef or

undef-like operations.

3.3.1 Encoding types

Alive expressions that return a value have a corresponding type. These will be encoded

as expressions in SMT bit vector and floating-point arithmetic of a corresponding SMT

62

sort. For Alive integers, the corresponding sort is a bit vector of the same width. For

the floating-point types, the corresponding sort is a floating-point type with the same

exponent and mantissa size (see Table 3.4).12

While x86 fp80 is an 80-bit floating point type, its exponent and mantissa cor-

respond to a 79-bit floating-point sort in SMT. This is because it diverges from the

IEEE format by including an explicit integer bit, which is 0 for zero and denormal

values, and 1 for all other values. Negating the integer bit results in pseudo-values

and “unnormals”. These non-canonical values are not produced by processors since the

Intel 80386, and have no processor-independent interpretation in the LLVM language

standard. For this reason, Alive assumes that the integer bit is always set correctly.

SMT floating-point types include a single value for NaN, while the IEEE format used

by LLVM and Alive contains many distinct NaNs. This has two consequences. First,

the correctness conditions may allow a transformation to change one NaN result into

another. The IEEE standard and LLVM semantics do not mandate that any particular

NaN be produced by an arithmetic operation, except that an operation with receives

one or more NaN arguments should use one of those as its result, so it is not clear

whether such a transformation should be considered incorrect. Second, the bitcast

instruction cannot correctly model conversions to and from floating-point types, as

they will use a canonical NaN value instead of preserving the exact bit pattern. In

particular, converting an integer to a floating-point value and back is not an identity

function, as required by the LLVM language reference.

3.3.2 Encoding variables

Alive has two kinds of variables: input variables (e. g., %x), which represent arbitrary

values, and symbolic constants (e. g., C1), which represent in-line constants that will

be known at compile time. Their values, ι, are encoded as fresh SMT variables of the

appropriate sort.

12While Alive assumes that floating-point types are formatted according to IEEE-754, a careful
reading of the LLVM Language Reference shows that only the widths of the floating-point types are
guaranteed.

63

Instruction δ

udiv intw x, y δx ∧ δy ∧ ρy ∧ ιy 6= 0
urem intw x, y δx ∧ δy ∧ ρy ∧ ιy 6= 0
sdiv intw x, y δx ∧ δy ∧ ρy ∧ ιy 6= 0 ∧

(
ιy 6= −1 ∨ ρx ∧ ιx 6= −2w−1

)
srem intw x, y δx ∧ δy ∧ ρy ∧ ιy 6= 0 ∧

(
ιy 6= −1 ∨ ρx ∧ ιx 6= −2w−1

)
Table 3.9: Well-defined conditions for selected instructions. The minimum signed w-bit
integer is −2w−1.

Instruction Defined-result condition

shl intw x, y ιy <u w
ashr intw x, y ιy <u w
lshr intw x, y ιy <u w
fptrunc τ1 x to τ2 fmin(τ2) ≤ ιx ≤ fmin(τ2) ∨ isInfinite(ιx) ∨ isNaN(ιx)
fptosi τ1 x to intw −2w−1 − 1 < ιx < 2w−1

fptoui τ1 x to intw 0 ≤ ιx < 2w

sitofp τ1 x to τ2 fmin(τ2) ≤ ιx ≤ fmax(τ2)
uitofp τ1 x to τ2 ιx ≤u fmax(τ2)

Table 3.10: Defined result conditions, where ιx ∈ τ indicates that ιx can be exactly
represented in τ and fmin(τ) and fmax(τ) are the minimum and maximum finite floating-
point values in τ . The bounds for fptosi and fptoui reflect that the argument will be
rounded towards zero. Range checks that are statically known to succeed (e. g., because
the upper bound exceeds the maximum representable value) may be omitted.

An input variable may contain poison. To represent this, its poison-free condition,

ρ, is encoded as a fresh SMT Boolean variable. A symbolic constant is never poison,

so its poison-free condition is trivial.

3.3.3 Encoding arithmetic and conversion instructions

With a few exceptions, Alive’s arithmetic and conversion instructions correspond di-

rectly to analogous operations in SMT bitvector or floating-point logic. The four integer

division operations have special well-defined conditions, given in Table 3.9. The shift

operations and floating-point conversions have special defined-result conditions (see

Section 3.2.5), which are given in Table 3.10. Several arithmetic instructions may be

modified with attributes, which are discussed in the next section.

The frem instruction computes the remainder after dividing two floating-point val-

ues. In LLVM, the result of frem will have the same sign as the second argument,

which does not correspond to the floating-point remainder function used by SMT and

64

fpMod(x, y) =

z if isPos(x) ∧ isPos(z)

|y|+ z if isPos(x) ∧ isNeg(z)
−z if isNeg(x) ∧ isPos(z)

−(|y|+ z) if isNeg(x) ∧ isNeg(z)

z = fpRem(|x|, |y|)

Figure 3.7: Computing fpMod, which has the same sign as its second argument, using
the IEEE fpRem function provided by SMT

IEEE floating-point. Figure 3.7 shows how to compute an frem-like function using the

SMT-provided fpRem function and some sign manipulation.

The fpext and fptrunc instructions are both encoded using SMT’s overloaded

conversion to floating-point function. The fptrunc instruction has undefined results

for finite arguments outside the finite range of the target type. Arguments inside the

range that cannot be represented exactly are rounded.

The fptosi and fptoui instructions round towards zero (i. e., truncate), but have

undefined results when the result is too large to be represented in the target type. In

Table 3.10, converting any negative value to an unsigned integer has undefined results.

The lower bound could plausibly be weakened to −1 < ιx. If the argument is NaN,

this encoding has an undefined result. It could be argued that this would cause a

floating-point exception, and therefore should be encoded as undefined behavior.

The bitcast instruction converts a value to another type without changing any of

the underlying bits. In SMT, floating-point types are not necessarily represented as bit

vectors containing IEEE-formatted values, so the conversion must be implemented using

SMT functions. Because SMT floating-point types include only a single NaN value,

conversion from integers will lose information and conversion to integers is arbitrary

or non-deterministic, depending on the method used. For this reason, the claims Alive

can make about transformations involving bitcast are limited.

Assumptions about floating-point arithmetic

The LLVM Language Reference [2] refers to the IEEE-754 standard for floating-point

arithmetic [3] in several places, but never explicitly requires that its floating-point

65

instructions conform to that standard. Without a formal specification for the meaning

of floating-point operations, no formal verification is possible. However, transformations

in LLVM tend to assume IEEE semantics, which is understandable given the increasing

rarity of hardware implementing non-IEEE floating-point. Thus, Alive limits itself to

verifying transformations under the assumption of IEEE semantics.

Floating-point operations in IEEE-754 are parameterized by a rounding mode, which

specifies the value to return for inexact operations. Floating-point instructions in LLVM

do not have a rounding-mode parameter,13 and the language reference is inconsistent

about whether LLVM makes any assumptions about rounding mode. If transformations

must be correct under all rounding modes, then no transformation that may return

zero can be correct, as the round-towards-positive and round-towards-negative modes

require different results. Other parts of the reference state that transformations should

assume rounding-towards-nearest, which is still ambiguous, because IEEE-754 provides

two ways to break ties, towards even and away from zero. Alive does not specify a

rounding mode, leaving the decision up to a particular encoding. By default, Alive-NJ

uses rounding towards nearest, ties to even. Other rounding rules may be requested by

the user.

Depending on the hardware, some operations that produce a NaN will trap, which

is usually encoded as undefined behavior. Similarly, IEEE-754 includes a distinction

between quiet and signalling NaNs. Instructions receiving an signalling NaN may trap.

Some have argued that any division by zero in floating-point is undefined behavior, even

though division of a non-zero value by zero is defined to return ±∞. The encoding

described here assumes that operations returning NaN do not trap and assumes all

NaNs are quiet NaNs.

3.3.4 Encoding instruction attributes

Instruction attributes modify instructions by promising that certain inputs will not

occur. Adding nsw (no signed wrap) to an instruction allows the compiler to optimize

13Recent versions of LLVM simulate rounding-mode parameters with intrinsic functions that perform
floating-point operations with a specific rounding mode.

66

Instruction Poison-free condition

add nsw τ x, y ρx ∧ ρy ∧ SExt(ιx, 1) + SExt(ιy, 1) = SExt(ιx + ιy, 1)
add nuw τ x, y ρx ∧ ρy ∧ ZExt(ιx, 1) + ZExt(ιy, 1) = ZExt(ιx + ιy, 1)
sub nsw τ x, y ρx ∧ ρy ∧ SExt(ιx, 1)− SExt(ιy, 1) = SExt(ιx − ιy, 1)
sub nuw τ x, y ρx ∧ ρy ∧ ZExt(ιx, 1)− ZExt(ιy, 1) = ZExt(ιx − ιy, 1)
mul nsw intw x, y ρx ∧ ρy ∧ SExt(ιx, w)× SExt(ιy, w) = SExt(ιx × ιy, w)
mul nuw intw x, y ρx ∧ ρy ∧ ZExt(ιx, w)× ZExt(ιy, w) = ZExt(ιx × ιy, w)
udiv exact τ x, y ρx ∧ (ιx ÷u ιy)× ιy = ιx
sdiv exact τ x, y ρx ∧ (ιx ÷ ιy)× ιy = ιx
shl nsw τ x, y ρx ∧ ρy ∧ (ιx << ιy) >> ιy = ιx
shl nuw τ x, y ρx ∧ ρy ∧ (ιx << ιy) >>u ιy = ιx
ashr exact τ x, y ρx ∧ ρy ∧ (ιx >> ιy) << ιy = ιx
lshr exact τ x, y ρx ∧ ρy ∧ (ιx >>u ιy) << ιy = ιx

Table 3.11: Poison-free conditions for selected instruction attributes. The functions
SExt and ZExt indicate sign-extension and zero-extension by a specified number of bits.
The constant w is the width of the value in bits.

with the assumption that signed overflow will not occur (e. g., it may assume that

x+1 > x always holds). Integer instructions return poison when the attribute conditions

are not met. Floating-point instructions have undefined results if the “fast-math”

attribute conditions are not met.

Addition-like integer arithmetic instructions may have one or both of the nsw and

nuw (no unsigned wrap) attributes. Division-like instructions may have the exact

attribute. The modified poison-free conditions for these instructions when an attribute

is present are given in Table 3.11. When the nsw and nuw attributes occur on the

same instruction, both poison-free conditions must hold.

The five floating-point arithmetic instructions and fcmp may take the “fast-math”

attributes nnan, ninf , and nsz. These introduce a defined-result condition (see Sec-

tion 3.2.5). If nnan (no NaN) is present, the condition is violated if the instruction’s

arguments or result are NaN. If ninf (no infinity) is present, the condition is violated

if the arguments or result of the function are ±∞.

The nsz (no signed zeros) attribute introduces a controlled form of undefined be-

havior. The LLVM Language Reference states that optimizations may “treat the sign

of a zero argument or result as insignificant” for instructions with the nsz attribute.

We encode this by giving zero-valued arguments and results an undef-like sign bit.

67

For nsz instructions in the source, we are free to choose the signs for any zero-valued

arguments or results in order to make the optimization correct. For nsz instructions

in the target, the optimization must be correct for every possible choice of signs for

zero-valued arguments.

For fadd, fsub, and fmul, differences in the signs of zero-valued arguments are

only significant if the result is also zero-valued, so it is sufficient to make the sign of a

zero-valued result undef:

ιz =

+0 if isZero(ιx ⊕ ιy) ∧ b

−0 if isZero(ιx ⊕ ιy) ∧ ¬b

ιx ⊕ ιy if ¬isZero(ιx ⊕ ιy)

(3.21)

Qz = Qx ∪Qy ∪ {b} (3.22)

where ⊕ encodes the floating-point operation, isZero is true for positive and negative

zero, and b is a fresh Boolean variable.

The encoding of fdiv is similar, except that the sign of zero-valued arguments

can also affect the sign of a non-zero result. Specifically, division by zero yields ±∞,

depending in part on the sign of the zero. Thus:

ιz =

+0 if isZero(ιx) ∧ ¬isZero(ιy) ∧ b

−0 if isZero(ιx) ∧ ¬isZero(ιy) ∧ ¬b

+∞ if ¬isZero(ιx) ∧ isZero(ιy) ∧ b

−∞ if ¬isZero(ιx) ∧ isZero(ιy) ∧ ¬b

ιx ÷ ιy otherwise

(3.23)

Qz = Qx ∪Qy ∪ {b} (3.24)

where b is a fresh Boolean variable.

3.3.5 Encoding comparison instructions

The icmp and fcmp instructions compare integer and floating-point values according

to a specified relation.14 LLVM provides ten ways to compare integers: eq and ne are

14LLVM frequently refers to this as a “predicate”, but we will use “relation” to avoid confusion with
Alive predicates.

68

equal unordered unordered or equal

false oeq uno ueq
less than olt ole ult ule

greater than ogt oge ugt uge
less than or greater than one ord une true

Table 3.12: Organization of LLVM’s floating-point relations. A relation is true if at
least one of the column or row headers is true. For example, xult y is true if x < y or
if x and y are unordered (i. e., one or both is NaN).

equality and negated equality, slt, sle, sge, and sgt are signed inequalities, and ult,

ule, uge, and ult are unsigned inequalities. These all correspond to relations available

in the SMT bitvector logic.

The SMT relations return an SMT Boolean value, which must be converted to a

1-bit bitvector, which encodes LLVM’s i1 type. This is easily done using the SMT if

construct, e. g., if(ιx ./ ιy, 1, 0), where ./ is the specific relation.

Floating-point comparisons are similar, but LLVM provides sixteen relations. These

correspond to all possible disjunctions of four simpler relations: equal, less than, greater

than, and unordered, where NaN values are not equal, less than, or greater than any

value (including themselves) and are unordered with respect to all values. Table 3.12

shows how these four primitive relations can be combined into six ordered relations

(which are always false if one or more argument is NaN), six unordered relations (which

are always true if one or more argument is NaN), and four “leftover” relations. The

ordered relations correspond to relations provided by the SMT floating-point logic, and

the unordered relations can be found by negating the ordered relations (e. g., uge is

the negation of olt). The remaining four are trivial or can be encoded using isNaN.

3.3.6 Encoding select

The challenge of handling select comes not from the encoding itself, which is straight-

forward, but from the need to choose an interpretation first. Early versions of Alive

used an “arithmetic-like” encoding, in which select is considered equivalent to a com-

bination of bit-wise logical operators, as shown in Figure 3.8. Recent proposals [65]

69

%r = select %c, %x, %y

=>

%C = sext %c

%N = xor %C, -1

%a = and %x, %C

%b = and %y, %N

%r = or %a, %b

Figure 3.8: An arithmetic interpretation of select. The target is poison if either %x or
%y is poison, regardless of which one is selected.

have favored a “branch-like” encoding, which interprets select as an implicit condi-

tional branch followed by a choice of assignments. These interpretations coincide when

the arguments to select are all poison-free, and also when one or more arguments has

undefined behavior. They differ in how they behave in the presence of poison.

For an instruction select c, τ x, τ y, the differences between these interpretations

have two aspects. First, if c, the condition, is poison, the result could be undefined

behavior, poison, or a nondeterministic choice between x and y. Second, if one of x or

y is poison, the result could always be poison (unconditional poison), or only be poison

if the chosen value is poison (conditional poison).

These aspects may be decided independently, and Figure 3.9 shows five encodings

resulting from these decisions.15 The arithmetic-like encoding is given in Figure 3.9(c).

Both Figure 3.9(b) and Figure 3.9(e) may be considered branch-like, depending on the

intended behavior of conditional branches when the condition is poison.

The transformation in Figure 3.8 is incorrect for the interpretations with conditional

poison. Its reverse is incorrect when a poison condition results in undefined behavior

(as in Figures 3.9(a) and 3.9(b)).

Alive-NJ uses the arithmetic-like encoding by default, but the other four interpre-

tations are provided to the user as options.

15The sixth possibility, combining nondeterministic choice and unconditional poison, is considered
unreasonable.

70

Unconditional poison Conditional poison

ιz =

{
ιx if ιc = 1
ιy if ιc 6= 1

δz ≡ δc ∧ ρc ∧ δx ∧ δy

ρz ≡ ρx ∧ ρy

(a)

ιz =

{
ιx if ιc = 1
ιy if ιc 6= 1

δz ≡ δc ∧ ρc ∧ δx ∧ δy

ρz ≡ (ιc = 1 ∧ ρx) ∨ (ιc 6= 1 ∧ ρy)

(b) “Branch-like”

ιz =

{
ιx if ιc = 1
ιy if ιc 6= 1

δz ≡ δc ∧ δx ∧ δy

ρz ≡ ρc ∧ ρx ∧ ρy

(c) “Arithmetic-like”

ιz =

{
ιx if ιc = 1
ιy if ιc 6= 1

δz ≡ δc ∧ δx ∧ δy

ρz ≡ (ρc ∧ ιc = 1 ∧ ρx) ∨ (ρc ∧ ιc 6= 1 ∧ ρy)

(d)

ιz =

ιx if ρc ∧ ιc = 1
ιy if ρc ∧ ιc 6= 1
ιx if ¬ρc ∧ b
ιy if ¬ρc ∧ ¬b

δz ≡ δc ∧ δx ∧ δy

ρz ≡ (ιc = 1 ∧ ρx) ∨ (ιc 6= 1 ∧ ρy)

Qz = Qc ∪Qx ∪Qy ∪ {b}

(e) Nondeterministic choice

Figure 3.9: Five possible encodings of select c, τ x, τ y. The columns indicate whether
poison from the non-selected value propagates. The rows indicate whether a poison
condition causes undefined behavior, a poison result, or non-deterministic choice, re-
spectively.

71

3.3.7 Encoding constant expressions

The semantics for Alive’s constant expression sublanguage are based on LLVM’s APInt

type, which is used when translating Alive optimizations to C++ implementations.

Most operations that correspond to a similar LLVM instruction have similar semantics,

but APInt does not include undef or poison values, and has defined behavior in more

circumstances than LLVM instructions.

Expressions in Alive’s constant expression sublanguage may be: literal constants,

symbolic constants, binary operators, or built-in functions. The encoding of symbolic

constants is discussed in Section 3.3.2. Literals (e. g., 1 or -inf) are encoded as SMT

constants of the appropriate sort. Note that integer constants such as 1 are polymorphic

over integer and floating-point types.

Binary operators

Integer expressions involving Alive’s binary operators are encoded as SMT expressions

using the corresponding function from SMT bitvector logic. The signed and unsigned

division and remainder operators have special safety conditions that require their second

argument be non-zero, in addition to requiring both arguments to be safe.16

Floating-point expressions are similarly encoded using the corresponding function

from SMT floating-point logic, with the exception of srem, which is encoded using the

fpMod function given in Figure 3.7. Floating-point operators are always defined, so no

additional safety conditions are needed.

Functions

The built-in functions provided by Alive fall into several categories. Simple conversions

(e. g.., zext or fptrunc) correspond to functions in SMT bitvector or floating-point

logic. Alive always rounds towards zero when performing constant conversions involving

floating point.

16Note that the safety condition for the constant operators sdiv and srem are different from the
well-defined conditions for the corresponding instructions.

72

Function χ

ComputeNumSignBits(x) ρx =⇒ b ≤u signbits(x)
computeKnownOneBits(x) ρx =⇒ b & ∼ x = 0
computeKnownZeroBits(x) ρx =⇒ b & x = 0

Table 3.13: Constant functions based on data-flow analyses

Other functions may have SMT encodings that are simple (e. g., max(x, y) is en-

coded as if(x > y, x, y)) or complex (e. g., log2 is encoded as a binary search for the

most significant 1-bit). The functions width and fpMantissaWidth simply extract

information from the argument’s type, and are encoded as SMT constants.

Three additional functions correspond to analyses in LLVM, and are encoded as a

free variable and an auxiliary condition given in Table 3.13. Note that the functions

may return any value for poison arguments.

3.3.8 Encoding predicates

Predicates are encoded as SMT Boolean expressions. Negation, conjunction, and dis-

junction are encoded directly. Integer and floating-point comparisons are encoded using

the corresponding SMT functions. Alive provides signed and unsigned comparisons for

integer constant expressions, but provides only ordered comparisons for floating-point

constant expressions. Note that equality and inequality use floating-point equality,

where 0 = −0 and NaN does not equal itself.

Alive’s predicate functions can be divided into three groups, as in Table 3.14. The

simplest take constant expressions as arguments and are encoded directly.17 Functions

that represent a dataflow analysis are encoded as a fresh Boolean variable and a side

condition, as discussed in Section 3.2.6, except when the argument(s) are constant, in

which case the condition always holds.

For example, isPowerOf2(a) is encoded as b and a side constraint b ∧ ρa =⇒

ιa & (ιa − 1) = 0 ∧ ιa 6= 0, meaning that ιa must be a power of two or poison when b

holds.

17Many of these could be expressed as equalities, given some additions to Alive’s constant function
vocabulary.

73

Simple Dataflow Syntactic
fpIdentical CannotBeNegativeZero hasNoInf
fpInteger isPowerOf2 hasNoNaN
isSignBit isPowerOf2OrZero hasNSW
isShiftedMask MaskedValueIsZero hasNSZ
WillNotOverflowSignedMul WillNotOverflowSignedAdd hasNUW
WillNotOverflowUnsignedMul WillNotOverflowUnsignedAdd isConstant
WillNotOverflowUnsignedShl WillNotOverflowSignedSub isExact

WillNotOverflowUnsignedSub hasOneUse

Table 3.14: Alive’s built-in predicate functions, organized by type of analysis. All
current dataflow analyses are must-analyses.

The third group are syntax tests and require their argument to be a value of a

particular syntactic class (e. g., a wrappable arithmetic instruction). These are encoded

as true if the test is satisfied (e. g., isConstant(c)). This can be useful for expressing

profitability requirements. For example, an optimization that adds a nsw attribute to

an instruction a may require !hasNSW(a) to avoid unnecessary work.

When the test is not trivially satisfied, the function is encoded as a unique fresh

Boolean variable b and the encoding of the argument is modified to behave as though

the syntactic condition were met when b is true. That is, hasNSW(a) modifies the

encoding of a to behave as though the nsw attribute were present if b is true. Depending

on the condition this may add poison-free conditions (as with hasNSW), potentially

change the result (as with hasNSZ), or have no effect (as with isConstant).

Figure 3.10 shows an optimization using a combination of dataflow and syntactic

analyses, and its SMT encoding.

3.4 Code Generation

In contrast to the SMT encoding, which interprets an Alive transformation as two

abstract programs in order to compare their behavior, code generation interprets a

transformation as a procedure for recognizing a pattern in an input program and re-

placing it. The Alive syntax is designed with this interpretation in mind. From the

standpoint of verification, constant expressions in the source or variables not occurring

in the source can easily be encoded into constraints, but allowing these would create

ambiguity when generating code.

74

Pre: CannotBeNegativeZero(%x) \

|| hasNSZ(%r)

%r = fsub %x, -0.0

=>

%r = %x

(a)

φ ≡ b1 ∨ b2
χp ≡ b1 =⇒ x 6= −0

ιs =

+0 if b2 ∧ isZero(x−−0) ∧ b3
−0 if b2 ∧ isZero(x−−0) ∧ ¬b3

x−−0 otherwise

Qs = {b3}

ιt = x

(b)

Figure 3.10: An optimization involving dataflow and syntactic analyses. Note that
x−−0 = x except when x = −0. Thus, the optimization is only correct if %x is never
−0 or if the sign of zero is irrelevant.

The code generated for an Alive transformation has the structure of an if statement,

where the condition tests whether a particular instruction matches the source root (and,

recursively, whether its arguments match the arguments of the source root) and whether

the precondition is satisfied. If so, the body creates any new instructions defined by

the target. The target root replaces the instruction matched by the source root. Any

additional instructions are inserted into the program prior to the original instruction.

The core of InstCombine is a function resembling the schematic in Figure 3.11.

The main loop of InstCombine attempts to transform each instruction by passing a

pointer to a function like optimize, which looks for an applicable transformation. If

no transformation applies, optimize returns a null pointer, indicating no change. If

any transformation applies, optimize performs the changes made by the first one that

applies and returns a value will replace the instruction being transformed.

The source pattern is implemented using LLVM’s PatternMatch library, with care

taken to correctly handle variables that are referenced more than once and to explicitly

check type requirements when necessary. Target instructions are created using the

LLVM API. Predicates are translated into function calls, usually to analysis functions

already present in InstCombine, but occasionally to new functions written specifically

to be used by Alive implementations. Figure 3.12 shows an implementation generated

for the transformation given in Figure 1.2.

75

Value* optimize(Instruction *I)

{

if (... match opt 1 ...) {

... create new target instructions ...

return new_I;

}

if (... match opt 2 ...) {

... create new target instructions ...

return new_I;

}

...

return null;

}

Figure 3.11: High-level structure of LLVM’s InstCombine

ConstantInt *C2, *C1;

Value *m, *X;

if (match(I, m_SDiv(m_Value(m), m_ConstantInt(C2)))

&& match(m, m_NSWMul(m_Value(X), m_ConstantInt(C1)))

&& C2->getValue() != 0

&& C1->getValue().srem(C2->getValue()) == 0)

{

BinaryOperator *r =

BinaryOperator::CreateMul(X,

ConstantInt::get(I->getType(),

C1->getValue().sdiv(C2->getValue())));

r->setHasNoSignedWrap(true);

return r;

}

Figure 3.12: C++ code generated for the transformation in Figure 1.2

76

APInt InstCombiner::computeKnownOneBits(Value *V) {

unsigned BitWidth = V->getType()->getScalarSizeInBits();

APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);

computeKnownBits(V, KnownZero, KnownOne);

return KnownOne;

}

Figure 3.13: A wrapper function used by the translation of computeKnownOneBits. In-
stCombine’s computeKnownBits modifies its arguments rather than returning a result,
so it cannot be used directly by the translation scheme employed by the code generator.

Integer constant expressions translate to computations in LLVM’s APInt type. This

limits Alive somewhat, as LLVM constant expressions may also include undef values

and link-time values. However, LLVM constant expressions do not support certain

operations, such as comparisons. It would be possible to use a hybrid translation, using

LLVM constant expressions whenever possible and restricting to APInt when necessary,

but using APInt throughout is simpler and more predictable.

The binary operators for constants correspond to methods provided by APInt. Con-

stant functions correspond to C++ functions provided by LLVM or specially writ-

ten for Alive. For example, InstCombine’s computeKnownBits is used to translate

computeKnownOneBits, but its signature does not allow it to be used directly by the

translation. Instead, computeKnownOneBits is translated to a wrapper function shown

in Figure 3.13. Certain C++ binary operators and functions are overloaded, so that

specific arguments may be an APInt or a C++ integer. The code generator takes

advantage of that when it can, as with the comparisons with zero in Figure 3.12.

Floating-point constant expressions would analogously translate to computations in

LLVM’s APFloat type, but its operations do not support the coding style currently

used by the code generator. Demand for floating-point constant expressions has not

yet been sufficient to justify the necessary re-engineering of the code generator.

3.4.1 Type references

The implementation of a transformation may need to refer to type information in some

places. For example, creating a conversion instruction or a literal constant require

explicit type information. As Alive transformations are polymorphic, it is usually not

77

Pre: WillNotOverflowUnsignedAdd(%a, %b)

%x = zext %a

%y = zext %b

%z = add %x, %y

=>

%c = add %a, %b

%z = zext %c

Figure 3.14: A transformation with an implicit type constraint. In order for the pre-
condition and target to be well-typed, %a and %b must have the same type, but this
type equality is not implied by the source.

possible to give a specific, concrete type. Instead, the code generator associates each

type variable with a value from the source that is constrained to have the same type.

References to the type variable can then be filled by using the getType method of the

associated source value.

Because of this requirement, all values in the precondition and target must be equal

in type to some value in the source. The exception are comparisons in the precondi-

tion, which have a default type if they are not otherwise constrained. This permits

comparisons such as width(%a) u> 1, which would otherwise be ambiguous.

InstCombine operates on well-typed LLVM IR, so an Alive transformation is free

to assume that the code matched by the source pattern satisfies its type constraints.

This is usually sufficient to ensure that the transformation will not create ill-typed

code, but not always. The target or precondition may introduce type constraints that

are not already required by the source, as in Figure 3.14. The code generator uses

an augmented type checker, which detects when the target or precondition equate two

types that were not already equal, and adds explicit type equality checks as needed.

3.4.2 Matching the source

The translation of the source primarily uses LLVM’s PatternMatch facility, which tests

whether a value meets some criteria and optionally binds arguments for further match-

ing. For example, consider this pattern match:

match(I, m_NSWAdd(m_Value(a), m_ConstantInt(C1)))

The call to match tests whether the instruction I is an add with nsw, where the first

78

argument is an arbitrary value and the second is an integer constant. If the test succeeds,

then a and C1 will be bound to the first and second argument, respectively, as a side-

effect of the match. This is similar to pattern matching in languages that provide

algebraic data types.

The source of an Alive transformation contains instructions, input variables, and

literal and symbolic constants. For the most part, these correspond to patterns provided

by LLVM. Some combinations of features are not directly provided, such as matching an

instruction with more than one attribute, but can be built by combining other features.

The patterns for matching icmp and fcmp do not specify the condition. Instead, the

condition is bound to a new variable, which must be checked separately.

Care must be taken when a value is referenced multiple times in the source. LLVM

provides a pattern m Specific(x), which succeeds if the value being matched is equal

to x.18 If two instructions refer to the same value, the pattern for the first instruction19

will bind the value, and the second can use m Specific. However, m Specific cannot

be used if a single instruction refers to a previously-unbound value twice. Instead, both

references are bound to different variables, and their equality is checked separately.

For example, the source select %a, %a, %b becomes the pattern match

match(I, m_Select(m_Value(a), m_Value(a_0), m_Value(b))) && a == a_0

3.4.3 Testing the precondition

Predicates are Boolean-valued, so they can be used in the if condition directly. Con-

junction, disjunction, and negation are translated to the corresponding C++ constructs.

Integer comparisons translate to comparisons of APInt values. As C++ does not pro-

vide separate signed and unsigned comparisons, the translations use methods provided

by APInt.

18Note that equality for LLVM instructions is pointer equality. Two instructions with the same
opcode and arguments may or may not be considered equal.

19That is, the instruction whose pattern is matched first, which may not be the instruction that is
defined first in the transformation. Recall that pattern matching begins with the root instruction and
then proceeds to its arguments.

79

Predicate functions are translated to function calls. Most such functions are already

present in InstCombine, but a few are specially written to support Alive-generated code,

e. g.. WillNotOverflowSignedMul. The InstCombine-provided functions occasionally

require additional context arguments, but these can be provided in a standard way.

3.4.4 Creating the target

The target of a transformation creates zero or more instructions, and assigns a value to

replace the source root. Instructions are created using the appropriate constructor or

factory function. If more than one instruction is created, all instructions but the last

are passed to InstCombine’s instruction builder, which inserts the new instruction into

an appropriate basic block. The final instruction, or other value replacing the root, is

returned to the InstCombine’s main loop, which replaces all references to the original

root instruction with the new value.

This asymmetry between the treatment of the last instruction and those preceding

it is done to maintain compatibility with InstCombine.

3.5 Extensions to Alive

This chapter primarily discusses the dialect of Alive supported by the Alive-NJ toolkit.

The original Alive toolkit [75] does not support floating-point types, but has several

other features that are not present or incompletely supported by Alive-NJ.

3.5.1 Relation variables

The grammar in Section 3.1.1 requires the relation used by icmp and fcmp to be one

of the relations included in rel and frel , respectively. That is, each transformation

involving a comparison instruction must require a specific relation be tested. Some

transformations involving comparisons are specific examples of a more general trans-

formation that is generic over relations. If the relation can be made abstract, these

transformations can be combined.

80

Pre: fpext(C2) == C1

%x = fpext %a

%r = fcmp %x, C1

=>

C2 = fptrunc(C1)

%r = fcmp %a, C2

Figure 3.15: A transformation using an implicit relation variable

The abstract syntax is augmented by adding a new class of variable names, repre-

senting relation variables, and allowing them to occur in rel and frel , with a restriction

to prevent variables from occurring in comparison predicates and a requirement that

any relation variable occurring in the target be defined in the source. A relation variable

will be encoded as a bit vector of width four (enough to uniquely represent its possible

values), and comparison instructions using that variable will select which relation to use

based on its value. The code generator must check that any repeated use of a relation

variable in the source matches the same relation, and to capture relation variables for

use in the target.

For convenience, a blank relation variable in the concrete syntax is interpreted as

a variable whose name is derived from the name of its instruction. This is only useful

when the comparison is the root (except in dialects with multiple replacement, see

Section 3.5.3).

For example, the transformation in Figure 3.15 generalizes the transformation in

Figure 3.4 to apply for all relations.

Alive-NJ supports predicate variables, but they are not widely used.

Relation functions

Even more transformations can be generalized if the language provides functions on

relations or relation equality predicates. For example, reverse(rel) might reverse

the direction of the relation rel, which could be used in the transformation in Fig-

ure 3.16(a), which negates both sides of a comparison. In the Alive-NJ dialect, this

must be expressed as ten transformations.

81

%a = sub 0, %x

%b = icmp rel %a, C

=>

%b = icmp reverse(rel) %x, -C

(a)

Pre: rel == ord || rel == oeq \

|| rel == oge || rel == ole

%f = fcmp rel %x, %x

=>

%f = fcmp ord %x, 0

(b)

Figure 3.16: Two transformations using a relation function and a relation predicate,
respectively

Similarly, if relations can be used in equality comparisons, this allows generaliz-

ing over subsets of possible relations. Figure 3.16(b) shows one such example, which

generalizes four transformations.

Naturally, it would need to be determined if the gain in expressivity is sufficient to

justify the added complexity to the language.

3.5.2 Named type variables

In the Alive-NJ dialect, types for instructions may be given explicitly or omitted. Other

dialects also allow explicit type variables. If a type variable occurs in multiple places,

those places are constrained to have the same type. For example, named type variables

in Figure 3.14 could make the implicit constraint that %a and %b have the same type

into an explicit requirement.

Except when making implicit requirements explicit, the use of type variables can

only restrict the feasible type assignments for a transformation, making it less applicable

than it might otherwise be. It is unclear whether a transformation exists that requires

such a restriction to be correct.

However, combined with type annotations for constant expressions, some expressions

that currently require bound symbolic constants may be specified without them. For

example, Figure 3.17 shows the transformation in Figure 3.4 rewritten to use a type

variable, ty1, and an annotation in the expression fptrunc(C1) : ty1 that fixes its

type, preventing it from being ambiguous and ensuring that both truncations of C1

truncate to the same type. (The version using a bound symbolic constant still has the

advantage of only truncating C1 once.)

82

Pre: fpext(fptrunc(C1) : ty1) == C1

%x = fpext %a to ty1

%r = fcmp oeq %x, C1

=>

%r = fcmp oeq %a, fptrunc(C1)

Figure 3.17: A transformation using a named type variable and a type annotation

Pre: isPowerOf2(%A) && hasOneUse(%Y)

%Y = lshr i8 %A, %B

%r = udiv %X, %Y

=>

%Y = lshr exact %A, %B

%r = udiv %X, %Y

Figure 3.18: A multiple-replacement transformation. Both instructions will be replaced
when the transformation is applied.

3.5.3 Multiple replacement

As described in Section 3.1.1, the roots of the source and target must have the same

name, because the target root will replace the source root when the transformation is

applied. Any other instructions in the target must not have the same name as a source

instruction, and no other instructions in the source will be replaced. This may be called

a single-replacement transformation.

A dialect of Alive may generalize this by allowing multiple-replacement transforma-

tions, in which several instructions in the target have the same name as instructions in

the source and replace them when the transformation is applied. Figure 3.18 shows a

transformation derived from LLVM that uses multiple replacement.

Each replaced instruction may be referenced by other instructions outside the source

pattern, so it is necessary to perform the correctness checks for each replaced instruction,

not just the roots.

However, consider the example in Figure 3.18 more carefully. Adding the exact

attribute to %Y is acceptable because a situation where %Y would become poison af-

ter transformation is one where it would have returned 0 before translation, causing

undefined behavior in %r. If %Y were used by multiple instructions, and %r were only

evaluated in cases where %Y is non-zero, this transformation would be invalid because

83

it introduces poison. Thus, the requirement that %Y has only one use is essential—but

in that case, replacing it is no different from changing %r to refer to a new lshr exact

instruction and letting %Y be eliminated as dead code.

When replacing a non-root instruction that may have uses outside the source pat-

tern, the verifier can’t take advantage of any contextual information provided by its

context (such as the requirement that %Y be non-zero). In such a case, its replacement

could just as easily be done by a different transformation.

In short, it is not clear that multiple replacement adds any expressive power to Alive.

In particular, all transformations derived from LLVM using multiple replacement were

expressible using single replacement.

3.5.4 Memory operations

The dialect of Alive supported by the Alive-NJ toolkit describes computations over

values stored in temporary registers. Including memory-related instructions, as in the

initial presentation of Alive [76], increases the number of transformations that can be

specified, but requires the correctness conditions to incorporate a memory model, in

addition to the extensions to the syntax and type system.

Basic support for memory operations requires the addition of pointer types to the

type system and the instructions load and store, which read from and write to memory,

respectively. The conversions inttoptr and ptrtoint can be added to allow unstruc-

tured memory access and pointer arithmetic. The alloca instruction allocates new

memory that does not overlap any existing memory blocks.

Structured memory access requires support for aggregate types, such as arrays, and

the instruction getelementpointer, which finds an offset into an aggregate type using

one or more indices.

The pointer aliasing rules for LLVM require that all pointers used to access memory

to be associated with an address range, or else the access has undefined behavior. A

pointer that is based on another, meaning its value was computed or otherwise derived

from that pointer, is associated with the same address range. The address ranges

allocated by alloca do not overlap with any other address range. In Alive, nothing is

84

stmt : : = · · · | store type val , type val
inst : : = · · · | alloca type, const | load type, type val ,align width

getelementptr type, type val , type val
type : : = · · · | ptr type | array const type
conv : : = · · · | inttoptr | ptrtoint

const : : = · · · | null

Figure 3.19: Extended abstract syntax for memory operations

known about pointers not based on an alloca, so they must be considered to potentially

overlap.

The addition of memory accesses and instructions that do not return a value (i. e.,

store) creates additional requirements for determining which programs match the

source pattern. While non-memory instructions may be equivalently performed in

any order, as long as each instruction is computed after its arguments, memory op-

erations do not generally commute. If the source pattern include memory accesses,

these accesses must form a chain of memory states in the input program and cannot be

interleaved with other memory accesses not matched by the source. (This rule can be

relaxed somewhat for non-volatile memory accesses and accesses to memory known not

to alias with the memory accessed by the transformation.) Store instructions do not

have names, so they must be present in the source and target. This, in turn, requires

that the target not reuse the names of load instructions, as their position in the chain

of memory accesses is unclear. Thus, transformations involving store will most likely

require multiple replacement (see Section 3.5.3).

Additions to syntax and type system

Figure 3.19 shows the additions to the syntax needed for basic and structured memory

access. The ptr type will be encoded as a 32- or 64-bit pointer. The array type

represents one of LLVM’s several aggregate types. Note that the size of an array is a

constant expression. Alive does not specify whether the symbolic constants used in an

array type can also be used as values. The arguments to load are the pointer to read

from and an optional alignment. The arguments to store are the value to be written

and the destination pointer.

85

Γ ` x : int 1 Γ ` y : τ Γ ` z : τ τ ∈ I ∪ F ∪ P
Γ ` selectx, τ y, τ z : τ select

Γ ` x : τ Γ ` y : τ τ ∈ I ∪ P
Γ ` icmp τ x, y : int 1 icmp

τ ∈ P
Γ ` null : τ

null

Γ ` c : τ ′ τ ′ ∈ I
Γ ` alloca τ, τ ′ c,alignn : ptr τ

alloca

Γ ` x : ptr τ τ ∈ I ∪ F ∪ P
Γ ` load ptr τ x : τ load

Γ ` x : τ Γ ` y : ptr τ

Γ ` store τ x,ptr τ y ok store

Γ ` x : ptr τ ′ τ ′ ∈ P Γ ` yi : τi τi ∈ I τ ′
yi−→ τ

Γ ` getelementpointer τ,ptr τ ′ x, τi yi : τ
gep

Table 3.15: Extended typing rules for memory operations

conv τ1
conv
./ τ2

bitcast τ1 =w τ2 τ1 ∈ I ∪ F τ2 ∈ I ∪ F
bitcast τ1 ∈ P τ2 ∈ P
inttoptr τ1 ∈ I τ2 ∈ P
ptrtoint τ1 ∈ P τ2 ∈ I

Table 3.16: Extended conversion relations for memory operations

Tables 3.15 and 3.16 describe the additions to the typing rules required for memory

operations. The set P includes all possible pointer types. Note that icmp may be used

to compare pointers, and that select is restricted to types in I ∪ F ∪ P , the types of

first-class values. The bitcast instruction is now limited to convert between integer

and floating-point values of the same width, or between arbitrary pointers.20 Only

inttoptr and ptrtoint can convert between pointer and non-pointer types.

The getelementpointer instruction is unusual in that it takes an arbitrary number

of arguments. Excluding types, the first argument will be a pointer to an aggregate

type and subsequent arguments will be integer indices into its nested aggregate. The

relation τ
x−→ τ ′ indicates that the element in a τ aggregate at index x has type τ ′.

Similarly, τ
xi−→ τ ′ indicates a sequence of lookups into a nested structure. In a dialect

of Alive supporting only array aggregates, each element will have the same type and

a getelementpointer with n+ 1 arguments will index into an n-dimensional array.21

20Alive does not support multiple address spaces, so all pointers width-equal.

21Structures in LLVM may have elements with different types, but their indices must be constant to
allow for type checking. For Alive, this would mean that the return type will constrain the possible

86

The concrete syntax for array τ c is [τ x c] and for ptr τ is τ*. A pointer to an

array of c1 8-bit integers is [i8 x C1]*. The arguments to getelementpointer are

separated by commas. Both arguments to alloca are optional, with the number of

elements to allocate defaulting to one. All arguments to load except the pointer are

optional; the first comma is omitted if the result type is defaulted and the second comma

and align keyword are omitted if the alignment is defaulted. The default alignment is

determined by the result type and the ABI in use.

The DAG representation can be extended to work with memory operations by

adding a new type of edge representing the memory chain. Each load, store, and

alloca node will have exactly one incoming and out outgoing memory edge, with spe-

cial nodes indicating the initial and final memory states for the source and target.

Alternatively, to reflect the commutativity of load operations, each load would have

a single incoming edge, and a store might have several outgoing edges, all but one

leading to a load.

Encoding memory operations

Memory is represented as an array of bytes indexed by 32- or 64-bit integers. The

source and target begin with an initial memory array m0 and produce final memory

arrays ms and mt, respectively. Operations on this array can be encoded using the SMT

theory of arrays, or by using Ackermann’s expansion [4]. The well-defined conditions

for any memory operation include the requirement that all prior memory operations

were well-defined.

Memory accesses in LLVM must be done through a pointer associated with an

address range, or else that access has undefined behavior. In an Alive transformation, all

pointers come from input variables or alloca instructions, or are based on such a pointer

through conversions and getelementpointer operations. In particular, converting a

pointer to an integer, performing some arithmetic, and then converting back to a pointer

creates a new pointer that is based on the original. The based-on relation is transitive.

values the index could take.

87

Each alloca instruction allocates an address range that does not overlap any other

memory range. The pointer returned by alloca is constrained (1) to not be null, (2)

to be properly aligned, (3) to not overlap with any other allocated address range, and

(4) to not wrap around the memory space. Note that these rules are guaranteed by

the semantics of the instruction, not promises made about its arguments. Thus, they

would be encoded as auxiliary conditions (χ), not well-defined conditions (δ). The

newly-allocated address range is uninitialized, similar to an undef value. One way to

represent this property is to allocate a fresh bit-vector variable as large as the address

range, write its contents to memory, and then add the variable to Q. This ensures

that any bits left uninitialized by the source will not be considered changed if they

are written to by the target, but is insufficient to fully capture the behavior of undef,

since multiple reads from the same initialized location will always return the same bit

pattern.

The load instruction is implemented by reading multiple bytes from the memory

array and concatenating the results into the return value. It is undefined behavior to

read from a null pointer or from a location not in any address range or if the pointer is

poison.

The store instruction is implemented by dividing the stored value into bytes and

storing each byte into memory individually. No memory is written if undefined behavior

has occurred prior to this instruction. It is undefined behavior to write to a null pointer

or from a location not in any address range or if the pointer or value is poison.

Pointers derived from input variables are considered to be part of an unknown

address range. Nothing can be known about these address ranges, except that they do

not include any memory allocated by alloca or (out-of-range) accessed by a pointer

based on a pointer returned by alloca.

This encoding promotes reads and write of poison to undefined behavior. An al-

ternative encoding tracks each byte for poison status using a second array. Reading a

value returns poison if any of its bytes are poison, and storing poison marks all bytes

written to as poison.

88

Memory correctness condition

The constraints for alloca are stored in auxiliary conditions, which necessitates adding

auxiliary conditions for the source (χs) to the last three correctness conditions in Sec-

tion 3.2.7. A sixth correctness condition then requires the final states of memory to be

equal:

∀V,i ∃Qs : χs ∧ χt ∧ χp ∧ φ =⇒ select(ms, i) = select(mt, i) (3.25)

where i ranges over addresses and select(m, i) looks up index i in array m. Note that

this equality is required to hold even if the source has undefined behavior or returns

poison. In LLVM, undefined behavior does not propagate backward, so it cannot undo

prior memory operations. For this reason, store and alloca operations have no effect

if they occur after an instruction with undefined behavior.

On the other hand, one could argue that a program with undefined behavior has no

defined final memory state, because its possible behaviors include all possible combina-

tion of store instructions. Under this interpretation, the correctness check for memory

only applies when the source is well-defined:

∀V,i ∃Qs : χs ∧ χt ∧ χp ∧ φ ∧ δs =⇒ select(ms, i) = select(mt, i). (3.26)

The memory states must still be equal if the source returns poison, because it is possible

that the poison value will not cause undefined behavior.

An argument could be made for an additional correctness condition that ensures

any two pointers which refer to distinct address ranges in the source also refer to

distinct address ranges in the target. Consider a statement %r = select %c, %p, %q

that chooses between two pointers. This statement implies that %r is based on %p or

%q but does not imply any relationship between %p and %q. A transformation might

replace the select instruction with an arithmetic expression, as seen in Figure 3.8, after

first converting %p and %q to integers and the converting the result back to a pointer.

Ignoring poison values, such a transformation does not change the computed result or

any memory accesses, but in the target %r is now based on both %p and %q, implying a

relationship between them due to transitivity. If %p and %q were both based on separate

89

alloca instructions, this transformation has now caused any memory access using %r

to be undefined.

3.5.5 Combining poison and undef

Recent work [65] has proposed changing the semantics of LLVM to combine the ideas

of undef and poison values. Operations that previously returned an undef-like value

or undefined results (see Section 3.2.5) instead return poison values.

A freeze instruction is added that has no effect on non-poison values, but replaces

poison values with an arbitrary bit pattern. Like undef, different freeze instructions

applied to the same poison value will get different bit patterns. Unlike undef, different

references to the same freeze instruction will get the same bit pattern. Freezing poison

values is necessary to prevent undefined behavior in some circumstances. For example,

a conditional branch has undefined behavior if the condition is poison, as opposed to

non-deterministic behavior if the condition is undef or frozen poison. The encoding of

freeze τ x is

ι =

 ιx if ρx

u if ¬ρx
(3.27)

Q = Qx ∪ {u} (3.28)

ρ ≡ > (3.29)

where u is a fresh variable consistently chosen for this instruction.

Alive-NJ includes an encoding using the proposed semantics. The freeze instruction

can be used with any encoding, but by default it is encoded as a no-op.

3.6 The Alive-NJ Toolkit

The Alive-NJ toolkit includes a verifier for Alive transformations using the dialect of

Alive described in Section 3.1 according to the interpretation in Sections 3.2 and 3.3.

It was originally created as part of the Alive-FP project for verifying transformations

involving floating-point operations [87], and is a ground-up rewrite of the original Alive

toolkit [75]. Based on the experience of creating the original toolkit and the Alive-Loops

90

termination checker [85] (see Chapter 5), Alive-NJ is designed to facilitate experiments

with extensions to Alive and alternative semantics, and as a foundation for building

additional tools, such as the Alive-Infer precondition inference tool [86] described in

Chapter 4. The implementation is roughly 6,200 lines of Python, with an additional

2,000 lines for Alive-Infer. SMT queries are resolved using the Z3 solver [28].

Internally, Alive-NJ uses the DAG representation of Alive transformations, with

each instruction, input variable, constant expression, and predicate represented as an

object. A transformation includes references to the roots of the source, target, and pre-

condition. Alive-NJ additionally allows transformations to have an assumption, which

is a special precondition used for precondition inference (see Section 4.3.2). Assump-

tions are used by verification, but are not checked by the generated implementation.

The representation is treated as immutable: Alive-NJ never modifies a representation

object after it is created.

Type checking is performed by collecting constraints for each term in a transforma-

tion. Terms that must have the same type are unified, and other requirements such as

width-ordering or -equality are captured separately. Type checking succeeds if the con-

straints contain no contradictions and produces a type environment. This environment

maps each term to a type variable, and includes the type-correctness constraints ex-

pressed in terms of these variables. Using a type environment, one can then enumerate

type models, which assign a concrete type to each type variable.

Separating the type environment from the DAG representation allows terms to be re-

used in different contexts, which can be convenient for rapid prototyping. Separating the

abstract type environment from the concrete type model simplifies creation of correctly

typed, type-parametric terms (for example, by the predicate enumerator described in

Section 4.4.4).

Alive-NJ is designed to support multiple encodings of Alive terms, corresponding

to different interpretations of the semantics or even different methods of correctness

checking. Encoding is performed by an encoder object, which produces the six parts

of the SMT encoding for a term with respect to a type model. New encodings can

be added by creating a subclass of BaseSMTEncoder and overriding its behavior where

91

import alive.language as L

import alive.smtinterp as E

import alive.tools.verify as V

import z3

class RotlInst(L.IntBinaryOperator):

code = "rotl"

@E.eval.register(RotlInst, E.BaseSMTEncoder)

def _(term, encoder):

x = encoder.eval(term.x)

y = encoder.eval(term.y)

ty = encoder.type(term)

y = z3.URem(y, ty.width)

return (x << y) | z3.LShR(x, ty.width - y)

if __name__ == ’__main__’:

V.main()

Figure 3.20: A Python module that adds a rotl (rotate left) instruction to Alive. The
eval method dispatches based on the class of the term and the encoder being used and
returns an SMT expression encoding its result. Well-defined and poison-free conditions
propagate automatically.

desired. Alive-NJ includes subclasses that encode undefined results as undef or poison

(see Section 3.2.5), all five interpretations of select (see Section 3.3.6), and the proposed

unification of undef and poison (see Section 3.5.5).

In addition to different encodings, Alive-NJ is designed to enable experimentation

with additions to the language. In particular, new binary arithmetic and conversion

instructions, constant functions, and predicate functions can be added to the language

without modifying any code in Alive-NJ itself. Figure 3.20 shows a complete Python

module that extends Alive with a rotl (rotate left) instruction. This module may be

imported by other tools, and may be executed as a script to verify transformations in

its extended Alive language.

The module has three parts. First, it declares the class RotlInst, which represents

a rotate left instruction internally. Alive-NJ uses metaprogramming facilities in Python

so that declaring this class automatically extends the grammar of the binary operator

instructions to include rotl. This affects both the parser and the pretty-printer, so

92

importing this module gives Alive-NJ the ability to read and write Alive transformations

that use rotl. Because RotlInst inherits from L.IntBinaryOperator, it will constrain

its arguments and result to have the same integer type.

The next block of code extends the eval function to be able to encode rotl in-

structions. Alive-NJ implements eval using double-dispatch, so that its behavior can

be specialized for specific classes of terms and for specific encoders. In this case, we

are registering a method for RotlInst and the base encoder class. The body of the

method uses the encoder to evaluate the arguments of the instruction and its return

type. Next, it finds the remainder of y divided by the bit width of its return type,

because rotating a w-bit integer by nw+ y places is equivalent to rotating by y places.

Finally, it computes the result by combining a left shift by y places with a logical right

shift by w − y places.

The final part of the code is executed if the module is executed as a script, as

opposed to importing it. Once the new instruction has been created and inserted into

the parser, pretty-printer, and encoders, it invokes the built-in verification tool, which

will interpret command-line options, read files, and verify transformations as usual, but

now with support for an additional instruction.

3.7 Evaluation

During the development of Alive and the Alive toolkit, we created several hundred

Alive transformations by translating code present in the InstCombine and Instruction-

Simplify phases of LLVM. These transformations were checked for correctness and used

to generate a new peephole optimizer, which was tested for performance and for the

performance of the code it optimized.

The goals of Alive go beyond checking the correctness of existing code, useful as that

may be. Alive is intended to simplify the development of new peephole optimizations,

and to make it less likely that incorrect transformations will be added to LLVM. Alive

has detected errors in proposed transformations, and is now commonly used to check

the correctness of proposals.

93

By providing a framework for automated correctness checking and a large collection

of transformations that are known to be desirable, Alive has also proven useful for test-

ing proposed changes to the LLVM semantics. The effect of proposals can be measured

by creating a modified Alive toolkit (or adding a new encoding to Alive-NJ) that uses

the new semantics and then observing whether any transformations change correctness

status.

3.7.1 Translation of transformations from LLVM

Concurrent with the development of Alive and subsequent extensions, several hundred

transformations implemented by the InstructionSimplify and InstCombine passes in

LLVM have been translated into Alive specifications. The purposes for this were two-

fold: to provide a body of real-world transformations specified in Alive, for the purposes

of better understanding the language and judging its implementation, and to assess the

correctness of transformations already performed by Alive. During the initial develop-

ment, 334 transformations were translated to Alive. Alive-NJ currently includes a suite

of 417 integer-based transformations, 96 floating-point–related transformations.

Of the original 334 transformations, eight (2.4%) were found to be incorrect (see

Figure 3.21). The most common form of bug was the introduction of undefined be-

havior for some inputs that were defined for the source pattern, with the remainder

introducing poison or changing the computed result. Subsequent work has discovered

six integer-related bugs and nine floating-point–related bugs, six found by Alive-FP [87]

(see Figure 3.22) and three found by others [95], for a total of 23 bugs in existing code

discovered as of this writing.

The time needed to verify a transformation varies greatly. Verifying a transforma-

tion requires solving up to five SMT queries for each type assignment. Even when type

assignments are limited to those not exceeding 64-bit integers, a transformation involv-

ing conversion instructions can easily have several thousand type assignments. Most

queries are resolved in a fraction of a second, but queries that depend on non-linear

arithmetic, particularly multiplication and division, will take increasingly long as the

94

Name: PR20186

%a = sdiv %X, C

%r = sub 0, %a

=>

%r = sdiv %X, -C

(a)

Name: PR20189

%B = sub 0, %A

%C = sub nsw %x, %B

=>

%C = add nsw %x, %A

(b)

Name: PR21242

Pre: isPowerOf2(C1)

%r = mul nsw %x, C1

=>

%r = shl nsw %x, log2(C1)

(c)

Name: PR21243

Pre: !WillNotOverflowSignedMul(C1, C2)

%Op0 = sdiv %X, C1

%r = sdiv %Op0, C2

=>

%r = 0

(d)

Name: PR21245

Pre: C2 % (1<<C1) == 0

%s = shl nsw %X, C1

%r = sdiv %s, C2

=>

%r = sdiv %X, C2/(1<<C1)

(e)

Name: PR21255

%Op0 = lshr %X, C1

%r = udiv %Op0, C2

=>

%r = udiv %X, C2 << C1

(f)

Name: PR21256

%Op1 = sub 0, %X

%r = srem %Op0, %Op1

=>

%r = srem %Op0, %X

(g)

Name: PR21274

Pre: isPowerOf2(%P) && hasOneUse(%Y)

%s = shl %P, %A

%Y = lshr %s, %B

%r = udiv %X, %Y

=>

%sub = sub %A, %B

%Y = shl %P, %sub

%r = udiv %X, %Y

(h)

Figure 3.21: Incorrect integer arithmetic transformations found in LLVM

95

Name: PR26746

Pre: C == 0.0

%1 = fsub -0.0, %x

%r = fsub C, %1

=>

%r = %x

(a)

Name: PR27151

Pre: C == 0.0

%y = fsub nnan ninf C, %x

%z = fadd %y, %x

=>

%z = 0

(b)

Name: PR26862-1

%r = fdiv undef, %x

=>

%r = undef

(c)

Name: PR26862-2

%r = fdiv %x, undef

=>

%r = undef

(d)

Name: PR26863-1

%r = frem undef, %x

=>

%r = undef

(e)

Name: PR26863-2

%r = frem %x, undef

=>

%r = undef

(f)

Name: PR27153

Pre: sitofp(C2) == C1 && WillNotOverflowSignedAdd(%a, C2)

%x = sitofp %a

%r = fadd %x, C1

=>

C2 = fptosi(C1)

%y = add nsw %a, C2

%r = sitofp %y

(g)

Figure 3.22: Incorrect floating-point transformations found in LLVM

96

size of the integers increases. To avoid spending several hours on verification, transfor-

mations in the Alive suite involving non-linear arithmetic are often restricted to use a

single type assignment involving small integers.

3.7.2 Performance of generated implementation

A new peephole optimization pass was created by generating implementations for the

334 transformations originally derived from LLVM. The performance of this imple-

mentation was compared against LLVM 3.6 by comparing the time needed to compile

LLVM’s test suite and the SPEC 2000 and SPEC 2006 benchmarks, and by comparing

the performance of the programs.

The new peephole optimizer uses the infrastructure of InstCombine, but replaces

the call to visit, which attempts to transform a single instruction, with a call to a

new function created by the code generator. This function tested the instruction on

every transformation that had a root instruction with the same opcode, applying the

first one that matched.22 We will call the resulting compiler LLVM+Alive.

Experiments were performed on an Intel X68-64 machine running Ubuntu 14.04.

Compilation was performed with optimization level 3. On average, LLVM+Alive com-

piled the SPEC 2000 and SPEC 2006 benchmarks 7% faster than LLVM. This is most

likely because LLVM+Alive excludes two-thirds of the optimizations in InstCombine,

meaning that fewer transformations were applied and fewer secondary opportunities

to transform were created. In particular, LLVM+Alive included no transformations

targeting getelementpointer instructions, which is the opcode LLVM most frequently

transformed when compiling the benchmarks.

The benchmark programs compiled by LLVM 3.6 and LLVM+Alive were then ex-

ecuted on their reference inputs. LLVM+Alive-compiled code showed an average 3%

slowdown across the SPEC benchmarks. Performance on individual benchmarks varied,

with LLVM+Alive-compiled code faster by 7% on the gcc benchmark and slower by

22This matches the structure of InstCombine, which only attempts to optimize an add instruction
with transformations that apply to adds. Earlier versions of the generated code did not group the
transformations in this way, resulting in slower performance.

97

10% on the equake benchmark. Some slowdown was expected, given that LLVM+Alive

performed fewer optimizations than LLVM 3.6.

During testing, LLVM+Alive consistently entered an infinite loop for specific bench-

marks. The cause of this was eventually determined to be optimizations whose pre-

conditions were weakened during translation, because they were stronger than needed

for correctness. The stronger preconditions were needed to prevent a transformation

from repeatedly applying to its own output, or to prevent one transformation from un-

doing another. These transformations were corrected or removed and are not reflected

in the performance numbers. Later conversation with LLVM developers revealed that

non-termination in InstCombine was a problem that occasionally cropped up and was

difficult to diagnose. This inspired the work on non-termination checking discussed in

Chapter 5.

3.7.3 Adoption by developers

Alive is commonly used by LLVM developers to evaluate the correctness of proposed

peephole optimizations and has been used to detect several incorrect transformations at

the time of proposal. For example, in July 2014, a developer proposed an optimization

that improved performance for a SPEC benchmark by 3.8%. While this transformation

passed LLVM’s regression tests, it was proven incorrect after translation to Alive. After

some discussion, its precondition was strengthened sufficiently to make the transforma-

tion correct and the patch was accepted to LLVM [54].

Recent work to simplify the semantics of LLVM [65, 74] created a prototype version

of LLVM that implemented the proposal and used a modified version of Alive to check

its optimizer. Using a tool, they generated programs involving up to three instructions,

optimized them using the prototype, and then used Alive to test whether the optimized

code refined the original.

The goal of Alive was to create a system for automated verification of LLVM peep-

hole optimizations that would be usable by mainstream developers. Alive now has

several open source implementations [75, 84] and an on-line service provided on the

web [1]. Alive is now sufficiently well-known that a brief outage of its web interface

98

lead to developers asking on the LLVM mailing list asking for its status [121]. It would

be fair to say Alive has met its goal.

3.8 Summary

Alive is a language for specifying peephole transformations for LLVM IR that has been

designed to enable automated correctness checking of transformations and translation

into C++ code suitable for use in LLVM. In particular, Alive can reason about unde-

fined behavior present in the code being transformed and in the transformation process

itself. Several hundred transformations included in LLVM have been translated into

Alive and checked for correctness, uncovering several bugs in the process. More im-

portantly, Alive is now used by LLVM developers to check the correctness of proposed

new transformations for the peephole optimizer. By carefully designing a language, the

Alive project has created a verification tool that has the power of formal methods while

remaining usable by mainstream developers.

99

Chapter 4

Automated Precondition Inference

Alive provides a way to specify transformations of LLVM IR, and the Alive toolkit will

automatically determine whether these transformations are correct. To aid developers

who have written an incorrect transformation, the toolkit will report a counter-example,

showing a case where the transformation would change the behavior of a program, either

by computing a different result or by introducing undefined behavior. The developer

can then create or strengthen the precondition for that transformation to exclude the

cases where it is incorrect.

For example, given the transformation in Figure 3.21(a), Alive will report that the

transformation is incorrect if %X is poison and C is 1, because the source will return

poison but the target will have undefined behavior. This is because the target will

divide %X by −1, which has undefined behavior if %x is the minimum signed integer

(see Table 3.9). This case can be avoided by adding a precondition C != 1, but it is

not sufficient to make the transformation correct. If %X and C are both the minimum

integer, the source will return −1 but the target will return 1. This is because negating

the minimum integer overflows, returning the minimum integer. To avoid this case,

the precondition can be strengthened to to C != 1 && !isSignBit(C).1 With this

precondition, Alive will report that the transformation is correct.

Unfortunately, debugging an incorrect transformation can be considerably more

challenging. Figure 4.1(a) shows an incorrect transformation that was proposed to the

LLVM developers mailing list for addition into LLVM. It passed LLVM’s regression

tests and showed a small but significant speed-up on one of the SPEC 2006 bench-

marks. Unfortunately, Alive showed it to be incorrect, even when the precondition was

1The isSignBit(C) predicate from LLVM is true if and only if C is the minimum signed integer.

100

Pre: isPowerOf2(C1 ^ C2)

%x = add %A, C1

%i = icmp ult %x, C3

%y = add %A, C2

%j = icmp ult %y, C3

%r = or %i, %j

=>

%a = and %A, ~(C1 ^ C2)

%z = add %a, umax(C1, C2)

%r = icmp ult %z, C3

(a) An incorrect transformation proposed for
LLVM

C1 u> C3 &&

C2 u> C3 &&

isPowerOf2(C1 ^ C2) &&

isPowerOf2(-C1 ^ -C2) &&

-C1 ^ -C2 == (C3-C1) ^ (C3-C2) &&

abs(C1 - C2) u> C3

(b) A precondition that makes the transforma-
tion correct

Figure 4.1: Finding a good precondition for a transformation can be difficult. It took
several attempts to find (b), a precondition that makes (a) correct [54]. However, this
precondition is both unusually complex and admits only a fraction of the cases where
the transformation is correct.

strengthened to require C1 u> C3 and C2 u> C3. Eventually, with the assistance of

Alive and an expert on LLVM semantics, the developer found the precondition shown

in Figure 4.1(b) [54], which is sufficient to make the transformation correct.

Finding a precondition that makes a transformation correct is important, but it is

not the only factor that must be considered. In some cases, a precondition will make

a transformation correct but prevent it from applying in some cases where it would be

safe. For example, when using 1-bit arithmetic, the transformation in Figure 3.21(a) is

correct when C is 1, but this is rejected by the suggested precondition. Similarly, the

precondition in Figure 4.1(b) prevents the transformation from being applied in many

circumstances where it would be safe to do so.

The complexity of a precondition must also be considered. If the precondition for

Figure 3.21(a) is weakened to permit the 1-bit case where C is 1, it becomes at least

50% larger: (C != 1 && !isSignBit(C)) || width(C) == 1. Large preconditions

with many nested clauses are difficult to understand and may slow compilation.

A developer creating a transformation must find an precondition that makes the

transformation correct, but occasionally must choose between a widely applicable pre-

condition and a concise, understandable precondition. This chapter describes Alive-

Infer, a method for automatically generating preconditions that make a transformation

101

correct. The only input required is the transformation itself. Alive-Infer generates many

preconditions, some brief, others attempting to accept as many programs as possible.

Each precondition is combined with the transformation and verified: only preconditions

that make the transformation correct are reported to the user. Alive-Infer halts once it

finds a precondition that makes the transformation correct and is proven to allow the

transformation to apply in every situation where it would be correct.

Alive-Infer can be used to debug incorrect transformations, by finding a sufficiently-

strong precondition, or it can be used to generalize correct transformations, by finding

preconditions that accept more programs while keeping the transformation correct.

4.1 Predicates and Preconditions

A precondition is part of a transformation that restricts the cases where it can apply.

The precondition is a predicate, or Boolean-valued expression using variables defined

by the source of the transformation. Predicates follow the grammar described by the

pre production in Figure 3.3. They can be divided into two groups: compound predi-

cates, which are constructed from logical connectives and other predicates, and atomic

predicates, which include true, comparisons, and predicate functions.

Predicates, and preconditions, can be partially ordered according to strength. Two

preconditions have the same strength if they are equivalent. That is, predicates P and

Q have the same strength if

∀V : P ⇐⇒ Q. (4.1)

For example, the predicates C1 u<= 1 and C1 >= 0 && C1 <= 1 are equivalent.

A predicate P is stronger than a predicate Q if P rejects whenever Q rejects but

does not accept whenever Q accepts. If P is stronger or equivalent to Q, it will accept

whatever Q accepts, that is

∀V : P =⇒ Q. (4.2)

For example, C1 != 1 is stronger than C1 > 1.

It is possible that P is not equivalent, weaker than, or stronger than Q, in which

case they are unordered. For example, C1 < C2 and C1 u< C2 are not ordered.

102

For each transformation T there is a set of predicates that could be its precondition,

which is determined by the grammar of Figure 3.3 as well as the variable scoping and

type correctness rules. Depending on the predicate used for its precondition, T may be

correct or incorrect. If T is correct when its precondition is a predicate P , we say that

P is a sufficient precondition. Not all sufficient preconditions are equally useful. The

strongest predicate, !true, is always sufficient, because it makes T trivially correct by

preventing it from ever being applied. To be useful, a precondition should be weaker

than !true.

A sufficient precondition P is a full precondition if no weaker sufficient preconditions

exist. A full precondition allows T to apply to every program where applying T is

a refinement. It is sometimes referred to as the weakest precondition, but it is not

guaranteed to be unique.

Any sufficient precondition that is not full is a partial precondition. Such a precon-

dition will prevent T from applying to some programs where it would be a refinement.

Occasionally, a partial precondition will be more concise than a full precondition while

still accepting sufficiently many programs to be useful.

4.2 Precondition Inference

The goal of Alive-Infer is to generate sufficient preconditions for a transformation,

including concise partial preconditions and a full precondition. This could be accom-

plished in several ways. A simple strategy is to enumerate candidate preconditions in

non-decreasing order of size, checking each one to see whether it is sufficient. Assuming

that a finite sufficient precondition exists, this method is guaranteed to eventually find

it. Unfortunately, this process may require an enormous amount of time: the transfor-

mation will need to be verified for each enumerated precondition, and the number of

preconditions grows exponentially with size.

Frequently, complex preconditions are compound predicates containing several dif-

ferent atomic predicates linked with logical connectives. Because the search space grows

103

exponentially with size, enumerating several small predicates is much faster than enu-

merating one large, compound predicate—even if enumeration starts from the beginning

for each predicate. The Predicate Inference Engine (PIE) [96] takes advantage of this by

learning preconditions in two phases. First, it learns predicates through enumeration,

then it finds a formula using these predicates that will become the precondition.

In order to learn predicates, PIE must be able to assess their likely usefulness. It does

this by generating positive and negative examples, representing concrete situations that

the desired precondition must accept or reject, respectively. When learning predicates,

it looks for ones that help separate the positive and negative examples. Once enough

predicates have been learned, it finds a minimal formula using them that accepts all

positive examples and rejects all negative examples.

Alive-Infer is inspired by the approach of PIE, but adapts it to Alive and makes

several additions. First, unlike the programs PIE reasons about, Alive transformations

have two kinds of variables: symbolic constants, which have values known to the com-

piler, and input variables, which are not known to the compiler. The precondition

must accept or reject without knowing the values of the input variables, so determining

whether an example is positive or negative will involve universal quantification. Sec-

ond, Alive transformations, including preconditions, are type parametric. Care must be

taken to ensure that predicates are type correct for all assignments of types to the pre-

condition. Moreover, Alive-Infer must be able to infer preconditions such as width(%x)

u> 1, which vary based on type assignments alone. Third, PIE only reasons about

predicates that are defined for all argument values, but Alive frequently uses predicates

such as C1 % C2 == 0, which are not defined for some examples. Alive-Infer reasons

about partially-defined predicates and ensures that all generated preconditions are safe

(i. e., do not have undefined compile-time behavior). Finally, Alive-Infer generates both

full preconditions and partial preconditions. These use two different formula learners,

which are oriented towards accepting all positive examples and maintaining a bound

on formula complexity, respectively.

Algorithm 4.1 shows the high-level structure of Alive-Infer. The inputs are a trans-

formation T and an optional set of initial predicates P0. The initial step is to derive

104

Algorithm 4.1 Infer a precondition for transformation T starting with predicates P0

1: procedure InferPrecondition(T, P0)
2: E+, E− ← GenerateExamples(T)
3: P ← P0 . learned predicates P
4: loop
5: φ, P ← InferByExamples(T, P,E+, E−) . candidate precondition φ
6: e− ← FindCounterExamples(T, φ)
7: if e− 6= ∅ then
8: E− ← E− ∪ e−
9: else

10: φ← EnsureSafety(T,E+, E−, φ)
11: e+ ← FindPositiveExamples(T, φ)
12: if e+ = ∅ then
13: Report full precondition φ
14: return
15: else
16: Report partial precondition φ
17: E+ ← E+ ∪ e+
18: end if
19: end if
20: end loop
21: end procedure

positive and negative examples from T , using the example generation methods de-

scribed in Section 4.3. Next, it repeatedly infers candidate preconditions φ until it

finds one that is sufficient and necessary to make T correct. Line 5 finds φ and updates

the set P of predicates with any new predicates learned by InferByExamples. The

candidate will reject all examples in E−, but may accept unknown negative examples.

Line 6 searches for these examples, adding them to E− if they exist. If none exist, φ is

sufficient to make T correct and will be reported to the user as a full or partial precondi-

tion, depending on whether φ rejects any known or unknown positive examples. Line 11

searches for positive examples rejected by φ. If none exist, then φ is reported as a full

precondition and InferPrecondition halts. Otherwise, φ is reported as a partial

precondition. Any new positive examples are added to E+ and inference continues.

Note that InferPrecondition only reports preconditions that are sufficient to

make T correct. The procedure halts once it finds a precondition that is both sufficient

and necessary, meaning it accepts all possible positive examples (with some possible

exceptions, as discussed in Section 4.3.2).

105

The prototype implementation in Alive-NJ follows this basic outline, but has addi-

tional details. For example, InferPrecondition only checks for additional positive

examples when the generated precondition is a candidate full precondition. Structurally,

InferPrecondition and InferByExamples are implemented as co-routines, permit-

ting InferByExamples to retain internal data structures and avoid generating any

precondition more than once.

The subroutine FindCounterExamples simply verifies the correctness of T with

precondition φ, using the methods described in Chapter 3, but augmented to return

multiple counter-examples for incorrect transformations. Unlike normal verification,

FindCounterExamples assumes that φ is always safe by additionally asserting its

safety condition σp. Once the lack of counter-examples has been confirmed, the safety

assumption is made explicit by EnsureSafety, which is described in Section 4.5.3.

Finally, FindPositiveExamples finds positive examples for T that are rejected

by φ. This is an extension of the method for finding positive examples discussed in

Section 4.3.

4.3 Generating Examples

The core of Alive-Infer is data-driven precondition inference. The algorithm uses two

sets containing positive and negative examples, respectively, and learns a precondition

that accepts the positive examples and rejects the negative examples. In PIE, an

example is an assignment of values to variables, but Alive has two kinds of variables,

only one of which is available to the compiler. Rather than representing a program

state which may or may not satisfy a precondition, examples in Alive-Infer represent

abstract program fragments where applying a transformation may or may not always

refine its behavior.

The precondition is only evaluated when the input code matches the transforma-

tion’s source pattern, so that structure can be assumed. What remains are the parts

of LLVM IR that Alive abstracts, such as types and symbolic constants. An exam-

ple, then, is an assignment of concrete types to values and concrete values to symbolic

106

constants.2 If the source were to be made concrete using these assignments, then the

source could be used directly as LLVM IR (assuming it is embedded into an LLVM

function, as in Section 5.4).

In addition to types and constants, Alive preconditions can also refer to the results of

dataflow analyses. In principle, these could also be represented as part of the example,

but each possible analysis would require separate results. If the source has three input

variables, there will be three to six possible analyses for each of the dataflow predicate

functions just using the variables. For the binary functions, the number of possible

analyses grows quadratically with the number of input variables and symbolic constants.

For this reason, Alive-Infer does not infer preconditions that use dataflow analyses.

However, extending examples to include a subset of analysis results, possibly selected

by the user, should be relatively simple and would require no changes to the core

algorithm.

Note that dataflow predicates typically provide exact results if their arguments are

symbolic constants. Because their behavior can be determined at compile time, they

do not require additional variables in the example to represent their results, and can

be enumerated in the same manner as non-dataflow functions.

4.3.1 Classification of examples

Each example represents a concrete code fragment. For positive examples, applying the

transformation to that fragment will refine the behavior of the fragment. For negative

examples, applying the transformation will change its result or introduce undefined

behavior.

More concretely, an example for a transformation T is a pair 〈τ, ĉ〉, containing a

type assignment τ for the values in T and a value assignment ĉ for C, the symbolic

constants in T . If, and only if, the correctness conditions given in Section 3.2.7 are

satisfied for the encoding of T with types τ and substituting the values in ĉ for the

variables in C, then 〈τ, ĉ〉 is a positive example.

2As an optimization, the Alive-NJ prototype associates each value with a type variable. Examples
then provide concrete types for type variables, rather than individual terms.

107

Because T has no precondition, the correctness conditions can be reduced to

Ψ ≡ ∀I,P,Qt∃Qs : χt =⇒ σt ∧ (δs =⇒ δt) ∧ (δs ∧ ρs =⇒ ρt ∧ ιs = ιt). (4.3)

An example 〈τ, ĉ〉 is positive if and only if Ψ is satisfied using an encoding with types

τ and substituting the variables in C according to ĉ.

4.3.2 Explicit assumptions

Not all examples are equally desirable. Recall the incorrect transformation in Fig-

ure 3.21(a), which is incorrect when C equals 1. To be correct, the precondition must

forbid C to be 1, but, in the context of a larger transformation pass, this check is

unnecessary. A higher-priority transformation will replace sdiv x, 1 with x before the

corrected transformation can apply. Thus, only the requirement that C not be the min-

imum signed integer is needed to ensure that the peephole optimization pass as a whole

is correct.

Often, transformations will have edge cases that would make the precondition more

complex to handle appropriately, but which are guaranteed not to occur. Recall that

the full precondition for Figure 3.21(a) needed to exclude C equal to 1 except when

C is a 1-bit value, in order to allow an obscure case that, in the context of the whole

optimizer, will never occur.

To avoid this unnecessary complexity, Alive-Infer allows transformations to state

explicit assumptions about the examples they will encounter. Examples that violate

these assumptions are neither positive or negative: the precondition is free to accept or

reject them without affecting the correctness of the transformation or the generality of

the precondition. In particular, a full precondition may reject positive examples do not

satisfy the assumption. This means that two full transformations may not be equivalent

if they differ for examples that violate the assumptions.

Like the precondition, an explicit assumption will be a predicate A using variables

from the transformation. Its safety condition, σA, should be satisfied for all values of

symbolic constants, and it should not depend on any dataflow analysis. We will write

α for the encoding of A under some type assignment.

108

Assume: C != 1

Pre: !isSignBit(C)

%a = sdiv %X, C

%r = sub 0, %a

=>

%r = sdiv %X, -C

Figure 4.2: The transformation from Figure 3.21(a), with an explicit assumption and
a precondition that is full with respect to the assumption

In the concrete syntax, explicit assumptions can be provided using an Assume:

header, which is syntactically similar to the precondition header. If no explicit as-

sumption is provided, it defaults to true. Figure 4.2 shows the transformation from

Figure 3.21(a) with an explicit assumption. Because the assumption excludes all cases

where C is 1 from consideration, the precondition is full.

In addition to any explicit assumptions, Alive-Infer also assumes that the source

is well-defined and poison-free for at least one assignment of the input variables. The

correctness condition Ψ is trivially satisfied if the source is never well-defined and poison-

free, but requiring the precondition to accept these examples can complicate it by

introducing edge cases. Such an ill-defined program is likely to be removed by other

optimization passes, so extra work spent to allow optimization of those programs is

wasted.

Thus, all examples generated by Alive-Infer will satisfy this condition:

Φ ≡ α ∧ (∃I,Qs : δs ∧ δt). (4.4)

In particular, positive examples will satisfy Φ ∧Ψ while negative examples will satisfy

Φ ∧ ¬Ψ.

4.3.3 Generation methods

The goal of example generation is to find an initial set of examples that satisfy the

assumptions Φ and to classify them as positive or negative, depending on whether they

satisfy the correctness condition Ψ. Starting inference with a small number of examples,

or none, is likely to result in InferByExamples generating an insufficient or partial

precondition. The verification checks in InferPrecondition will detect this, and add

109

Pre: width(%r) != 1

%r = add %x, %x

=>

%r = shl %x, 1

Figure 4.3: Alive-Infer is able to infer the precondition shown for this transformation,
even though it contains no symbolic constants

more negative or positive examples as needed, but finding examples using solver queries

can be slow. A transformation with a complex boundary between positive and negative

examples may require many examples to correctly guide the inference process. Starting

inference with a large number of examples, generated using faster methods, will result

in faster generation of better preconditions.

Alive-Infer includes two methods for generating the initial examples. Both methods

assume a given type assignment τ . A transformation T may have many valid assign-

ments, and including examples with different assignments will increase the likelihood

of learning predicates that are type-dependent (e. g., width). The Alive-NJ prototype

enumerates type assignments (up to a limit on integer width) and chooses a subset

that is roughly logarithmic in the total number of feasible assignments. It does this by

skipping some assignments, and doubling the number of assignments to skip each time.

The number of type assignments for a transformation is exponential in the number of

independent type variables, so this logarithmic sampling provides a set of assignments

roughly linear in the number of type variables.

Happily, the methods described below work even in the trivial case where C is

empty. Each type assignment will still give rise to a separate example containing an

empty value assignment ĉ, and the example generation methods will correctly determine

whether this example is positive or negative. Figure 4.3 shows a transformation with

a non-trivial precondition that involves only type information. It is incorrect in the

1-bit case, because any shifting of a 1-bit integer will overflow. Alive-Infer will generate

multiple examples that differ only by type assignment, and then learn an appropriate

precondition equivalent to the one shown in the figure.

The methods use SMT queries to classify or generate examples. These queries are

based on the assumption filter Φ from Equation (4.4) and the correctness condition Ψ

110

from Equation (4.3), and produce positive examples that satisfy Φ ∧ Ψ and negative

examples that satisfy Φ ∧ ¬Ψ. Unfortunately, the quantifier alternation in Ψ becomes

a double quantifier alternation when using Φ ∧Ψ as a query for positive examples.

Random selection

There are several methods for generating value assignments. The simplest method is to

randomly select values for each symbolic constant according to its assigned type, and

then classify the resulting example as positive or negative using an SMT solver. For

a given type assignment τ , ĉ is created by randomly selecting values for each variable

according to their type assigned by τ .

Each generated example 〈τ, ĉ〉 is checked twice: first to see whether it satisfies the

assumptions, and second to classify it as positive or negative. An example that does

not satisfy the assumptions is discarded.

Writing α for the encoding of the explicit assumption, the assumption test checks

whether α is satisfied by ĉ and whether the source is well-defined and poison-free for at

least one assignment of the run-time variables I. The SMT solver is given the query

∃I,Qs : α ∧ δs ∧ ρs, (4.5)

after the values in C have been replaced with concrete values according to ĉ. If the

formula cannot be satisfied, the assumptions are violated and the example is discarded.

Examples that satisfy the assumptions must now be classified as positive or negative.

An example is negative if some assignment to I exists that violates the correctness

conditions from Section 3.2.7. The SMT solver is given the query

∃I,P,Qt∀Qs : χt ∧ ¬σt ∨ (δs ∧ ¬δt) ∨ (δs ∧ ρs ∧ (¬ρt ∨ ιs 6= ιt)), (4.6)

after the values in C have been replaced with concrete values according to ĉ. If the

formula is satisfiable, then 〈τ, ĉ〉 is negative. Otherwise, it is positive.

Generation using a solver.

Random selection is relatively fast, but there is a risk that the examples it finds will be

all positive or all negative. To ensure that at least some positive and negative examples

111

are found (or to determine that none exist, in which case the precondition is trivial),

Alive-Infer uses a solver to generate positive and negative examples that satisfy the

assumptions.

A negative example will satisfy the assumptions but violate the correctness condi-

tions for some valuation of I. The query for the SMT solver simplifies to

∃C,I,P,Qt∀Qs : α ∧ δs ∧ ρs ∧ χt ∧ (¬σt ∨ ¬δt ∨ ¬ρt ∨ ιs 6= ιt). (4.7)

The model returned by the solver will include values for C, which are used to construct

ĉ.

Finding positive examples requires a more complex query, because the correctness

condition must hold for all valuations of I. Additionally, the source should be well-

defined and poison-free for at least one valuation of I. The resulting query is

∃C : α ∧ (∃I,Qs : δs ∧ ρs)

∧ [∀I,P,Qt∃Qs : χt =⇒ σt ∧ (δs =⇒ δt) ∧ (δs ∧ ρs =⇒ ρt ∧ ιs = ιt)].

(4.8)

Again, the model returned by the solver will provide values for C, which are used to

construct ĉ. The alternation of quantifiers may slow down the solver considerably, so

this method is best used when Qs is empty.

4.4 Predicate Learning

The data-driven inference method used by Alive-Infer has two parts: predicate learn-

ing and Boolean formula learning (discussed in Section 4.5). The former finds a set

of atomic predicates that may be useful to separate the positive and negative exam-

ples, and the latter uses the predicates to assemble a precondition. These stages may

be performed sequentially, as in PIE, first learning enough predicates to completely

separate the positive and negative examples, and then learning the formula using the

predicates. Instead, Alive-Infer interleaves these stages, generating a partial precondi-

tion each time a new predicate is learned. This allows Alive-Infer to begin reporting

suggested preconditions to the user before the learning process has completed.

Algorithm 4.2 outlines this process. The procedure InferByExamples is given a

transformation T , a set of previously learned predicates P , and two sets of examples

112

E+ and E−. It first searches for a mixed group of positive and negative examples, such

that no predicate in P will have different results for any two examples in the group.

If no mixed group exists, then it uses P to create a full precondition. Otherwise, it

uses the group to learn a new predicate by enumerating predicates until it finds one

that separates a subset of the group no larger than a particular threshold. This new

predicate is added to P and the procedure generates a partial precondition (which

may be the trivial partial precondition !true). The procedure returns the candidate

precondition φ and the augmented set of preconditions P ′.

Algorithm 4.2 Infer a full or partial precondition for T using examples E+, E− and
predicates P . Return the precondition and a new set of predicates.

1: procedure InferByExamples(T, P,E+, E−)
2: e+, e− ← ChooseMixedGroup(P,E+, E−)
3: if e+ = ∅ then . The predicates in P are sufficient
4: φ← LearnFullFormula(P,E+, E−)
5: return φ, P
6: end if

7: e+s , e
−
s ← SampleGroup(e+, e−)

8: for p ∈ Predicates(T) do
9: if Separates(p, e+s , e

−
s) ∧ Safe(p,E+) then . Learn predicate p

10: P ′ ← P ∪ {p}
11: φ← LearnPartialFormula(P ′, E+, E−)
12: return φ, P ′

13: end if
14: end for
15: end procedure

The prototype implements a variation of this algorithm with a few additional de-

tails. The procedures InferPrecondition and InferByExamples are implemented

as co-routines that pass each other examples and candidate preconditions, respectively.

This adds a loop to InferByExamples and allows it to avoid generating trivial pre-

conditions or passing any candidate precondition to InferPrecondition more than

once. Additionally, it maintains a data structure for efficiently finding mixed groups.

These differences are optimizations and do not increase the power of the procedure.

113

4.4.1 Predicate behavior

Predicate learning in Alive-Infer focuses on atomic predicates, such as comparisons and

predicate functions. Complex predicates involving logical connectives (and, or, not)

will be generated later by the formula learner (see Section 4.5).

Predicate learning operates by observing the behavior of predicates for particular

examples. This corresponds to the execution of the corresponding C++ implementa-

tion when transforming the corresponding IR fragment. For a particular example, a

predicate may be true or false, but recall that constant expressions (and thus predicates

involving constant expressions) may be undefined for certain values. If a predicate’s

safety condition is not satisfied for an example, we say the predicate is unsafe for that

example.

More concretely, we will write B(p, e) for the behavior of predicate p for an example

e = 〈τ, ĉ〉 and the possible behaviors as > (true), ⊥ (false), and ? (unsafe). To find

B(p, e) we take the safety condition (σp) and value (ιp) from the SMT encoding of p for

types τ and substitute the values in ĉ for the symbolic constants. If σp is not satisfied,

then B(p, e) = ?. Otherwise, B(p, e) = ιp.

While it is acceptable for a predicate to be unsafe for a particular example, the

precondition must always be safe. (Recall the first correctness condition from Sec-

tion 3.2.7.) One way to avoid unsafe preconditions is to forbid unsafe predicates, but

this prevents Alive-Infer from using useful predicates such as C1 % C2 == 0. Another

way is to make the formula learner aware of the non-commutative semantics for Alive’s

conjunction and disjunction operators, but this complicates the work the formula learner

must perform and does not guarantee that the resulting formula is safe.

Rather than modify the formula learner, it is also possible to modify the precondi-

tions it learns to avoid unsafe behavior. The formula learners produce formulae in the

form p1∧p2∧· · · pn, where the pi may be atomic predicates or disjunctions. Any unsafe

negative examples can be pre-rejected by adding a prefix clause s0 to the beginning.

If a clause pi is unsafe for any positive examples, those examples can be pre-accepted

by a sub-clause si, resulting in a formula of the form s0 ∧ (s1 ∨ p1) ∧ · · · ∧ (sn ∨ pn).

114

The various si can be found by repeating the inference process. While inference of the

safety prefixes is likely to be much faster than precondition inference, this process is,

cumbersome and may produce larger or even non-CNF formulae.

Alive-Infer compromises by restricting unsafe behavior to negative examples. If

B(p, e) = ? for any positive example e, we reject p as unsuitable. This simplifies the

design of the predicate and formula learners, because it is always the case that unsafe

behavior for an example means that example should be rejected. Once a precondition

has been found, any negative examples that cause unsafe behavior can be filtered out

by adding a single safety prefix (see Section 4.5.3).

4.4.2 Grouping examples by behavior

Given a set of predicates P and two examples e1 and e2, we say that P separates e1

and e2 if there is a predicate p ∈ P such that B(e1, p) 6= B(e2, p). Otherwise, we say

e1 and e2 have the same behaviors for P . Given sets of positive and negative examples

E+ and E−, we can use P to group examples that have the same behaviors. A group

may contain only positive examples, only negative examples, or a mixture of positive

and negative examples. We refer to the latter as mixed groups. In Figure 4.4, the first

three examples form a mixed group.

If the predicates in P are ordered, then we may define a behavior vector, which

describes the behaviors of an example. The behavior vector V for an example e and

predicates P is a list of behaviors, such that Vi = B(e, pi). The examples in a particular

group will have equal behavior vectors, and each group will be associated with a different

vector. The rightmost columns of each row in Figure 4.4(c) give behavior vectors such

as >>> for the first three examples.

Efficiently finding mixed groups

A key subroutine in Algorithm 4.2 is ChooseMixedGroup, which returns the positive

and negative examples in an arbitrary mixed group, or two empty sets if no mixed group

exists. Rather than repeatedly searching for a mixed group, the prototype maintains a

data structure that groups examples with the same behavior for all predicates learned

115

%m = mul nsw %X, C1

%r = sdiv %m, C2

=>

%r = sdiv %X, C2 / C1

(a) A transformation

p1 C2 % C1 == 0

p2 C2 == -C1

p3 C2 < 0

(b) Learned predicates

Example Behavior
τ c1 c2 ± p1 p2 p3
i4 2 −2 − > > >
i4 1 −1 + > > >
i4 −8 −8 + > > >
i4 −1 1 − > > ⊥
i4 2 −2 + > ⊥ >
i4 2 4 + > ⊥ ⊥
i4 2 −1 − ⊥ ⊥ >
i4 2 3 − ⊥ ⊥ ⊥
i4 0 1 − ? ⊥ ⊥

(c) Behavior of predicates

Figure 4.4: An intermediate step during inference. InferByExamples has learned
three predicates for the transformation in (a), which are shown in (b). A selection of
examples are given in (c) along with their classification as positive or negative and their
behavior for the learned predicates.

up to that point. The structure represents each group as a triple containing the sets of

positive and negative examples and the behavior vector common to all examples in the

group. Finding a mixed group is simply a matter of finding a triple with two non-empty

sets.

Each time a new predicate is learned, the groups are subdivided according to their

behavior for the new predicate. The behaviors for the old predicates do not need to be

re-evaluated, as they are given by behavior vectors.

On occasion, InferPrecondition will add new positive or negative examples.

The behaviors of these examples for the learned predicates are determined, and they

are added to the groups. However, if any of the learned predicates are unsafe for a new

positive example, that predicate must be removed in order to maintain the invariant that

no predicate is unsafe for any positive example. (This is not shown in Algorithm 4.2.)

4.4.3 Learning new predicates

If the current set of predicates P is sufficient to divide the positive and negative exam-

ples in E+ and E−, meaning there are no mixed groups, then P is sufficient to construct

a full precondition. Otherwise, Alive-Infer will learn a new predicate with the intention

of separating the positive and negative examples in the mixed groups.

116

As shown in Algorithm 4.2, Alive-Infer selects a single mixed group with the proce-

dure ChooseMixedGroup, chooses a subset of that group no larger than a threshold

with SampleGroup, and then enumerates predicates until it finds one that separates

the positive and negative examples in the sample (Separates). This predicate is added

to P , and Alive-Infer uses the expanded P to learn a partial precondition that rejects

all negative examples. (If no positive-only groups exist, the best partial precondition

is !true. Rather than generate these trivial preconditions, the Alive-Infer prototype

waits until at least one positive example is separated from all negative examples before

learning preconditions.)

Selecting a mixed group

By using examples from a single mixed group, Alive-Infer has a stronger guarantee of

termination. If, instead, Alive-Infer selected examples from multiple mixed groups, it

is possible that Alive-Infer would repeatedly learn the same predicate. For example,

learning a predicate p might subdivide a mixed group e+, e− into e+p , e
−
p (which satisfy

p) and e+¬p, e
−
¬p (which do not satisfy p). When learning the next predicate, Alive-Infer

will choose one group or the other, guaranteeing that whatever predicate is found will

not be p because every example in the two groups has identical behavior for p.

Finding mixed groups is simple, using the data structure discussed in Section 4.4.2,

but some heuristic is needed when choosing one of multiple mixed groups. By default,

the prototype chooses the largest mixed group, but other strategies are possible, such

as selecting the smallest group, or the group containing the most positive examples.

It is not clear how the choice of strategies affects the average time needed to learn

predicates.

Sampling the mixed group

Mixed groups may be very large. In particular, when P is initially empty, the first mixed

group contains all initial examples. To increase the chances that a simple predicate will

separate the examples, SampleGroups ensures that |e+|+ |e−| does not exceed some

threshold by randomly selecting examples from the mixed group, with the requirement

117

that the sample contain at least one positive and negative example. If the mixed group

is smaller than the threshold, then the entire group is used. The prototype uses a

threshold of 16, but experiments with other thresholds are recommended.

A possibility remains that the examples in the sample require a large predicate to

separate them, greatly increasing the time needed to learn a predicate. To reduce this

risk, the prototype draws multiple samples and observes each enumerated predicate for

each of the samples until it finds a predicate that separates at least one.

Finding a predicate

Given a sample of positive and negative examples e+, e−, Alive-Infer enumerates pred-

icates until it finds one that (a) separates e+ from e− and (b) is safe for all examples in

E+. Enumeration is restarted each time a new predicate is learned, because predicates

that were not able to separate a sample from a larger group may be able to separate

samples from a smaller group. In Figure 4.4, learning C2 % C1 == 0 created smaller

groups where it was more likely that C2 == -C1 would separate a sample.

A predicate p separates the sample e+, e− if B(p, e1) 6= B(p, e2) for all examples

e1 ∈ e+ and e2 ∈ e−. That is, p is true for all examples in e+ and false or unsafe for all

examples in e−, or p is false for all examples in e+ and true or unsafe for all examples

in e−. (Because e+ ⊆ E+, we cannot use p if B(p, e) = ? for any e ∈ e+.)

Note that p is permitted to be false for the positive examples. This halves the

number of predicates that must be enumerated, as p effectively stands for itself and for

¬p. The formula learner will ultimately determine whether to use either or both of p

and ¬p in the precondition.

4.4.4 Predicate enumeration

The predicate enumerator used by Alive-Infer generates type-correct predicates in non-

decreasing order of size. The generated predicates are specific to a transformation,

involving the symbolic constants and type variables used by a transformation and sat-

isfying the type constraints for that transformation. (In Algorithm 4.2, this is repre-

sented by passing the transformation T to Predicates. The prototype instead derives

118

a configuration for the enumerator once and then re-uses it each time the predicates

are enumerated.)

While Algorithm 4.2 shows Predicates returning an infinite set of predicates,

the prototype structures the enumerator as a co-routine that generates predicates on-

demand. Other designs are possible, but the co-routine structure neatly separates the

enumerator from the predicate learner.

Each predicate has a size, which corresponds roughly to the number of AST nodes

in its representation. Enumeration begins with size one, and all predicates of size one

are enumerated before continuing to size two, and so forth. There is no upper limit on

the size of a predicate, so enumeration can continue indefinitely.

Predicates are enumerated using a subset of Alive’s predicate language, containing

comparisons of constant expressions, selected predicate functions over constant expres-

sions, and width. Constant expressions may be symbolic constants, expressions in-

volving binary or unary operators, certain constant functions, and the literals 0 and 1.

Constant expression enumeration is parameterized by the size and type of the desired

expression.

A näıve AST-based enumerator will generate many predicates that are ill-typed,

have type ambiguities, or require stronger type constraints than T . To avoid wasting

effort generating bad predicates or expressions, the enumerator has built-in knowledge

of the typing constraints of Alive. Constant expressions are generated for a particular

type, and indicate whether their type can be unambiguously derived from their content.

For example, the enumerator will never generate log2(1), because the type of 1 is

ambiguous. Similarly, the enumerator will generate C1 + zext(C2) only if C2 is already

constrained to have a smaller bit width than C1.

The enumerator also uses knowledge of the language semantics to avoid generating

redundant predicates. For example, several binary operators in Alive are commutative

and associative, so the enumerator generates expressions in a normal form where it is

practical to do so. The enumerator is also aware of distributivity, so it will generate

a × b + a × c but not a × (b + c). To avoid generating both a < b and b > a, the

enumerator does not allow the right side of the comparison to be a larger expression

119

than the left. If both sides are the same size, the right side must come from earlier in

the enumeration than the left.

4.5 Formula Learning

Once Alive-Infer has learned a set of predicates, it uses a formula learner to construct

a precondition using these predicates. The formula learners are designed to produce

concise formulae, subject to certain restrictions. They automatically discard predicates

that are not necessary to separate the positive and negative examples, and correctly

determine whether to use a predicate or its negation.

Alive-Infer includes two formula learners. The full formula learner (discussed in

Section 4.5.1) finds a precondition that accepts all positive examples and rejects all

negative examples, but may be highly complex. The weighted partial formula learner

(discussed in Section 4.5.2) finds a precondition that meets a complexity bound and

rejects all negative examples, but may reject some positive examples.

Rather than working directly with examples, both learners receive sets of positive

and negative behavior vectors (see Section 4.4.2). These represent groups of examples

that are not separated by the set of learned predicates. Because no formula using these

predicates can distinguish the examples in a group, the actual examples are not needed

when finding a formula. A behavior vector is considered negative if its corresponding

group contains any negative examples. Otherwise, it is positive.

Similarly, the formula learners do not need to know the specific predicates being

used. The predicates can be treated as indices that select an element from a behavior

vector, and formulae can be created using the familiar logical connectives extended to

work with ?. For example, ¬? = ?, and ∧ and ∨ have a short-circuit semantics where

the second argument is only evaluated if necessary, as seen in Figure 4.5. Once the

formula learner has found a suitable formula, it is translated into Alive AST and the

abstract predicates are replaced with the actual predicates.

When evaluating a formula with respect to a behavior vector, a result of > means

accept, and ⊥ and ? mean reject. The learners find formulae that accept (some or all)

120

r ∧ c > ⊥ ?

> > ⊥ ?
⊥ ⊥ ⊥ ⊥
? ? ? ?

(a)

r ∨ c > ⊥ ?

> > > >
⊥ > ⊥ ?
? ? ? ?

(b)

Figure 4.5: Short circuit operators ∧ and ∨ in the presence of unsafe behavior (?)

positive vectors and reject (all) negative vectors. This may lead to an Alive precondi-

tion that is unsafe for some examples. Section 4.5.3 describes a method for inferring

additional clauses that reject all examples for which the predicate is unsafe.

4.5.1 Full formula learning

The full Boolean formula learner attempts to find the smallest formula that accepts

all provided positive behavior vectors and rejects all negative vectors. The generated

formulae are in conjunctive normal form (CNF), a conjunction of disjunctions of liter-

als, which represent the predicates and their negations. The literal ¬pi indicates the

negation of the ith predicate.

Algorithm 4.3 shows the structure of the learner. Its arguments are the number of

predicates, n, and two disjoint sets of positive and negative vectors, V + and V −. Each

vector in V + and V − has length n. The behavior of a predicate pi on a vector v is vi.

The learner has two parts. The first part finds a set of clauses C, where each clause

in C accepts every positive vector. Each clause is a disjunction of up to k literals. The

clause size starts at one and increases until every negative vector is rejected by at least

one clause.

The second part finds a minimal subset of C that rejects all negative vectors. This

is implemented as a greedy set-cover algorithm that selects clauses from C until every

negative vector is covered (i. e., rejected). Each selected clause is the member of C

that increases the cover by the largest amount. If there is a tie, the prototype prefers

smaller clauses.

By starting with k = 1 and increasing until all negative vectors are rejected, the

first part ensures that the disjunctive clauses occurring in the formula are as small as

121

Algorithm 4.3 Full Boolean formula learner

procedure LearnFullFormula(n, V +, V −)
L← {p1,¬p1, . . . , pn,¬pn}
k ← 0
C ← ∅
while ∃v∈V − : accepts(

∧
C, v) do

k ← k + 1
Ck ← {

∨
d : d ⊆ L, |d| = k} . disjunctions of size k

C ← C ∪ {d : d ∈ Ck,∀v∈V +accepts(d, v)} that accept all pos. vectors
end while

return MinimalCover(C, V −)
end procedure

procedure MinimalCover(C, V −)
φ← >
while ∃v∈V − : accepts(φ, v) do

c← argmaxd∈C |{v : v ∈ V −,¬accepts(d, v)}|
. pick clause that rejects the most remaining vectors

V − ← V − \ {v : v ∈ V −,¬accepts(d, v)} . remove rejected vectors
C ← C \ {c}
φ← φ ∧ c

end while

return φ
end procedure

possible. The second part further reduces the formula size by minimizing the number

of disjunctive clauses, although it is not guaranteed to find the minimum set.

Given n predicates, the number of clauses in Ck grows exponentially with k. The

prototype saves some effort by not generating clauses containing a predicate and its

negation, but |Ck| remains exponential. If n is large, then the number of clauses that

must be examined even at small values of k will also be large. This can occur if Alive-

Infer has learned (or been provided) with many predicates that are not needed for the

final precondition. This might be mitigated by filtering out predicates that do not

contribute to separating the positive and negative examples before calling the formula

learner.

Unfortunately, avoiding clauses containing a predicate and its negation can prevent

the learner from finding a formula: because predicates can be unsafe for a vector,

122

we cannot assume p ∨ ¬p = >. Instead, such a clause is accepted only when the

safety condition for p is satisfied. It is possible that the behavior vectors for a set of

predicates implicitly rely on the safety conditions for one or more predicates. As a

minimal example, there may be a single predicate and positive vectors > and ⊥ and

negative vector ?: this would imply the formula p1 ∨ ¬p1, but the optimization in the

previous paragraph prevents the learner from considering that clause.

It is possible to extend the learner to handle such cases by adding clauses of the

form pi ∨ ¬pi. Larger disjunctions involving a predicate and its negation will never be

necessary, because the safety condition is guaranteed to be satisfied by all positive ex-

amples. The prototype does not currently implement this extension, instead signalling

an error if it is unable to find a formula. Our experience has been that this situation

occurs rarely, if ever, in practice.

4.5.2 Weighted partial formula learning

The weighted partial Boolean formula learner is a variation of the full formula learner

that attempts to find a simple precondition that rejects all negative examples and

accepts as many positive examples as possible.

Algorithm 4.4 shows the structure of the weighted, partial learner. Its arguments are

the number of predicates, n, a set of weighted positive vectors, V +
w , a set of negative

vectors, V −, and a maximum clause size K. The weighted vectors are pairs 〈w, v〉

comprising a behavior vector v and an integer weight w. Alive-Infer uses the size of the

vector’s group as the weight, but other weighting schemes are possible.

The algorithm begins by generating all disjunctive clauses up to size K. In the

prototype, K = 1, but other choices are possible. It then selects clauses, adding them

to the set C, until every negative vector is rejected by at least one clause in C. When

selecting a clause, the algorithm chooses the clause that accepts the most weight (i. e.,

rejects the fewest remaining positive examples). Once a clause is selected, any positive

vectors it rejects are removed.

If the the algorithm is able to find a set C of clauses that cover the negative vectors,

it finds a minimal cover using MinimalCover.

123

Algorithm 4.4 Weighted partial Boolean formula learner

procedure LearnPartialFormula(n, V +
w , V

−,K)
L← {p1,¬p1, · · · , pn,¬pn}
D ← {

∨
d : d ⊆ L, |d| ≤ K} . all disjunctions up to size K

C ← ∅ . chosen clauses

while ∃v∈V − : accepts(
∧
C, v) do

c← argmaxd∈D
∑
{w : 〈w, v〉 ∈ V +

w ,accepts(d, v)}
. choose clause that accepts the most weight

V +
w ← {〈w, v〉 : 〈w, v〉 ∈ V +

w ,accepts(
∧
C, v)}
. discard any vectors rejected by c

C ← C ∪ {c}
D ← D \ {c}
if D = ∅ then

return ⊥
end if

end while

return MinimalCover(C, V −)
end procedure

Algorithm 4.4 is sensitive to the initial choice of clauses, as the removal of vectors

will reduce the weight accepted by the remaining clauses. The prototype extends the

algorithm in an attempt to find alternative formulae that may accept more weight.

After a formula is found, the prototype returns to the initial set of weighted positive

vectors and begins choosing clauses again, but making sure to start with a clause that

was not previously chosen. On occasion, this will produce a formula that accepts more

weight.

Other designs for the partial learner are possible. Algorithm 4.4 chooses clauses

based on the weight of the positive vectors it accepts, but it may also be useful to

consider the negative vectors it rejects. Alternatively, it is possible to use the full

learner to find partial preconditions. The full learner can be called with mixed groups

included among the negative groups, just as the partial learner can. This allows Alive-

Infer to produce a precondition before the positive and negative examples are fully

separated, but does not bound the complexity of the formula. Another possibility is to

call the full learner with a single positive vector (corresponding to the largest positive

group) and all the negative and mixed vectors. This also produces a formula that

124

rejects all negative vectors, but only providing one positive vector allows the learner

to find a simpler formula. However, there is still no bound on the complexity of the

formula it finds, and our experiments show that the weighted partial learner often finds

preconditions that accept more positive examples.

4.5.3 Safety condition learning

Both formula learners find preconditions that accept some or all positive examples and

reject all negative examples. To allow the use of partially-defined predicates, Alive-Infer

interprets a precondition that is unsafe for an example (i. e., B(φ, e) = ?) as rejecting

that example. However, an Alive transformation that is unsafe for any example is

considered incorrect, as it may have an ambiguous SMT encoding or may cause a

crash when executing the corresponding C++ implementation. Because the learned

preconditions only have unsafe behavior for negative examples, it is possible to avoid

any unsafe behavior by adding additional clauses that reject unsafe examples before

the remainder of the precondition is evaluated. (Recall that ⊥ ∧ ? = ⊥.)

A safety prefix must reject all (negative) examples where the precondition is unsafe,

but accept all positive examples. The prefix is free to accept or reject negative examples

where the precondition is safe. The procedure EnsureSafety in Algorithm 4.5 reuses

InferByExamples from Algorithm 4.2 to infer a prefix ψ for a precondition φ such

that ψ ∧ φ is safe for all examples.

The arguments to EnsureSafety include the candidate precondition φ and the

sets E+, E− of positive and negative examples, respectively. Line 2 finds the set E?

of unsafe negative examples. The prefix ψ is obtained by calling InferByExamples

with E+ and E?. Next, EnsureSafety verifies that ψ rejects all examples where φ is

unsafe. Line 6 searches for examples where ψ does not guarantee the safety of φ, using

the SMT query ∃C : ψ ∧ ¬σp. If any are found, they are added to the set of unsafe

examples E? and a new prefix is inferred. If none are found, EnsureSafety checks

that ψ does not reject any examples that φ accepts. Line 10 searches for positive

examples that ψ rejects, using the SMT query ∃C : σp ∧ φ ∧ ¬ψ. Both queries are

performed with respect to all feasible type assignments for T .

125

Algorithm 4.5 Add a prefix to a precondition that prevents unsafe behavior

1: procedure EnsureSafety(T,E+, E−, φ)
2: E? ← {e : e ∈ E−, B(φ, e) = ?}
3: P ← ∅
4: loop
5: ψ, P ← InferByExamples(T, P,E+, E?)
6: e? ← {e : B(ψ ∧ φ, e) = ?}
7: if e? 6= ∅ then
8: E? ← E? ∪ e?
9: else

10: e+ ← {e : B(φ, e) = > ∧B(ψ, e) = ⊥}
11: if e+ = ∅ then
12: return ψ ∧ φ
13: else
14: E+ ← E+ ∪ e+
15: end if
16: end if
17: end loop
18: end procedure

The queries above implicitly assume that the prefix ψ is always safe. If ψ is unsafe

for some examples, it is possible to repeat the inference process and find an additional

prefix to make it safe. Fortunately, the safety conditions tend to be very simple in

comparison to the precondition, so the chance that the prefix will itself have a nontrivial

safety condition are negligible. In fact, the Alive-Infer prototype does not implement

this loop, instead signalling an error if σψ is nontrivial. This error has not yet been

observed in testing.

4.6 Generalizing Concrete Transformations

Concrete program transformations produced by other tools are often instances of more

general optimizations, but these generalized transformations may require preconditions

in order to be correct. One source of concrete transformations is super-optimization [81],

which takes a program or program fragment and finds the smallest program that has

the same behavior (or refines the behavior). The Souper project [57] super-optimizes

LLVM IR, by systematically searching for code fragments that can be simplified into

single values. Figure 4.6(a) shows one such transformation.

126

%1 = and i32 1, %0

%2 = icmp eq 0, %1

%3 = xor 1, %2

%4 = icmp ne 0, %1

%5 = and %3, %4

%6 = or %5, %2

=>

%6 = 1

(a) A pattern found by Souper

Pre: C4 & ~C1 != 0 && C3 != 0

%1 = and i32 C1, %0

%2 = icmp eq C2, %1

%3 = xor C3, %2

%4 = icmp ne C4, %1

%5 = and %3, %4

%6 = or %5, %2

=>

%6 = 1

(b) Generalization of (a) with inferred precon-
dition

Figure 4.6: A Souper-generated pattern (a) can be generalized by replacing fixed con-
stants with symbolic constants. Alive-Infer can then find a precondition, as in (b).

Patterns found by Souper or other super-optimizers can be generalized by loosen-

ing type constraints and replacing specific constants with symbolic constants, with a

precondition relating the values for the constants. This generalized transformation will

be applicable in far more scenarios, and may even be worth adding to the peephole

optimizer. Figure 4.6(b) shows a generalization of a Souper pattern with a precondi-

tion found by Alive-Infer. Surprisingly, the partial precondition used would not accept

the original pattern: note that C4 generalizes a zero, but the precondition requires it

be non-zero. Nevertheless, the partial precondition accepts the majority of positive

examples.

Alive-Infer also generates a full precondition, which accepts the original pattern:

(C3 != 0 || C2 == 0)

&& (C4 & ~C1 != 0 || C4 == C2)

&& (C3 != 0 || C1 == -C2)

While this precondition accepts all possible positive examples, the partial precondition

is more succinct.

Generalizing a transformation with Alive-Infer is easily done. Once the transforma-

tion is expressed in Alive syntax, each literal constant in the source is replaced with a

fresh symbolic constant.3 If desired, explicit type requirements can also be removed.

3Generalizing constants in the target is more difficult, because the target cannot introduce new
variables. Explicit type constraints can also be removed. It is possible to cheat by introducing no-op
instructions to the source that introduce new symbolic constants, such as select 1, %6, C5, but a

127

Alive-Infer will then learn preconditions that restrict the possible values for the new

symbolic constants, producing a correct, generalized transformation.

4.7 Evaluation

The Alive-Infer prototype is an extension of Alive-NJ that provides precondition in-

ference and some additional syntax for specifying assumptions and providing initial

preconditions.

When operating with a transformation that already has a precondition, the pro-

totype will report how many positive and negative examples it correctly accepts and

rejects, respectively. Optionally, the Alive-Infer can extract predicates from the pre-

condition to use as the initial predicate set.

4.7.1 Effectiveness of Alive-Infer

To test the effectiveness of the inference algorithm, Alive-Infer was used to re-infer

preconditions for transformations that were derived from InstCombine during the de-

velopment of Alive. Of the 415 transformations, 195 do not require preconditions, 41

rely on dataflow analyses, and seven require predicates or constant functions that were

not supported by Alive-Infer at the time. This leaves 174 transformations for which

Alive-Infer could be expected to find a non-trivial precondition.

Experiments were performed on a computer with a four-core, 64-bit Intel Skylake

processor and 16 GiB of RAM. SMT queries were solved using Z3 4.4.1 [28]. Alive-Infer

was configured to request, for each selected type model, 10 positive and 10 negative

examples from the solver and to randomly generate 500 additional examples, discarding

duplicates. To minimize the influence of solver time, test for finding full and partial

preconditions were performed separately, and safety prefix learning was not enabled.

When finding full preconditions, Alive-Infer was configured to not generate partial

more permanent solution would be needed if this technique became popular. Note that such a method
would find a relation between the source and target constants. This would need to be reduced to a
function before the transformation could be used.

128

(a) Predicates in precondition

0

20

40

60

80

100

O
p
ti

m
iz

at
io

n
s

1 2 3-4 5-8 9-16 17-3233-64
(b) Distinct predicates in precondition

0

20

40

60

80

100

1 2 3-4 5-8 9-16 17-32
(c) Learned predicates

0

20

40

60

80

100

1 2 3-4 5-8 9-16 17-32
(d) Maximum k

0

20

40

60

80

100

1 2 3 4 5

(a) Predicates in precondition

0

20

40

60

80

100

O
p
ti

m
iz

at
io

n
s

1 2 3-4 5-8 9-16 17-3233-64
(b) Distinct predicates in precondition

0

20

40

60

80

100

1 2 3-4 5-8 9-16 17-32
(c) Learned predicates

0

20

40

60

80

100

1 2 3-4 5-8 9-16 17-32
(d) Maximum k

0

20

40

60

80

100

1 2 3 4 5

Figure 4.7: Information about the full preconditions found within 1000 seconds. The
histograms group preconditions based on (a) the number of atomic predicates, (b)
the number of distinct predicates used, (c) the number of predicates learned during
inference, and (d) the maximum size of a disjunctive clause in the predicate (i. e., the
value of k needed by the formula learner).

preconditions. When finding partial preconditions, Alive-Infer was configured to halt

after finding one sufficient precondition.

Inference within a time limit

For 133 of the 174 transformations, Alive-Infer found a full precondition within 1000

seconds. For an additional 31 transformations, Alive-Infer found a partial precondition

within 1000 seconds.

Figure 4.7 gives some information about the full preconditions that were found,

including the number of atomic predicates in the formula, the number of distinct pred-

icates used, the number of predicates learned during the inference process, and the

maximum disjunction size used during formula learning. As Figure 4.7(a) indicates,

about 80 transformations required only a single atomic predicate, with an additional

129

40 requiring two, three, or four. Comparison with Figure 4.7(b) shows that many pre-

conditions included multiple uses of the same atomic predicate (or its negation). This

is common in CNF formulae (e. g.., a ∨ (b ∧ c) must be expressed as (a ∨ b) ∧ (a ∨ c)).

Comparison of Figures 4.7(b) and 4.7(c) shows that Alive-Infer often learned pred-

icates that were not needed by the formula learner, but did not learn more than 32

predicates before separating the positive and negative examples. Figure 4.7(d) shows

that 45 preconditions involved at least one disjunction (i. e., k > 1).

Comparison with initial preconditions

As all of the 174 transformations tested already had preconditions, it is possible to

compare those preconditions (φ0) with the preconditions found by Alive-Infer (φ1). If

it is possible to satisfy φ1 ∧ ¬φ0 for some feasible type assignment, then Alive-Infer

has found a weaker precondition. Of the 133 full preconditions found by Alive-Infer

during testing, 73 were weaker (meaning the precondition derived from LLVM was

partial). Occasionally, this is due to additional requirements needed to avoid compiler

non-termination (see Chapter 5) or, more often, because the full precondition accepts

edge cases that cannot occur due to interaction with other transformations.

As an example where the precondition found by Alive-Infer is a considerable im-

provement over the precondition used by LLVM, consider this example of a bit test

simplification, one of twelve variants of a single general transformation in LLVM’s In-

structionSimplify pass:

Pre: C1 == ~C2

%l = and %X, C1

%c = icmp eq %l, 0

%t = and %X, C2

%r = select %c, %t, %X

=>

%r = %X

Alive-Infer infers the precondition ~C1 & ~C2 == 0, which accepts a strict superset of

examples. All twelve variants remain correct when using this weaker precondition.

130

4.7.2 Finding preconditions through enumeration

To assess the value of the two-part strategy of learning predicates and then a formula, we

created a variant of the Alive-Infer prototype that instead finds preconditions through

enumeration.

The modified prototype uses an extended predicate enumerator that includes com-

pound predicates using ∧, ∨, and ¬. Each enumerated predicate is tested to see whether

it accepts all positive examples and rejects all negative examples. If so, it is then verified

using the tests from Algorithm 4.1, which search for additional positive and negative

examples that the predicate rejects or accepts, respectively. If no additional exam-

ples exist, the predicate is proposed as a full precondition. If no additional negative

examples are found, it is proposed as a partial precondition.

This strategy, which we call Alive-Search to distinguish it from Alive-Infer, is guar-

anteed to find a minimally-sized sufficient precondition, because the predicates will be

enumerated in nondecreasing order of size. Unlike Alive-Infer, it cannot get stuck at-

tempting to learn a complex atomic predicate that can be expressed more succinctly

as a combination of smaller predicates. On the other hand, Alive-Search cannot divide

the search problem into smaller parts. To find a precondition with two predicates of

sizes m and n, Alive-Search will need to consider O(cm+n) preconditions. In contrast,

Alive-Infer need only consider O(cm+cn) predicates if it chooses samples appropriately,

which is a vast improvement in the best case. The number of preconditions or pred-

icates to consider grows so quickly with size that Alive-Infer can spend the majority

of its time learning predicates that will be discarded later and still find a result faster

than Alive-Search.

Because Alive-Search does not divide the examples to create subproblems, it is not

guided by its examples in the same way as Alive-Infer. Instead, the examples serve as a

filter, determining which preconditions will be subject to full verification. Despite the

initial overhead of generating examples, this speeds up the search overall, as checking

that a precondition accepts or rejects an example is faster than using a solver to verify

a transformation’s correctness.

131

1 10 100 1000

Time (s)

50

100

O
p
ts

Infer

Search

Figure 4.8: Cumulative number of preconditions that were found under a time limit.
The x axis is a time limit, and the y axis is the number of tests that found a precondition
for a transformation in that time or less. The jump between two and three seconds is
caused by example generation.

Alive-Search was tested on the same 174 transformations as Alive-Infer, using the

same number of examples. It was able to find a full precondition within 1000 seconds

for 114 transformations. Recall that Alive-Infer found a full precondition within 1000

seconds for 133 transformations.

Figure 4.8 shows the number of transformations for which Alive-Infer and Alive-

Search found a full precondition within a time limit. Given a time limit of ten seconds,

both methods are able to find full preconditions for about 100 transformations. These

were typically preconditions that required only one or two atomic predicates. For more

complex preconditions, Alive-Infer is more likely to find a precondition within a given

time limit than Alive-Search.

4.7.3 Generalizing concrete transformations

To judge the usefulness of this technique, we generalized 71 concrete transformations

generated by Souper, generalized their constants, and attempted to infer preconditions.

Alive-Infer found full preconditions for 51 transformations, and partial preconditions

for an additional three transformations.

The remaining 17 cases expose some limitations to the Alive-Infer approach. Alive-

Infer, like Alive itself, relies on an SMT solver in several key places. Solvers such as Z3

do very well for many queries, but it is still possible to formulate queries that Z3 cannot

efficiently resolve. Certain combinations of instructions, particularly multiplication and

division, can produce unexpectedly challenging correctness conditions and unresolvable

132

queries. Perhaps because of the way they are generated, these difficult queries seem

to occur more frequently when generalizing Souper patterns than when working with

LLVM-derived transformations. Inferring and verifying these difficult transformations

may become more feasible in the future, as SMT solvers continue to improve and as

the Alive toolkits are updated to use more specialized solving techniques.

4.8 Summary

Alive-Infer demonstrates that data-driven precondition inference for Alive transforma-

tions is feasible. Given a transformation, Alive-Infer can generate and classify examples

automatically. Guided by the examples, Alive-Infer finds a set of useful predicates that

are generalized over types and need not be defined for all examples. These predicates are

used to create preconditions that are sufficient to make the transformation correct, with

some intended to accept as many examples as possible and others designed for brevity.

The Alive-Infer prototype has successfully found preconditions for many Alive transfor-

mations, drawn from LLVM’s peephole optimizer and from super-optimizer patterns,

showing that it is applicable to real-world transformations.

133

Chapter 5

Detecting Non-Termination

Alive and Alive-Infer help developers write peephole transformations that are correct,

meaning they do not introduce new behavior into a program, but there are other classes

of compiler bugs. Some may cause the compiler to crash or enter an infinite loop: instead

of producing an incorrect executable program, the compiler produces no executable pro-

gram. The safety conditions in Alive (see Section 3.2.2) protect against some compiler

crashes, but other bugs cannot be detected by analyzing transformations in isolation.

One class of bugs occurs when applying a transformation or sequence of transforma-

tions creates new opportunities to apply it. In such cases, the repeated application of

the transformation can apply indefinitely, resulting in compiler non-termination.

The InstCombine pass in LLVM operates by maintaining a set of unexamined in-

structions, which initially contains all instructions. At each step, it removes an instruc-

tion from that set and determines whether any of its transformations apply to it. If

so, it applies the transformation, adding any new instructions created by the transfor-

mation to the unexamined set. The process continues until all instructions have been

examined. This ensures that all opportunities to apply transformations are found, even

if those opportunities are created by other transformations. However, it is vulnerable

to non-termination, because each iteration removes one instruction but may add one

or more new instructions.

Figure 5.1 shows a pair of transformations, each of which can undo the work of the

other. Notably, they are not simply inverses: not all output from one transformation

can be transformed by the other. Additionally, both are desirable transformations:

one potentially reduces the number of set bits in a constant argument to xor, possibly

allowing the xor to be removed entirely if its second argument becomes zero. The other

134

…
%q2 = xor i32 %i, -1
%a = and i32 %q2, 255
…

…
%q1 = and i32 %i, 255
%a = xor i32 %q1, 255
…

 %p2 = and %X, %Y
 %r2 = xor %p2, %Y
=>
 %q2 = xor %X, -1
 %r2 = and %q2, %Y

 %p1 = xor %W, C1
 %r1 = and %p1, C2
=>
 %q1 = and %W, C2
 %r1 = xor %q1, C1 & C2

Figure 5.1: Two correct transformations that together cause non-termination, replacing
the upper fragment with the lower and vice versa indefinitely. Both transformations
are desirable: the left one reduces the number of set bits in the second argument to
xor, the right one reduces the number of references to %Y.

reduces the number of references to a value %Y, simplifying later compilation. Thus,

preventing the infinite loop by removing one or the other transformation is undesirable.

There are several ways to ensure termination. One simple possibility is to cap the

number of instructions that may be examined. Once a threshold number of trans-

formation applications is reached, optimization halts and any remaining unexamined

instructions are left unexamined. This strategy is unsatisfying for two reasons. If the

threshold is low, many programs may be left only partially optimized. If the threshold

is high, any program that triggers non-termination will waste time repeatedly trans-

forming the same section of a program, possibly leaving other sections unexamined.

A less simple method for ensuring termination is to compare the program before and

after each transformation to see whether any changes have been made. Unfortunately,

this approach has several problems. First, any such comparison must be incomplete,

since it is undecidable whether two arbitrary programs have the same behavior. Second,

the transformation process may be cycling through an unknown number of intermediate

programs. To reliably detect this, InstCombine would need to remember every previous

135

form of the program and compare the program with all of its predecessors after every

transformation. This is an enormous amount of work to detect a situation that ideally

should never occur—and even this does not actually guarantee termination. While such

transformations are unlikely to be added to a compiler, it is easy to create transfor-

mations that will produce an infinite sequence of distinct intermediate programs (e. g.,

replacing x− y with 0− (y − x)).

Both methods require checks during compilation to ensure termination. These

checks could be avoided if the peephole optimizer as a whole were known to always

terminate. InstCombine rewrites code into a broadly-defined canonical form, and uses

preconditions to avoid applying certain transformations when doing so is not profitable.

Transformations may make code smaller, or reduce the number times a result is used, or

simply enable further transformation. For example, both transformations in Figure 5.1

improve code in certain circumstances, but the loop depicted is avoided by adding the

precondition C2 != C1 & C2 to the left transformation, ensuring it does not create an

opportunity for the right transformation.

A formal termination analysis of InstCombine would require formalizing this canon-

icalization property, and then showing that each transformation it defines is profitable.

Automating such an analysis of the C++ implementation seems impractical, even if

the nature of profitability can be formally defined.

This chapter describes a method for detecting non-termination that leverages the

high-level view of transformations provided by Alive. Given a set of transformations

specified in Alive, it searches for sequences that might give rise to non-termination. For

a sequence of transformations, it determines whether a program exists such that the

sequence can be performed indefinitely. If such a program does exist, it can generate

a concrete LLVM IR program to demonstrate the non-termination. The method relies

on transformation composition, a process for deriving a single transformation that has

the effect of applying two or more transformations to an input program sequentially.

Using composition, it compares the requirements for applying a (possibly composite)

transformation to the requirements for applying it twice. If they are the same, then the

transformation can be applied arbitrarily many times.

136

Pre: isPowerOf2(C+1)

%r = mul %X, C

=>

%y = shl %X, log2(C+1)

%r = sub %y, %X

(a) Proposed transformation

%y = shl %X, C

%r = add %y, %X

=>

%r = mul %X, (1<<C)+1

(b) Existing transformation

Figure 5.2: A developer testing transformation (a) in LLVM discovered that it triggered
an infinite loop [47]. The new transformation reversed the work of an already-existing
transformation (b), preventing InstCombine from reaching a steady state.

This method can be used to analyze existing sets of transformations, and can also

be used to determine whether new transformations may cause non-termination if added

to InstCombine. The guidelines for whether a transformation is profitable are informal,

and it is easy for a developer to accidentally introduce a new transformation that works

against an existing transformation. For example, a developer working to resolve a bug

in LLVM added the transformation shown in Figure 5.2(a). It replaces a multiply with

a shift and add, which can be performed more efficiently on some hardware. This

addition introduced an infinite loop into LLVM [47], which was eventually found to be

caused by interaction with the pre-existing transformation shown in Figure 5.2(b). The

earlier transformation reduces the number of instructions in a program, so its results are

considered more canonical for InstCombine. The new transformation was instead added

to the back-end of LLVM, to be used only on architectures where it was appropriate.

The method for detecting non-termination is given in three parts. Section 5.1 de-

scribes the process of transformation composition, Section 5.2 shows how to determine

whether a given sequence of transformations can be applied indefinitely, and Section 5.3

gives a method for generating such sequences. To confirm that non-termination occurs,

Section 5.4 describes how to generate a concrete input that will trigger a sequence of

transformations. Finally, Section 5.5 describes the experiments used to evaluate this

method.

137

5.1 Composing Transformations

Transformation composition takes two Alive transformations and creates a single trans-

formation that has the effect of applying the original two transformations in sequence.

Figure 5.3(c) shows the result of composing the two transformations from Figure 5.1.

The process is called “composition” by analogy to function composition, although

transformation composition is different in several key respects. Two transformations

may not compose, or may compose in multiple ways. Three or more transformations

may compose differently depending on the order in which the compositions are per-

formed (i. e., composition is not associative).

To compose two transformations A and B, we must determine whether it is possible

to apply B to a program resulting from an application of A. In a sense, this is always

possible, because the code fragments transformed by A and B might not overlap, but

we disregard those trivial cases. For our purposes, we specifically are interested in cases

where A enables B, meaning B transforms an instruction or constant that was created

by A.

For brevity, we will write As, At, and Ap to indicate the source, target, and pre-

condition of a transformation, respectively. The sub-DAG At represents code that is

guaranteed to be present after A has been performed. Algorithm 5.1 simulates the

matching process of B, attempting to find an arrangement whereby Bs will match At.

Instructions only match if their opcodes are the same, but input variables can match

any value.

Algorithm 5.1 has three major parts. First, it determines whether At and Bs have

the same shape, meaning each instruction in one corresponds to a similar instruction in

the other or an input variable. The procedure AlignDAGs, described in Section 5.1.1,

compares the shapes and groups the terms in At and Bs into sets. Each set contains

terms that must be equal in order for B to apply after A. For example, a set might

contain and instructions from At and Bs.

In Figure 5.3(d), alignment begins at the xor nodes labeled “Target A” and “Source

B”, and then proceeds through their descendents, indicated with thick node outlines

138

Name: A

%p1 = xor %W, C1

%r1 = and %p1, C2

=>

%q1 = and %W, C2

%r1 = xor %q1, C1 & C2

(a)

Name: B

%p2 = and %X, %Y

%r2 = xor %p2, %Y

=>

%q2 = xor %X, -1

%r2 = and %q2, %Y

(b)

Name: AB

Pre: C2 == C1 & C2

%p1 = xor %X

%r1 = and %p1, C2

=>

%q2 = xor %X, -1

%r1 = and %q2, C2

(c)

and

Source A Target A

xor

xor and

%W C1 C2

C1&C2

xor and

Source B Target B

and xor

%X %Y –1

(d) DAG representations of A and B. Alignment begins with the target root of A and source root
of B, indicated with thick outlines. Dashed lines connect nodes that match during alignment.

and

Source AB

xor

%W C1 C2

C1&C2

and

Target AB

xor

–1

(e) DAG representation of AB, constructed from the source of A and the target of B. Nodes
connected by dashed lines in (d) have been replaced with a representative (e. g., %Y is replaced
by C2). The dashed line connecting C2 and C1 & C2 indicates that they both matched %Y and
must therefore be equal.

Figure 5.3: Composition of two transformations. Application of AB is equivalent to
applying A followed by B.

139

Algorithm 5.1 Create a transformation AB that composes A and B

1: procedure Compose(A,B)
2: Sets← AlignDAGs(At, Bs)
3: CheckValidity(Sets)

4: φ← >
5: for S ∈ Sets do
6: p, Sets← SelectReplacement(S, Sets)
7: φ← φ ∧ p
8: end for

9: ABs ← Graft(As, Sets)
10: ABt ← Graft(Bt, Sets)
11: ABp ← Graft(Ap, Sets) ∧Graft(Bp, Sets) ∧ φ
12: return AB
13: end procedure

and arrows. Dashed lines connect nodes that must be equal in order for the DAGs to

align.

Alignment may fail under certain circumstances, such as attempting to match in-

structions with different opcodes, but other requirements are easier to check after

AlignDAGs completes. the procedure CheckValdity, described in Section 5.1.2,

looks for certain impossible situations, such as an instruction being equal to a constant,

and reports that composition was impossible in those circumstances.

If alignment succeeds, the second part of Compose chooses a distinguished value

for each set of equal terms that will be used when constructing the composite trans-

formation. The procedure SelectReplacement, described in Section 5.1.3, generally

chooses the most specific term in each set (e. g., an instruction is more specific than

an input variable) and notes it for later. Some sets, such as those containing multiple

constant expressions, require additional preconditions in order to be equal. These con-

ditions are returned by SelectReplacement and will be incorporated into the final

composite.

Once replacements have been selected, the third part of Compose creates the com-

posite transformation AB by creating copies of As (i. e., the input program before

applying A) and Bt (i. e., the input program after applying B), but replacing any

terms that were unified with the selected replacement for its set. For example, an input

140

variable in A that matched an instruction in Bs will be replaced by that instruction in

ABs. Section 5.1.4 describes this process. In Figure 5.3(e), the composite AB is built

from the sub-DAGs rooted at “Source A” and “Target B” in Figure 5.3(d), with nodes

that participated in alignment replaced by their selected replacement. For example, the

second argument to the and in Bt is %Y, which unified with C2 and C1&C2. Of these, C2

is selected as the replacement, and becomes the second argument to the and in ABt.

The required equality between C2 and C1&C2 will become part of the precondition for

AB.

Algorithm 5.1 describes the simplest case of composition, which aligns the roots of

At and Bs. The algorithm for composition where one of the roots aligns with a non-root

term is similar. The differences and additional details are described in Section 5.1.5.

5.1.1 DAG alignment

The procedure AlignDAGs(C,P) determines whether the sub-DAGs C and P can be

given the same shape by replacing input variables. The process is designed to simulate

the matching portion of an Alive transformation, which tests whether a transformation

can apply to an IR code fragment. The argument C (for “code”) corresponds to the

program being transformed. The argument P (for “pattern”) corresponds to the source

pattern of an Alive transformation. If successful, it returns the terms of C and P

organized into disjoint sets, with each set containing terms that must unify in order for

C and P to align.

The alignment process begins with the roots of C and P and proceeds recursively

through their subterms. Two terms align only if (1) either or both are input variables,

(2) both are instructions with the same opcode and their corresponding arguments

align, or (3) both are constants (including symbolic constants and constant expressions).

Algorithm 5.2 gives an implementation of AlignDAGs that tests alignment and collects

the sets of unified terms.

The algorithm maintains two data structures: Sets keeps track of the sets of unified

terms, and worklist contains pairs of terms that must unify in order for alignment to

succeed. The former requires the ability to determine which set a term belongs to and

141

Algorithm 5.2 Determine whether DAG C is matched by DAG P and return sets of
unified terms

1: procedure AlignDAGs(C,P)
2: Sets←MakeCodeSets(C) ∪MakePatternSets(P)
3: worklist← {〈C,P 〉}
4: while worklist 6= ∅ do
5: 〈t1, t2〉, worklist← pop(worklist)
6: S1, p1, c1 ← Lookup(t1, Sets)
7: S2, p2, c2 ← Lookup(t2, Sets)
8: if S1 6= S2 then
9: S, Sets← Unify(S1, S2, Sets)

10: if c1 6= ⊥ ∧ c2 6= ⊥ then
11: fail
12: else if c1 6= ⊥ ∧ p2 6= ⊥ then
13: pairs←Match(c1, p2)
14: worklist← worklist ∪ pairs
15: else if p1 6= ⊥ ∧ c2 6= ⊥ then
16: pairs←Match(c2, p1)
17: worklist← worklist ∪ pairs
18: else if p1 6= ⊥ ∧ p2 6= ⊥ then
19: 〈p, pairs〉 ←Merge(p1, p2)
20: Sets← DesignatePattern(S, p, Sets)
21: worklist← worklist ∪ pairs
22: end if
23: end if
24: end while
25: return Sets
26: end procedure

142

to unify two sets. The prototype uses the disjoint sets structure from the union-find

algorithm. In addition to tracking set membership, Sets also associates an optional

code instruction or pattern instruction for a set. These are used when bringing code

into alignment. Initially, each subterm in C and P is placed into its own set, with

instructions in C and P marked as code and pattern instructions, respectively. The

worklist initially contains the pair 〈C,P 〉.

Next, AlignDAGs draws pairs from worklist and checks whether they can be

brought into alignment. It looks up the sets for the terms (along with their code and

pattern instructions, if any). If the two terms belong to the same set, they already are

aligned. Otherwise, it unifies the two sets and then checks whether they had contained

any code or pattern instructions whose subterms need to be aligned.

Here the difference between code and pattern becomes important. If both sets

have associated code instructions, alignment fails. This can occur when input variables

are repeated, but in LLVM a repeated variable is tested using pointer equality (see

Section 3.4.2). Distinct code instructions would have been created separately, meaning

they would not be considered equal, if if they have the same opcode and arguments.

If one of the sets has an associated code instruction and the other has an associated

pattern instruction, AlignDAGs calls Match(c, p) to test whether they can be aligned.

This procedure checks whether c and p have the same opcode. If the opcode has an

additional parameter, such as a comparison relation, it checks whether those are equal.

If the instructions can have attributes, it makes sure the attributes of p are a subset of

those in c. If all these tests succeed, it returns pairs containing corresponding arguments

of c and p. Otherwise, alignment (and composition) fails.

If neither set has an associated code instruction, but both have associated pattern

instructions, AlignDAGs calls Merge(p1, p2) to test whether they can be aligned.

This is similar to Match, except for how it handles attributes. If p1 and p2 have

different attributes, it creates a new instruction using the union of their attributes.

This new instruction becomes the associated pattern instruction for the unified set.

Otherwise, it returns p1 or p2 arbitrarily.

Alignment succeeds once no more pairs can be drawn from worklist.

143

5.1.2 Checking Validity

Several conditions must hold for one transformation to follow another. Some of these

conditions are guaranteed by AlignDAGs, which can easily detect certain violations,

such as matching instructions with different opcodes. Other conditions are more easily

checked once alignment has completed. The procedure CheckValidity tests whether

the alignment found by AlignDAGs corresponds to a possible pattern match. The

necessary conditions are:

1. No set may contain unequal literal constants.

2. No set may contain both a constant and an instruction.

3. No set may contain both an instruction created in At and a value present in As.

This would imply that A somehow matched an instruction that it itself created.

4. No set may depend on itself.

The first three conditions can be checked individually for each set, but the fourth

condition is more complex. A term, such as an instruction, depends on its subterms. If

alignment is successful, then the terms in a set are the same, and therefore depend on

the subterm for every term in the set. Normally, a value in LLVM IR never depends on

itself,1 but the alignment process can introduce a self-dependency if terms are referenced

multiple times. Figure 5.4 shows two transformations that have a circular dependency

after alignment.

An alignment-introduced circular dependence exists if and only if the graph pro-

duced by taking the sub-DAGs for At and Bs and merging all unified nodes is cyclic.

In Figure 5.4(c), this would merge the add with %Y and the sext with %X, resulting in

a cycle between the merged nodes. It is not necessary to create this graph: it can be

simulated by performing a graph traversal on the sets of unified terms. An arc from

one set to another exists if a term in one set depends on a term in another. If a back

edge is discovered when performing a depth-first traversal of this graph, then the graph

has a cycle and the alignment has introduced a circular dependency.

1Alive does not include phi nodes, which allow for indirect self-dependence.

144

Name: A

%r = sdiv 1, %X

=>

%inc = add %X, 1

%c = icmp ult %inc, 3

%r = select %c, %X, 0

(a)

Name: B

Pre: C2 == sext(C-1) && C != 0

%c = icmp ult %Y, C

%y = sext %Y

%r = select %c, %y, C2

=>

%c2 = icmp ugt %y, C2

%r = select %c2, C2, %y

(b)

Source B

select

Target A

%X C2

icmp

select

%Y

1

sext

add

3
icmp

C

0

(c) Sub-DAGs At and Bs, with dashed lines connecting unified nodes

Figure 5.4: Alignment failure due to circular dependency. In (c), note that %X is equal
to the sext in Bs, which depends on %Y, which is equal to the add in At, which depends
on %X. Such a circular dependence could not occur in LLVM IR.

145

5.1.3 Selecting Replacements

Once AlignDAGs and CheckValidity have determined that composition is possible

and found the sets of unified terms, SelectReplacements chooses a single term to

represent each set. Additionally, it returns a predicate that must hold in order for

composition to succeed.

To choose, SelectReplacements(S, Sets) orders the terms in S by priority. In

decreasing order, the priorities are:

1. The code or pattern instruction obtained from alignment

2. A literal constant

3. A constant expression

4. A symbolic constant

5. An input variable

If multiple terms have the same priority, one is chosen arbitrarily.

Under most circumstances, the predicate returned by SelectReplacements is

trivial. If a set contains multiple constant expressions, SelectReplacements re-

turns a predicate requiring them to be equal. In addition, if a set contains a sym-

bolic constant or input variable from A and its replacement is a constant expression,

SelectReplacements instead chooses a symbolic constant as the replacement, in

order to prevent a constant expression from appearing in the source of the composite

transformation. If the set has no symbolic constant, a fresh one is created. The pred-

icate requires the selected symbolic constant be equal to the constant expression. For

example, in Figure 5.3 the set containing C2, C1&C2, and %Y gets C2 as its replacement

and the predicate C2 == C1 & C2 is added to the precondition.

5.1.4 Constructing the composed transformation

If At and Bs align, and we have obtained the sets of equal values and chosen replace-

ments, we can construct the composed optimization. Algorithm 5.3 gives the procedure

146

Graft, which creates a copy of a term t, recursively substituting subterms according to

the replacements selected by SelectReplacement. If t has a replacement other than

itself, Graft calls itself for the replacement and returns that result. This recursion

is guaranteed to terminate, as CheckValidity has prevented any circularity in the

replacement process. If t does not have a different replacement, Graft creates a copy

of t, calling itself recursively for each argument, and returning the modified copy.

Algorithm 5.3 Clone a DAG, replacing nodes belonging to a set in Sets

1: procedure Graft(t, Sets)
2: if ∃S∈Sets : t ∈ S ∧ t 6= Replacement(S, Sets) then
3: return Graft(Replacement(S, Sets), Sets)
4: else
5: r ← Copy(t)
6: for all parameters i do
7: ri ← Graft(ti, Sets)
8: end for
9: return r

10: end if
11: end procedure

In the context of Compose, Graft is used to rewrite As, Bt, Ap, and Bp. The first

two become the source and target of the composed transformation, and the latter two

become part of the precondition.

It is possible that the composed precondition will refer to instructions that were

created by A and then discarded by B and therefore do not occur in the source or

target of the composed transformation. This is not normally allowed for Alive trans-

formations, but is acceptable when the composed transformation is used for detecting

non-termination.

Figure 5.5 shows an example of grafting where some input variables have unified

with instructions. The result of alignment is shown in Figure 5.5(c): the terms in At

and Bs that were examined have thick outlines, and dashed lines connect terms that

unified. Note that the variables %Z1 and %X2 have unified with add instructions in Bs

and At, respectively, and the roots have unified with each other. In the first two cases,

the add will be chosen as the replacement. In the latter, the choice is arbitrary, but

also irrelevant, as the roots will not be included in the composite AB.

147

Figure 5.5(d) shows AB, built by using Graft to rewrite As and Bt. The copies

of terms that depended on %Z1 or %X2 instead depend on their replacements.

5.1.5 Off-root composition

Algorithm 5.1 describes the simple case of composition, where the root of At and Bs

align. In the more complex cases, one of the roots aligns with a subterm. In these cases,

the source or target of the composite transformation is constructed from the sources or

targets of both transformations.

In the case where the root of At matches a non-root value in Bs, there will be a

portion of Bs that does not align with any part of At. These subterms were not matched

by A and so were unchanged when B applied. Thus, ABs will include a portion of Bs,

but with the term that matched with At replaced by As, in order to describe the input

program before A or B applied.

Algorithm 5.4 shows how to compose the root of At to a non-root node in Bs. The

first two sections of ComposeRootToNonroot are similar to Compose, except that

b is passed to AlignDAGs instead of Bs. Once replacements are selected, As becomes

the replacement for the set containing At and b. Thus, when Bs is rewritten, it will

replace b with As.

Figure 5.6 shows an example of composing a root to a non-root term, using the

same self-composition as Figure 5.5. In Figure 5.6(c), the initial alignment is the add

terms %c1 (in the first target) and %b2. Alignment proceeds with their subterms, and

replacements are chosen as usual, except that the set containing %c1 (target) and %b2

will be replaced by %c1 (source). The composite transformation in Figure 5.6(d) is

created by rewriting the source and target of the second copy of the transformation.

The converse case, where the root of Bs aligns with a subterm a of At is symmetric.

Now, a is aligned with Bs, and Bt is designated as the replacement for the set containing

a and Bs. Figure 5.7 shows the same self-composition as Figures 5.5 and 5.6, but now

aligning the add terms %a1 and %c2 (in the second source). Alignment proceeds with

their subterms and replacements are chosen as usual, except that the set containing

%a1 and %c2 (source) will be replaced by %c2 (target). The composite transformation

148

%b = add %Y, %Z

%c = add %X, %b

=>

%a = add %X, %Y

%c = add %a, %Z

(a) A transformation that reassociates addition

%b2 = add %Y2, %Z2

%b1 = add %Y1, %b2

%c1 = add %X1, %b1

=>

%a1 = add %X1, %Y1

%a2 = add %a1, %Y2

%c1 = add %a2, %Z2

(b) Composition by matching %c1 and %c2

%X1 %Y1 %Z1

add add

add add

%X2 %Y2 %Z2

add add

add add

Source 1 Source 2Target 1 Target 2

(c) The DAGs for two copies of the transformation. Alignment begins with the root of the
first target and the root of the second source, indicated by thick outlines. Dashed lines connect
nodes put into the same set during alignment.

%X1 %Y1

add add

add

%Y2 %Z2

add add

add

Source Target

(d) The composed transformation, constructed from the first source and second target.

Figure 5.5: Composition of a transformation with itself, matching the roots of the
source and target

149

%b = add %Y, %Z

%c = add %X, %b

=>

%a = add %X, %Y

%c = add %a, %Z

(a) A transformation that reassociates addition

%b1 = add %Y1, %Z1

%c1 = add %X1, %b1

%c2 = add %X2, %c1

=>

%a1 = add %X1, %Y1

%a2 = add %X2, %a1

%c2 = add %a2, %Z1

(b) Composition by matching %c1 and %b2

%X1 %Y1 %Z1

add add

add add

%X2 %Y2 %Z2

add add

add add

Source 1 Source 2Target 1 Target 2

(c) The DAGs for two copies of the transformation. Alignment begins with the root of the first
target and %b of the second source. Dashed lines connect nodes put into the same set during
alignment.

%X1 %Y1

add add

add

%X2 %Z2

add

add add

Source Target

(d) The composed transformation, constructed from the second source and target. Note that
the set including the first target has been replaced with the first source.

Figure 5.6: Composition of a transformation with itself, matching the root of the first
instance with a non-root node of the second

150

Algorithm 5.4 Compose A and B, matching the root of A to b

1: procedure ComposeRootToNonroot(A,B, b)
2: Sets← AlignDAGs(At, b)
3: CheckValidity(Sets)

4: φ← >
5: for S ∈ Sets do
6: p, Sets← SelectReplacement(S, Sets)
7: φ← φ ∧ p
8: end for
9: S ← Lookup(At, Sets)

10: Sets← DesignateReplacement(S,As, Sets)

11: ABs ← Graft(Bs, Sets)
12: ABt ← Graft(Bt, Sets)
13: ABp ← Graft(Ap, Sets) ∧Graft(Bp, Sets) ∧ φ
14: return AB
15: end procedure

in Figure 5.7(d) is created by rewriting the source and target of the first copy of the

transformation.

5.2 Detecting Cycles

A cycle is a sequence of transformations that can be applied to some finite input in-

definitely. The simplest such cycle is a self-cycle containing a single transformation.

For example, if the precondition for the transformation in Figure 5.8 is satisfied for an

input program, the transformation will replace the add with an add nsw. This new

instruction trivially satisfies the precondition, so the transformation will be applied

again, creating a new add nsw, and so on forever.

If the transformation’s precondition had included !hasNSW(%r), then the second

application would be prevented and the transformation would apply only once to a

given instruction.

In contrast, the transformation in Figure 5.5(a) can be applied several times to a

given input, but notice that the source pattern in Figure 5.5(b) is larger. That is,

reassociating addition once requires two addition instructions and reassociating twice

151

%b = add %Y, %Z

%c = add %X, %b

=>

%a = add %X, %Y

%c = add %a, %Z

(a) A transformation that reassociates addition

%b2 = add %Y2, %Z2

%b1 = add %b2, %Z1

%c1 = add %X1, %b1

=>

%a2 = add %X1, %Y2

%c2 = add %a2, %Z2

%c1 = add %c2, %Z1

(b) Composition by matching %a1 and %c2

%X1 %Y1 %Z1

add add

add add

%X2 %Y2 %Z2

add add

add add

Source 1 Source 2Target 1 Target 2

(c) The DAGs for two copies of the transformation. Alignment begins with %a from the first
target and the second target root, indicated with thick outlines. Dashed lines connect nodes
put into the same set during alignment.

%X1 %Z1

add

add add

%Y2 %Z2

add add

add

Source Target

(d) The composed transformation, constructed from the second source and target. Note that
the set including the second source has been replaced with the second target.

Figure 5.7: Composition of a transformation with itself, matching the root of the second
instance with a non-root node of the first

152

Pre: WillNotOverflowSignedAdd(%a, %b)

%r = add %a, %b

=>

%r = add nsw %a, %b

Figure 5.8: A transformation that will apply indefinitely or not at all

requires three instructions. Logically, reassociating three times will require four instruc-

tions, and so forth. This ensures that the transformation can only be applied a finite

number of times to a finite input program.

For a transformation to be a self-cycle, it must have these properties:

1. The precondition for its self-composition is satisfiable.

2. The source of its self-composition is no larger than the original source.

The first is easily checked by counting instructions. The second is checked by encoding

the precondition of the self-composed transformation as SMT queries and checking

satisfiability.

Longer sequences can be tested by creating a single composed transformation and

checking whether it is a self-cycle. Composition is performed starting with the first

two transformations, then composing the result with the third transformation, and

continuing until a single composite transformation is produced. If it is possible for two

transformations to compose in multiple ways, then all ways should be considered. A

single sequence of transformations may have multiple composite transformations that

represent the entire sequence. Each composite must be tested separately. If any are

self-cycles, then the sequence is a cycle.

5.3 Searching for Cycles

While it is relatively simple to determine whether a given transformation sequence is

a cycle, determining whether a set of transformations contains any such sequences is

more daunting. In our experiments, we searched for cycles by enumerating sequences

involving n transformations and testing whether they were cycles. This is not a scalable

153

solution—the number of sequences grows exponentially with n—but our experiments

found that most longer cycles are combinations of two or more shorter cycles.

It is possible to greatly reduce the number of sequences tested for a given length.

For example, a näıve enumeration of length-n sequences will include n sequences cor-

responding to the same cycle. For example, ABC is a cycle if and only if BCA and

CAB are cycles. Thus, it is only necessary to enumerate and test one of these. Our

prototype orders the set of transformations, and only generates sequences where the

initial transformation is also the earliest.

A greater speed-up is obtained by memoizing the heads of the generated sequences.

Sequences are generated in order, so all sequences that share a given prefix will be

generated contiguously. If a given prefix does not compose, then no sequences will that

prefix will compose, so it is not necessary to generate them.

However, there is a tension between these two speed-up techniques. It is theoretically

possible to have a cycle involving three transformations where two of the transforma-

tions do not compose. For example, a transformation C may have a large target, and

two transformations A and B may transform non-overlapping portions of that target,

producing code that matches the source of C. Thus, CAB is a cycle. Even though

B would not be considered to compose with A, because it does not match the target

of A, it does compose with CA. This is problematic if both speed-up techniques are

used. The first technique prevents generating CAB or BCA, and the second technique

prevents generating ABC, because A and B do not directly compose.

This sort of situation, where two or more transformations apply to non-overlapping

portions of another transformation’s target, lead us to abandon a more powerful ap-

proach to finding cycles. This method worked by creating a graph whose nodes were

transformations, and drawing arcs between nodes whenever one transformation com-

posed with another.2 Once the graph is fully populated, we can use standard techniques

for finding cycles in directed graphs to generate candidate sequences: any path that

starts at a node and returns to that node is potentially a cyclic transformation sequence.

2As it is possible for two optimizations to compose in multiple ways, this is more accurately a
multigraph.

154

Unfortunately, this method will also miss sequences such as CAB, because there will

not be an arc from A to B. While solutions can be devised for this specific problem,3

it is unknown whether they make this method complete.

5.4 Generating Test Cases

When a cycle has been detected, it is useful to have a concrete input that demonstrates

its non-termination. This aids in debugging and can be used as a test case to pre-

vent reintroduction of the bug by future developers. The method is general, and can

be used to demonstrate the behavior of any Alive-specified transformation, not just

transformations produced by composing cyclic sequences.

The source of an Alive transformation is already expressed in a form similar to

LLVM IR, with some additional abstractions. We obtain a valid IR fragment by re-

placing these abstractions with concrete values. First, we choose an arbitrary type

assignment that meets the typing constraints. Second, we find values for the symbolic

constants by encoding the precondition in SMT and checking its satisfiability. If it

is satisfiable, we request a model, which will provide concrete values for the symbolic

constants.

To turn this fragment into a valid input to LLVM, we enclose the source of the

transformation in an LLVM function, with the input variables becoming parameters

to the function. The value computed by the root of the source is returned from the

function. Figure 5.9 shows a transformation and a corresponding concrete input.

Additional effort must be taken when the precondition includes dataflow analy-

ses, such as isPowerOf2. If %a is an input variable, then LLVM will not be able to

show isPowerOf2(%a), and the transformation will not be applied. It is possible to

replace inputs subject to dataflow analyses with constants that satisfy the precondi-

tion, but this is unlikely to demonstrate the transformation unless additional steps

are taken. For example, when generating code for the transformation in Figure 5.8,

3For example: if a node C has two outgoing arcs to transformations A and B with no arcs between
them, test whether CAB composes. If so, create a new node A⊕B, representing the non-overlapping
composition of A and B.

155

Pre: C2 == C1 & C2

%p1 = xor %X, C1

%r1 = and %p1, C2

=>

%q2 = xor %X, -1

%r1 = and %q2, C2

(a)

define i8 @foo(i8 %X) {

entry:

%p1 = xor i8 %X, 255

%r1 = and i8 %p1, 0

ret i8 %r1

}

(b)

Figure 5.9: A transformation (a) and a concrete input program (b) that will cause
non-termination. The process instantiated types as 8-bit integers and chose the values
255 and 0 for C1 and C2, respectively.

we could replace %a and %b with 0 and 0, respectively. The resulting precondition,

WillNotOverflowSignedAdd(0,0) will be satisfied, but the instruction add i8 0, 0

will be replaced with 0 by InstCombine’s constant folding and the transformation will

not apply. Thus, this method requires disabling constant folding in order to demon-

strate non-termination.

A more general solution is to generate additional code that ensures that the dataflow

predicates are satisfied. For example, isPowerOf2(%x) is satisfied if %x = shl 1, %y,

for some new variable %y. Similarly, %a and %b will not overflow if their upper bits

are zero, due to an and or from being the result of zext. This method becomes more

difficult if the same input variable is the subject of multiple analyses, but this does not

commonly occur.

5.4.1 Shadowing of transformations

The technique for finding cycles will return sequences of transformations that can be

applied indefinitely to some input, but it is possible that this exact sequence of trans-

formations will never be applied to any input. Because the InstCombine tests potential

transformations in an specific order and selects the first one that matches, many trans-

formations will only be applied to a subset of possible inputs. If two transformations

can apply to a given program, only the first will ever be performed. We say that the

first has shadowed the second for that program.

For a cycle to cause compiler non-termination, each transformation in the cycle

must be applied to the program resulting from the previous transformation. If any

156

Pre: C < 0 && isPowerOf2(abs(C))

%p = sub %Y, %X

%r = mul %p, C

=>

%q = sub %X, %Y

%r = mul %q, abs(C)

(a) A transformation

Pre: C < 0 && isPowerOf2(abs(C)) \

&& abs(C) < 0 \

&& isPowerOf2(abs(abs(C)))

%p = sub %Y, %X

%r = mul %p, C

=>

%q = sub %X, %Y

%r = mul %q, abs(abs(C))

(b) The self-composition of (a)

define i4 @foo(i4 %X, i4 %Y) {

entry:

%p = sub i4 %Y, %X

%r = mul i4 %p, 8

ret i4 %r

}

(c) Generated test case

Pre: isPowerOf2(C1)

%r = mul %x, C1

=>

%r = shl %x, log2(C1)

(d) An optimization shadowing (a)

Figure 5.10: An optimization that can be applied to an input indefinitely. Note that
abs(C) < 0 is satisfied when C is the minimum signed integer, so the precondition of
(b) can be satisfied. However, the minimum signed integer is also a power of two, so
any input that satisfies (b) also satisfies (d). Thus, if (d) is attempted before (a), the
cycle is prevented.

of these transformations are shadowed, then a transformation outside the cycle may

be performed, resulting in a program that does not trigger the cycle. This means it is

possible that a cycle in a set of transformations will not cause compiler non-termination

in an actual implementation. Figure 5.10 shows a transformation that is a self-cycle

and another transformation that shadows it, preventing the cycle from occurring.

As described, both non-termination testing and concrete input generation assume

that no shadowing occurs. This is not generally the case. This means that the cycle

detector may incorrectly report some sequences as being cycles, and the concrete input

generator may produce inputs that do not cause non-termination. The former is not

necessarily a problem, as the concrete inputs can be used to determine whether non-

termination occurs. The risk of the second can be reduced by producing multiple

concrete inputs choosing different values.

A more complete solution is to strengthen the preconditions to reflect shadowing.

Each transformation has an implicit precondition stating that no earlier transformation

157

applied. If this condition can be made explicit, then the existing techniques will work

without modification. For the example in Figure 5.10, the shadowing can be indicated

by adding the predicate !isPowerOf2(C) to Figure 5.10(a). This will give the self-

composite in Figure 5.10(b) an unsatisfiable precondition, so it will not be reported as

a cycle.

Not all shadow preconditions are currently expressible in Alive. For example, a

transformation may implicitly assume that an input variable %x is not an add instruc-

tion. This can be addressed by adding additional predicates, but further research is

needed to know whether this is sufficient to express all implicit shadow preconditions.

5.5 Evaluation

To assess the efficacy of this technique, we extended the Alive toolkit with a prototype

termination checker and searched for cycles among a set of transformations derived

from the LLVM’s InstCombine pass. We had observed non-termination when testing

a peephole optimization pass created using Alive’s code generator, so we expected

to find several cycles within that set of transformations. For any cycles found, we

created concrete programs that could be used with LLVM to determine whether this

non-termination occurred in a production compiler.

5.5.1 Methodology

The termination checker was built on the Alive toolkit, adding roughly 1800 lines of

Python code. Given a suite of transformations, it generates sequences of a specified

length containing no duplicate transformations. To avoid testing multiple sequences

representing the same cycle, only sequences where the first transformation occurs ear-

liest in the suite are generated. That is, the prototype generates sequences ABC and

ACB, but not BAC, BCA, CAB, or CBA, all of which are redundant. Sequence

generation and composition were interleaved, so that a single composition AB would

be reused for all sequences beginning with AB. This allows the detector to skip all

158

sequences beginning with a common prefix if that common prefix does not viably com-

pose, as those sequences could not possibly be cycles.

To take advantage of multiprocessing, the search process was broken into a client-

server architecture when searching for n-cycles for n larger than three. A manager

process breaks the set of all sequences of n transformations into chunks sharing a com-

mon prefix and makes these prefixes available as a work queue. Client processes obtain

prefixes from the queue, check all sequences beginning with that prefix for potential

non-termination, and report any discoveries to the manager, along with statistics such

as the number of sequences considered. Once the work queue is emptied, the clients

terminate.4 The number of cycles grows exponentially with the length of cycles, so even

with multi-processing it was only practical to test all sequences for small n. For larger

n, the manager selects prefixes randomly, rather than sequentially, and halts after one

million composable sequences have been examined.

Searches were performed using a suite of 416 transformations derived from InstCom-

bine, including transformations using integer arithmetic but not floating-point arith-

metic or memory operations. SMT queries were resolved using a development version of

Z3 available at the time, as it had better support for quantifiers than the then-current

official release. Experiments were performed on four-core, 64-bit Intel Haswell machines

with 16 GiB of RAM.

5.5.2 Experimental results

The prototype successfully found 184 cycles among the 416 transformations in the Alive

suite, including those that had previously been observed to cause non-termination in

the Alive-generated peephole optimizer. Table 5.1 gives statistics about the sequences

considered during the search, including the number of sequences considered (including

all sequences that were discarded because a prefix was not composable), the number of

distinct composite transformations produced, the number of those that could apply to

4To mitigate a space leak in the version of Z3 used for this testing, clients also terminated after
testing a certain number of sequences, at which point the manager would start a new client process.

159

n Transformation Complete Self- Non- Cycles
Sequences Compositions compositions increasing Found

1 416 416 296 25 23
2 86 320 7 001 4 292 31 27
3 23 824 320 182 678 96 989 49 35
4 7 379 583 120 5 524 634 2 694 291 152 99
5* 13 119 902 905 1 000 000 463 017 2 0
6* 97 613 680 549 1 000 000 394 794 0 0
7* 474 163 216 578 1 000 000 395 638 0 0

Total Number of Cycles 184

Table 5.1: Statistics for the experiment run with the Alive suite. When generating a
sequence of n transformations, the columns give (2) the number of sequences explored,
(3) the number of transformations found by composing sequences, (4) the number of
such transformations that can be applied to their own output, (5) the number that do
not increase the size of the source pattern under self-composition, and (6) the number
of cycles.
* indicates that sequences were randomly sampled, rather than exhaustively searched.

their own output, the number that did not require a larger input to do so, and the num-

ber that then had a satisfiable precondition. As noted earlier, the number of sequences

grows rapidly with the sequence length, but the ratios between each column reduce.

Exhaustive searches were only performed for sequences of up to four transformations.

Larger sequence lengths were randomly sampled until a million composable sequences

were examined.

Characterization of cycles

Figures 5.11 to 5.13 show some of the transformations involved in cycles found by the

prototype. Surprisingly, the 184 cycles found involve only 38 distinct transformations.

Many of the larger cycles involve multiple transformations that participate in smaller

cycles. For example, the four transformations in Figure 5.13 form two distinct 4-cycles,

and two additionally form 1-cycles. Similarly, the transformation in Figure 5.8 can

form a 2-cycle with several other 1-cycles involving an and instruction. Of the 184

cycles, only 32 did not incorporate a smaller cycle. This suggests that exploring small

sequence lengths is sufficient to find the majority of non-termination bugs.

The cycles are enabled by weak preconditions, either because the precondition was

deliberately weakened during translation to Alive or because the precondition involved

160

Name: AndOrXor 2

%op = or %X, C1

%r = and %op, C2

=>

%o = or %X, (C1 & C2)

%r = and %o, C2

(a)

Name: AndOrXor 5

Pre: C2 & (-1 u>> C1) != -1 u>> C1

%op = lshr %X, C1

%r = and %op, C2

=>

%r = and %op, C2 & (-1 u>> C1)

(b)

Name: AndOrXor 13

%op0 = or %A, C1

%r = or %op0, %op1

=>

%i = or %A, %op1

%r = or %i, C1

(c)

Name: AndOrXor 8

Pre: MaskedValueIsZero(%A, \

-1 u>> countLeadingZeros(C))

%lhs = sub %A, %B

%r = and %lhs, C

=>

%neg = sub 0, %B

%r = and %neg, C

(d)

Name: Select 1

%c = icmp eq %X, C

%r = select i1 %c, %X, %Y

=>

%r = select i1 %c, C, %Y

(e)

Name: Select 2

%c = icmp ne %X, C

%r = select i1 %c, %Y, %X

=>

%r = select i1 %c, %Y, C

(f)

Figure 5.11: A sampling of the optimizations that form 1-cycles. The transformation
in Figure 5.8 also forms a 1-cycle.

161

Name: AndOrXor 9

%op0 = xor %nOp0, -1

%op1 = xor %nOp1, -1

%r = and %op0, %op1

=>

%or = or %nOp0, %nOp1

%r = xor %or, -1

Name: AndOrXor 15

%op0 = or %x, %y

%r = xor %op0, -1

=>

%nx = xor %x, -1

%ny = xor %y, -1

%r = and %nx, %ny

(a)

Name: AndOrXor 12

%na = xor %A, -1

%nb = xor %B, -1

%r = or %na, %nb

=>

%a = and %A, %B

%r = xor %a, -1

Name: AndOrXor 14

%op0 = and %x, %y

%r = xor %op0, -1

=>

%nx = xor %x, -1

%ny = xor %y, -1

%r = or %nx, %ny

(b)

Figure 5.12: A sampling of the optimizations that form 2-cycles. The transformations
in Figures 5.3(a) and 5.3(b) also form a 2-cycle.

predicates not yet added to Alive and unnecessary for correctness, such as isConstant

or hasNSW. The 1-cycle shown in Figure 5.11(a) can be broken by adding the pre-

condition C1 != C1 & C2. (This will also break several larger cycles that include this

transformation.) Similarly, adding the precondition !isConstant(%A) will break the

cycle shown in Figure 5.11(d).

Demonstrating non-termination

A concrete LLVM IR input program was generated for each detected cycle and given

to LLVM’s InstCombine pass and to an Alive-generated peephole optimizer. To avoid

interference from other optimization passes, only the peephole optimizer was used. The

Alive-generated optimizer did not terminate for 179 of the 184 cycle-triggering input

programs. In the remaining five cases, optimization terminated due to interference with

other transformations, as described in Section 5.4.1.

None of the concrete inputs caused non-termination in InstCombine. This is both

because InstCombine includes more transformations, and thus more opportunities for

interference, and because the transformations involved in cycles often had stronger

preconditions in InstCombine than the corresponding transformations in the Alive suite.

162

Name: AndOrXor 2

%op = or %X, C1

%r = and %op, C2

=>

%o = or %X, (C1 & C2)

%r = and %o, C2

(a)

Name: AndOrXor 3

Pre: C1 & C2 == C1

%op = or %X, C1

%r = and %op, C2

=>

%a = and %X, C2^(C1&C2)

%r = or %a, C1

(b)
Name: AndOrXor 10

Pre: C & C1 != 0

%op0 = and %x, C1

%r = or %op0, C

=>

%or = or %x, C

%r = and %or, (C | C1)

(c)

Name: AndOrXor 13

%op0 = or %A, C1

%r = or %op0, %op1

=>

%i = or %A, %op1

%r = or %i, C1

(d)

Pre: C12 & C11 != 0 && \

C12 & (C12 | C11) == C12

%op = or %X, C1

%r = and %op, C11

%r1 = or %r, C12

%r2 = or %r1, %op1

=>

%o = or %X, (C1 & C11)

%a = and %o, (C12 | C11) ^ \

(C12 & (C12 | C11))

%i = or %a, %op1

%r2 = or %i, C12

(e)

Pre: C111 & C2 & C1 != 0 && \

C111 & C2 & ((C111&C2)|C1) \

== C111 & C2

%op0 = and %x, C1

%op01 = or %op0, C11

%op = or %op01, C111

%r = and %op, C2

=>

%a = and %x, ((C111&C2)|C1) ^ \

(C111 & C2 & ((C111&C2)|C1))

%r1 = or %a, (C111 & C2)

%r11 = or %r1, C11

%r = and %r11, C2

(f)

Figure 5.13: Four transformations participating in two 4-cycles. (e) composes the
sequence (a)-(c)-(b)-(d); (f) composes the sequence (a)-(d)-(c)-(b). Note that (a) and
(d) form 1-cycles.

163

Specifically, during translation to Alive, the preconditions for several transformations

were weakened by removing clauses that were not needed for correctness. These clauses

turned out to be necessary for preventing non-termination. Once again, this indicates

that a weaker precondition is not always preferable.

5.6 Summary

Optimizations can fail in two ways: they may produce incorrect results by changing the

meaning of a program, or they may fail to produce any results due to non-termination

or other errors. A collection of individually correct transformations is not vulnerable

to the first kind of failure, but may exhibit the second. While termination checking is

undecidable in general, the limited domain of Alive transformations makes it feasible to

determine whether a particular sequence of transformations can be applied indefinitely

to some input. More generally, we see that using a declarative language for specifying

peephole optimizations enables multiple analyses in addition to verifying correctness.

164

Chapter 6

Related Work

Work related to Alive can be divided into three categories: (1) software verification and

compiler correctness, (2) code inference, especially precondition inference, and (3) and

termination checking.

6.1 Compiler Correctness

Most approaches for improving compiler correctness can be classified as testing tools,

formal reasoning frameworks, and domain specific languages (DSLs). In addition to

Alive, DSLs for compiler optimizations include languages based on graph rewriting [9,

79, 101], regular expressions [61], computation tree logic (CTL) [63], type systems [104],

and rewrite rules [46, 66, 67, 125]. In particular, Alive is similar to high-level rewrite

patterns [62, 78], but it differs from earlier approaches by including strong reasoning

about undefined behavior in order to verify modern optimizations that exploit it.

An alternative to verifying hand-written optimizations is automatic generation of

peephole optimizations [26] or superoptimization [11, 56, 81, 98, 109, 119], which finds

equivalent programs that use the fewest instructions.

Optgen [18] automatically generates peephole optimizations over an IR that are ver-

ified using an SMT solver. In contrast to Alive, Optgen handles only integer operations,

does not reason about undefined behavior, and does not abstract over types.

Tools for random testing [10, 64, 72, 89, 127] have successfully found many bugs in

compilers, but can never provide assurance that all bugs have been found—as demon-

strated by the fact that Alive found incorrect transformations in InstCombine that had

been missed by previous random testing projects.

165

Translation validation [51, 93, 99, 102, 105, 111, 118, 123, 128, 132] prevents a com-

piler from producing incorrect code by comparing the input and output to a particular

invocation of the compiler and showing that they are equivalent. Often, showing this

equivalence is easier than verifying the correctness of the compiler itself, but it requires

a proof to be found for each compilation. This degree of overhead is unlikely to be

accepted in a mainstream compiler.

CompCert [68–70, 90, 120] is a C compiler written using the proof assistant Coq [23]

that uses a combination of verified code and translation validation to ensure correctness.

Additional work has formalized optimizations involving weak memory models [124] and

bit-precise floating-point operations [14]. Vellvm [130, 131] also uses Coq, but models

the semantics of LLVM IR. Alive treats undef values similarly to Vellvm, but can

handle poison values and uses an SMT solver for correctness checking.

Extensive prior work has been done to check or improve the precision of floating-

point computation [13, 16, 25, 27, 35, 42, 43, 53, 59, 97, 103, 115], which is related to

but distinct from verification of compiler optimizations. In the absence of “fast math”

attributes, Alive restricts itself to considering bit-precise computations [42, 50, 80, 88].

LifeJacket [95] is another project that extended Alive with floating-point operations,

developed concurrently with Alive-FP [87]. LifeJacket uses a single encoding of floating-

point operations, similar the undef-like interpretation of undefined results. Its encoding

of nsz loosens the value equality correctness check to allow a change in the sign of a

zero result, which is less flexible than the encoding used by Alive.

6.2 Precondition Inference

Considerable work has been done on inferring preconditions, postconditions, and in-

variants for general-purpose programs [5, 7, 8, 12, 24, 31, 34, 36–38, 96, 106, 110, 112],

including data-driven approaches [36–38, 96, 106].

Alive-Infer is inspired by PIE [96], which generates preconditions in a general set-

ting. Precondition generation is broken into two steps: feature learning, which finds

166

predicates, and Boolean formula learning, which uses the predicates to create a precon-

dition. Alive-Infer works in the context of LLVM and Alive. Its language of predicates

is expressed using bit-vector arithmetic instead of integer arithmetic, and includes terms

that are partially defined. Alive-Infer allows developers to choose between full precon-

ditions that may be complex and simpler partial preconditions that may reject some

positive examples. To support this, Alive-Infer introduces a weighted partial Boolean

formula learner. Alive-Infer learns predicates that are type parametric and generates

data for multiple type assignments in order to capture type-varying behavior.

Other work has specifically addressed precondition generation for compiler opti-

mizations [18, 77, 108]. PSyCO [77] synthesizes read-write preconditions, but requires

a finite set of predicates determined in advance and does not address the features of

bit-vector arithmetic or undefined behavior. Optgen [18] automatically generates peep-

hole optimizations and checks their correctness. These may include preconditions, but

the language of precondition is limited to requiring that some computation evaluate to

zero. Preconditions are found using enumeration.

An alternative to finding predicates through enumeration is logical abduction [31,

39], which derives preconditions using techniques such as quantifier elimination. Meth-

ods for quantifier elimination in bit-vector logic [55] are limited to linear arithmetic,

which is insufficient to find preconditions for many Alive transformations.

Many previous data-driven approaches require a set of predicates to be fixed in

advance [38, 106, 112]. Counter-example–guided refinement [21, 110] is similar to

Alive-Infer, separating sets of mixed positive and negative examples by finding counter-

examples, but also fixes the set of predicates in advance. ICE and ICE-DT [36, 37] in-

troduce implication examples alongside positive and negative examples, using all three

to synthesize invariants. Specific techniques may involve template-based synthesis or a

decision tree learning algorithm generating invariants using a fixed set of attributes. In

contrast, PIE and Alive-Infer learn predicates on-demand.

Alive-Infer can also be seen as a variant of the symbolic, stochastic, and enumerative

search strategies used for program synthesis [6, 44, 60, 114, 122] and superoptimization.

167

6.3 Termination Checking

Few of the existing approaches for compiler verification address non-termination A

compiler written with end-to-end verification in a proof assistant will be guaranteed to

terminate by the proof assistant. DSLs typically address the correctness of individual

optimizations and do not address non-termination that can arise when a set of transfor-

mations is run until it reaches a steady state. Conversely, translation validation needs

the output of the compiler in order to test for correctness, and provides no assurances

about the process of compilation itself.

In a broader context, there is extensive prior work on termination checking for im-

perative programs, term-rewriting systems, system specifications, and system code [19,

20, 22, 45, 58, 71, 116, 116]. These methods discover invariants statically or dynamically

such as ranking functions and use them to show termination. Finding such invariants

for Alive-generated peephole optimizers is challenging, as it would need to consider the

LLVM infrastructure used by InstCombine.

Research for showing termination in term-rewriting systems [30, 40, 117, 126] is

relevant to Alive, but cycle detection using composition is able to take advantage of the

structure and domain knowledge of Alive.

Non-termination can also be seen as an extreme case of poor performance. If Alive is

configured to generate transformations that cease applying after some limit is reached,

the time spent in the cycle can be analyzed by tools that detect the cause of poor

performance [29, 48, 94]. However, these are dynamic analyses, and cannot be applied

without a concrete input that triggers the cycle. In contrast, Alive termination checking

is a static analysis that can generate concrete inputs that trigger cycles after they have

been detected.

168

Chapter 7

Conclusion

The goal of the Alive project is to encourage software developers, specifically com-

piler developers, to demonstrate the correctness of their code by simplifying the task of

creating a rigorous proof. A peephole transformation written in Alive can be automat-

ically checked for correctness and translated to a C++ implementation, as described in

Chapter 3. Alive transformations are often shorter than hand-written transformations

in C++, and their effect can be easily determined. If the Alive toolkit determines that a

transformation is incorrect, it will provide an example showing how the transformation

changes the behavior of a program. The Alive-Infer toolkit described in Chapter 4 can

then be used to find a precondition that makes the transformation correct, if one exists.

Alive is designed for automated verification. It supports a subset of instructions

in the LLVM IR and can describe a specific class of transformations, but within these

parameters it is able to check correctness without user intervention. The actual correct-

ness conditions can be efficiently checked by SMT solvers, often in less than a second.

In addition to showing the correctness of individual transformations, Alive enables

higher-level analyses of multiple transformations. A peephole optimizer that repeatedly

applies transformations until no further transformations can be applied is vulnerable

to non-termination bugs, where no steady state is ever reached. If the transformations

making up the optimizer are specified in Alive, the method described in Chapter 5

can be used to detect sequences of transformations that may lead to non-termination.

The declarative nature of Alive means it is always possible to automatically determine

the effect of applying a transformation to a program, which is not guaranteed for

transformations written in a general-purpose programming language.

In short, Alive is a practical system for creating correct peephole transformations.

169

It is fast, easy to use, and rigorous. Alive has been adopted by LLVM developers

for checking the correctness of proposed transformations and as a way to explore the

semantics of LLVM IR.

7.1 Technical Contributions

The Alive language, described in Chapter 3, selects a subset of LLVM IR for which

the correctness of peephole transformations can be automatically checked. To perform

these checks, we introduce an method for encoding the semantics of several LLVM

instructions and expressions into SMT. This includes encodings of LLVM’s three forms

of undefined behavior as well as a safety condition that ensures the transformation itself

can be applied without causing undefined behavior in the compiler and verified without

causing undefined behavior in the SMT solver. Alive uses side conditions to ensure that

its encoding of imprecise analyses represent their approximate nature.

The semantics for floating-point operations in LLVM are vague, especially those

relating to its “fast math” flags. Alive encodes transformations assuming IEEE 754

semantics and introduces a formal, instruction-level encoding of the nnan, ninf, and

nsz attributes.

Alive-Infer, described in Chapter 4, introduces a data-driven method for inferring

preconditions sufficient to make a transformation correct. This method expands on the

Precondition Inference Engine by generating data for abstract programs (the source

pattern of Alive transformations) that cannot themselves be executed. Alive-Infer learns

predicates by enumerating predicates that are well-typed and type parametric, and

can reason about predicates that are partially defined (i. e., have non-trivial safety

conditions). Alive-Infer introduces a weighted partial Boolean formula learner, which

finds formulae that reject all negative examples and maximize the number of accepted

positive examples, while maintaining an upper bound on formula complexity.

Chapter 5 presents a method for composing two transformations to create a single

transformation that has the effect of applying both transformations to an input pro-

gram in sequence. Because Alive transformations are declarative, this process can be

170

performed by aligning directed, acyclic graphs. Using composition, it is possible to

check whether a sequence of transformations can be applied indefinitely to some input

program by comparing the composite transformations that apply the entire sequence

once and twice. If performing the sequence twice does not increase the size of the source

pattern compared to performing it once and its precondition can be satisfied, then the

transformation sequence can be performed indefinitely.

7.2 Future Work

The Alive project has successfully created a practical system for verifying peephole

optimizations that has been adopted by mainstream compiler developers, but there are

many avenues left to explore.

Alive itself can be extended in several directions beyond those discussed in Sec-

tion 3.5. Several InstCombine transformations target LLVM intrinsics, such as fabs

(floating-point absolute value). Syntax for LLVM intrinsics could be easily extended

in the same way as constant and predicate functions, allowing for easily adding new

intrinsics to Alive without modifying the parser.

In our experiments, we found that transformations targeting getelementpointer

instructions are applied more frequently than those targeting any other instruction.

Several transformations abstract over lists of arguments, which requires additional syn-

tax to represent in Alive. It is worth investigating what would be needed to express

these transformations in Alive, and whether the gain in expressive power justifies the

additional syntax and semantics.

Similarly, several InstCombine transformations are parametric over classes of in-

structions (e. g., several transformations apply to both signed and unsigned division).

It would be possible to allow abstraction over binary operators, similar to the relation

variables discussed in Section 3.5.1, with additional predicates to restrict the range of

possible instructions.

The “fast math” flags in LLVM can be further explored. Beyond requiring bit-

precise transformations or allowing a certain degree of nondeterminism, the behavior of

171

the flags can also be characterized in terms of lost precision. Floating-point arithmetic

is inherently imprecise, so alternative encodings could be developed that compare the

error bounds of the source and target of a transformation. There are many ways to

define these error bounds (average vs maximum error, relative vs absolute error, etc.),

and not all can be encoded equally efficiently. Such a project would need to consult

not only with numerics experts, but with the users of the fast math flags in order to

determine their needs.

More broadly, the need to separately check correctness for each possible type assign-

ment is unsatisfying, both because it requires dozens or hundreds of correctness checks

and because even those checks do not actually show correctness for all 223 − 1 possible

integer types. Some means of showing that an SMT problem is unsatisfiable for all bit

widths larger than a threshold would remove this small threat to the validity of Alive

verification, as well as being useful for other applications of SMT bit vectors.

The inference algorithm used by Alive-Infer is effective, but it can struggle to find

predicates to separate some samples. The exponential growth in the number of pred-

icates as the predicate size increases makes it impractical to expect enumeration of

predicates above a certain size. When Alive-Infer takes a very long time to find a

precondition, it is usually because it cannot learn a large predicate without first ex-

amining all smaller predicates. Presently, the enumerator is guided only by the names

of symbolic constants and type variables defined by a transformation, but it may be

possible to find additional information in the transformation and use it to bias the

enumerator to produce predicates more likely to be relevant sooner. For example, most

integer constants will be intended as signed or unsigned values, and expressions in the

precondition that respect this intention are more likely to be useful.

Finally, detection of compiler non-termination bugs is only one possible global anal-

ysis that could be performed on a collection of Alive transformations. Many transfor-

mations have implicit assumptions based on their priority in InstCombine, which may

lead to preconditions that appear insufficient or partial when taken individually or im-

ply cycles that cannot occur due to shadowing. Methods similar to composition could

be developed to discover these implicit assumptions, avoiding these incorrect analyses

172

and also enabling discovery of transformations that will never be applied. Similarly,

knowing that two transformations overlap can be help to determine the best ordering of

transformations, as transformations that produce better code or are easier to perform

should have higher priority.

When generating a peephole optimizer, the code generator organizes transforma-

tions by the opcode of their target instruction but otherwise generates code for each

transformation separately. Often, several transformations have source patterns with

common sub-patterns. Rather than checking for the same pattern multiple times, a

more efficient implementation would attempt to match the pattern once and share the

result among the transformations. Again, DAG alignment can be extended to find

transformations that would benefit from sharing sub-pattern matches and the peephole

optimizer can be constructed to minimize duplicated effort.

7.3 Summary

The goal of the Alive project is to encourage the use of formal methods among compiler

developers by creating tools that are simple to use while providing a strong assurance

of correctness. Alive provides a way to specify peephole transformations that can be

automatically checked for correctness and produce implementations that are correct

by construction. Building on Alive, we also provide a method for debugging incorrect

Alive transformations by inferring preconditions that make a transformation correct,

and another for detecting sequences of transformations that may cause compiler non-

termination. Although Alive cannot be used to show the end-to-end correctness of a

compiler, it and its associated tools have successfully improved the correctness of LLVM.

Alive has been used to find previously unknown bugs in LLVM and, more importantly,

has been adopted by LLVM developers as a means of screening proposed additions to

LLVM’s peephole optimizer. This success is not the end of the Alive project: Alive

can form the basis of additional analyses and the ideas behind Alive can be adapted to

other compilers and intermediate languages.

173

Bibliography

[1] Alive optimization verifier. https://rise4fun.com/Alive. Retrieved 2017-10-

11.

[2] LLVM language reference manual. http://llvm.org/docs/LangRef.html. Re-

trieved 2017-10-14.

[3] IEEE standard for floating-point arithmetic. IEEE 754-2008, IEEE Computer

Society, Aug. 2008.

[4] W. Ackermann. Solvable Cases of the Decision Problem. North-Holland Publish-

ing Company, 1954.

[5] A. Albarghouthi, I. Dillig, and A. Gurfinkel. Maximal specification synthesis. In

Proceedings of the 43rd Annual Symposium on Principles of Programming Lan-

guages, POPL, pages 789–801, Jan. 2016.

[6] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia,

R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthe-

sis. In Proceedings of the 13th International Conference on Formal Methods in

Computer-Aided Design, FMCAD, pages 1–17, Oct. 2013.

[7] R. Alur, P. Černý, P. Madhusudan, and W. Nam. Synthesis of interface speci-

fications for java classes. In Proceedings of the 32nd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL, pages 98–109, Jan.

2005.

[8] G. Ammons, R. Bod́ık, and J. R. Larus. Mining specifications. In Proceedings

of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL, pages 4–16, 2002.

https://rise4fun.com/Alive
http://llvm.org/docs/LangRef.html

174

[9] U. Aßmann. How to uniformly specify program analysis and transformation with

graph rewrite systems. In Proc. of the 6th International Conference on Compiler

Construction, pages 121–135, 1996.

[10] A. Balestrat. CCG: A random C code generator. https://github.com/Merkil/

ccg/. Retrieved 2016-02-12.

[11] S. Bansal and A. Aiken. Automatic generation of peephole superoptimizers. In

Proceedings of the 12th International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS, pages 394–403, Oct.

2006.

[12] M. Barnett and K. R. M. Leino. Weakest-precondition of unstructured programs.

In Proceedings of the 6th ACM SIGPLAN-SIGSOFT Workshop on Program Anal-

ysis for Software Tools and Engineering, PASTE, pages 82–87, Sept. 2005.

[13] E. T. Barr, T. Vo, V. Le, and Z. Su. Automatic detection of floating-point excep-

tions. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL ’13, pages 549–560, New York,

NY, USA, 2013. ACM.

[14] S. Boldo, J.-H. Jourdan, X. Leroy, and G. Melquiond. A formally-verified C

compiler supporting floating-point arithmetic. In Proceedings of the 21st IEEE

Symposium on Computer Arithmetic, ARITH, pages 107–115. IEEE, Apr. 2013.

[15] A. S. Boujarwah and K. Saleh. Compiler test case generation methods: a survey

and assessment. Information and software technology, 39(9):617–625, 1997.

[16] M. Brain, V. DSilva, A. Griggio, L. Haller, and D. Kroening. Interpolation-based

verification of floating-point programs with abstract CDCL. In Proceedings of the

20th International Symposium on Static Analysis, SAS, pages 412–432. Springer,

June 2013.

https://github.com/Merkil/ccg/
https://github.com/Merkil/ccg/

175

[17] M. Brain, C. Tinelli, P. Rümmer, and T. Wahl. An automatable formal seman-

tics for IEEE-754 floating-point arithmetic. In Proceedings of the 22nd IEEE

Symposium on Computer Arithmetic, ARITH, pages 160–167. IEEE, June 2015.

[18] S. Buchwald. Optgen: A generator for local optimizations. In Proceedings of the

24th International Conference on Compiler Construction, CC, pages 171–189,

2015.

[19] J. Burnim, N. Jalbert, C. Stergiou, and K. Sen. Looper: Lightweight detection

of infinite loops at runtime. In Proceedings of the 2009 IEEE/ACM International

Conference on Automated Software Engineering (ASE), pages 161–169, 2009.

[20] M. Carbin, S. Misailovic, M. Kling, and M. C. Rinard. Detecting and escaping

infinite loops with Jolt. In Proceedings of the 25th European conference on Object-

oriented programming (ECOOP), pages 609–633, 2011.

[21] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided

abstraction refinement. In Computer Aided Verification, volume 1855 of CAV,

2000.

[22] B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code.

In Proceedings of the 27th ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), pages 415–426, 2006.

[23] The Coq Development Team. The Coq Proof Assistant Reference Manual, 2013.

[24] P. Cousot, R. Cousot, M. Fähndrich, and F. Logozzo. Automatic inference of

necessary preconditions. In Proceedings of the 14th International Conference on

Verification, Model Checking, and Abstract Interpretation, VMCAI, pages 128–

148, Jan. 2013.

[25] E. Darulova and V. Kuncak. Sound compilation of reals. In Proceedings of the 41st

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL, pages 235–248, New York, NY, USA, 2014. ACM.

176

[26] J. W. Davidson and C. W. Fraser. Automatic generation of peephole transforma-

tions. In Proc. of the ACM SIGPLAN ’84 Symposium on Compiler Construction,

pages 111–115, New York, NY, USA, 1984.

[27] F. de Dinechin, C. Q. Lauter, and G. Melquiond. Assisted verification of ele-

mentary functions using Gappa. In Proceedings of the 2006 ACM Symposium on

Applied Computing, SAC, pages 1318–1322. ACM, 2006.

[28] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Proceedings of

the Theory and Practice of Software, 14th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, TACAS, pages 337–340,

2008.

[29] D. C. D’Elia, C. Demetrescu, and I. Finocchi. Mining hot calling contexts in small

space. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI, pages 516–527, 2011.

[30] N. Dershowitz. Termination of rewriting. Journal of symbolic computation,

3(1):69–115, 1987.

[31] I. Dillig, T. Dillig, B. Li, and K. McMillan. Inductive invariant generation via

abductive inference. In Proceedings of the 2013 ACM SIGPLAN International

Conference on Object-Oriented Programming Systems, Languages, and Applica-

tions, OOPSLA, pages 443–456, Oct. 2013.

[32] S. Dissegna, F. Logozzo, and F. Ranzato. Tracing compilation by abstract inter-

pretation. In Proc. of the 41st ACM SIGPLAN-SIGACT Symposium on Princi-

ples of Programming Languages, pages 47–59, 2014.

[33] E. Eide and J. Regehr. Volatiles are miscompiled, and what to do about it.

In Proceedings of the 8th ACM International Conference on Embedded Software,

EMSOFT ’08, pages 255–264, New York, NY, USA, 2008. ACM.

[34] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz,

177

and C. Xiao. The Daikon system for dynamic detection of likely invariants. Sci-

ence of Computer Programming, 69(1):35–45, Dec. 2007.

[35] Z. Fu, Z. Bai, and Z. Su. Automated backward error analysis for numerical code.

In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-

Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015,

pages 639–654, New York, NY, USA, 2015. ACM.

[36] P. Garg, C. Löding, P. Madhusudan, and D. Neider. Ice: A robust learning

framework for synthesizing invariants. In Proceedings of the 26th International

Conference on Computer Aided Verification, CAV, pages 69–87, July 2014.

[37] P. Garg, D. Neider, P. Madhusudan, and D. Roth. Learning invariants using

decision trees and implication counterexamples. In Proceedings of the 43rd Annual

Symposium on Principles of Programming Languages, POPL, pages 499–512, Jan.

2016.

[38] T. Gehr, D. Dimitrov, and M. T. Vechev. Learning commutativity specifica-

tions. In Proceedings of the 27th International Conference on Computer Aided

Verification, CAV, pages 307–323, July 2015.

[39] R. Giacobazzi. Abductive analysis of modular logic programs. In Proceedings of

the 1994 International Symposium on Logic programming, ISPL, pages 377–391,

Nov. 1994.

[40] J. Giesl, P. Schneider-kamp, and R. Thiemann. AProVE 1.2: Automatic ter-

mination proofs in the dependency pair framework. In Proceedings of the 3rd

International Joint Conference on Automated Reasoning (IJCAR), pages 281–

286, 2006.

[41] D. Gohman. The nsw story. http://lists.llvm.org/pipermail/llvm-dev/

2011-November/045735.html, Nov. 2011. Retrieved 2017-11-28.

[42] E. Goubault. Static analyses of the precision of floating-point operations. In

http://lists.llvm.org/pipermail/llvm-dev/2011-November/045735.html
http://lists.llvm.org/pipermail/llvm-dev/2011-November/045735.html

178

Proceedings of the 8th International Symposium on Static Analysis, SAS, pages

234–259. Springer, 2001.

[43] E. Goubault, S. Putot, P. Baufreton, and J. Gassino. Static analysis of the

accuracy in control systems: Principles and experiments. In Revised Selected

Papers from the 12th International Workshop on Formal Methods for Industrial

Critical Systems, FMICS, pages 3–20. Springer, 2007.

[44] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of loop-free pro-

grams. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI, June 2011.

[45] A. Gupta, T. Henzinger, R. Majumdar, A. Rybalchenko, and R.-G. Xu. Proving

non-termination. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL), pages 147–158,

2008.

[46] S. Z. Guyer and C. Lin. Broadway: A compiler for exploiting the domain-specific

semantics of software libraries. Proceedings of the IEEE, 93(2):342–357, Feb. 2005.

[47] M. Haidl. [llvm-dev] How to add optimizations to InstCombine cor-

rectly? http://lists.llvm.org/pipermail/llvm-dev/2017-September/

117419.html, Sept. 2017. Retrieved 2017-10-24.

[48] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie. Performance debugging in the

large via mining millions of stack traces. In Proceedings of the 34th International

Conference on Software Engineering (ICSE), pages 145–155, 2012.

[49] K. V. Hanford. Automatic generation of test cases. IBM Systems Journal,

9(4):242–257, 1970.

[50] J. Harrison. Floating point verification in HOL. In Proceedings of the 8th Inter-

national Workshop on Higher Order Logic Theorem Proving and Its Applications,

pages 186–199. Springer, Sept. 1995.

http://lists.llvm.org/pipermail/llvm-dev/2017-September/117419.html
http://lists.llvm.org/pipermail/llvm-dev/2017-September/117419.html

179

[51] C. Hawblitzel, S. K. Lahiri, K. Pawar, H. Hashmi, S. Gokbulut, L. Fernando,

D. Detlefs, and S. Wadsworth. Will you still compile me tomorrow? static cross-

version compiler validation. In Proceedings of the 2013 9th Joint Meeting on

Foundations of Software Engineering, ESEC/FSE 2013, 2013.

[52] T. Hoare. The verifying compiler: A grand challenge for computing research.

Journal of the ACM, 50(1):63–69, Jan. 2003.

[53] F. Ivančić, M. K. Ganai, S. Sankaranarayanan, and A. Gupta. Numerical sta-

bility analysis of floating-point computations using software model checking. In

Proceedings of the 8th IEEE/ACM International Conference on Formal Methods

and Models for Codesign, MEMOCODE, pages 49–58. IEEE, July 2010.

[54] Y. Jiang. [Patch]InstCombine pattern for ICMP. http://lists.llvm.org/

pipermail/llvm-commits/Week-of-Mon-20140818/231300.html, 2014. Re-

trieved 2017-09-14.

[55] A. K. John and S. Chakraborty. Quantifier elimination for linear modular con-

straints. In Proceedings of the 4th International Congress on Mathematical Soft-

ware, ICMS, pages 295–302, Aug. 2014.

[56] R. Joshi, G. Nelson, and Y. Zhou. Denali: A practical algorithm for generat-

ing optimal code. ACM Transactions on Programming Languages and Systems

(TOPLAS), 28(6):967–989, Nov. 2006.

[57] J. Ketema, J. Regehr, J. Taneja, P. Collingbourne, and R. Sasnauskas. A su-

peroptimizer for LLVM IR. https://github.com/google/souper. Retrieved

2016-11-14.

[58] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. Life, death, and the critical

transition: Detecting liveness bugs in systems code. In Proceedings of the 4th

USENIX Symposium on Networked Systems Design & Implementation (NDSI),

pages 243–256, 2007.

http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20140818/231300.html
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20140818/231300.html
https://github.com/google/souper

180

[59] A. B. Kinsman and N. Nicolici. Finite precision bit-width allocation using SAT-

modulo theory. In Proceedings of the Conference on Design, Automation and Test

in Europe, DATE ’09, pages 1106–1111, 3001 Leuven, Belgium, Belgium, 2009.

European Design and Automation Association.

[60] A. Komuravelli, A. Gurfinkel, and S. Chaki. SMT-based model checking for recur-

sive programs. In Proceedings of the 26th International Conference on Computer

Aided Verification, CAV, pages 17–34, July 2014.

[61] D. Kozen and M.-C. Patron. Certification of compiler optimizations using Kleene

algebra with tests. In Proc. of the 1st International Conference on Computational

Logic, pages 568–582, 2000.

[62] S. Kundu, Z. Tatlock, and S. Lerner. Proving optimizations correct using pa-

rameterized program equivalence. In Proceedings of the 30th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI, pages

327–337, 2009.

[63] D. Lacey, N. D. Jones, E. Van Wyk, and C. C. Frederiksen. Compiler optimization

correctness by temporal logic. Higher Order Symbol. Comput., 17(3):173–206,

Sept. 2004.

[64] V. Le, M. Afshari, and Z. Su. Compiler validation via equivalence modulo inputs.

In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI, pages 216–226, 2014.

[65] J. Lee, Y. Kim, Y. Song, C.-K. Hur, S. Das, D. Majnemer, J. Regehr, and N. P.

Lopes. Taming undefined behavior in LLVM. In Proceedings of the 38th ACM

SIGPLAN Conference on Programming Language Design and Implementation,

PLDI, pages 633–647, New York, NY, USA, June 2017. ACM.

[66] S. Lerner, T. Millstein, and C. Chambers. Automatically proving the correctness

of compiler optimizations. In Proceedings of the ACM SIGPLAN 2003 Conference

on Programming Language Design and Implementation, PLDI, pages 220–231,

2003.

181

[67] S. Lerner, T. Millstein, E. Rice, and C. Chambers. Automated soundness proofs

for dataflow analyses and transformations via local rules. In Proceedings of the

32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL, pages 364–377, 2005.

[68] X. Leroy. Formal certification of a compiler back-end, or: programming a compiler

with a proof assistant. In Proceedings of the 33rd ACM Symposium on Principles

of Programming Languages, 2006.

[69] X. Leroy. Formal verification of a realistic compiler. Communications of the ACM,

52(7):107–115, July 2009.

[70] X. Leroy. A formally verified compiler back-end. In Journal of Automated Rea-

soning, 2009.

[71] P. Li and J. Regehr. T-check: Bug finding for sensor networks. In Proceedings

of the 9th ACM/IEEE International Conference on Information Processing in

Sensor Networks (IPSN), pages 174–185, 2010.

[72] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson. Many-core compiler

fuzzing. In Proceedings of the 36th ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 65–76, 2015.

[73] C. Lindig. Random testing of c calling conventions. In Proceedings of the sixth

international symposium on Automated analysis-driven debugging, pages 3–12.

ACM, 2005.

[74] N. Lopes. RFC: Killing undef and spreading poison. http://lists.llvm.org/

pipermail/llvm-dev/2016-October/106182.html, 2016. Retrieved 2016-11-10.

[75] N. Lopes, D. Menendez, S. Nagarakatte, and J. Regehr. Alive: Automatic LLVM

InstCombine Verifier. http://github.com/nunoplopes/alive. Retrieved 2016-

02-12.

http://lists.llvm.org/pipermail/llvm-dev/2016-October/106182.html
http://lists.llvm.org/pipermail/llvm-dev/2016-October/106182.html
http://github.com/nunoplopes/alive

182

[76] N. Lopes, D. Menendez, S. Nagarakatte, and J. Regehr. Provably correct peephole

optimizations with Alive. In Proceedings of the 36th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI, pages 22–32, 2015.

[77] N. Lopes and J. Monteiro. Weakest precondition synthesis for compiler optimiza-

tions. In Proceedings of the 15th International Conference on Verification, Model

Checking, and Abstract Interpretation, VMCAI, pages 203–221, 2014.

[78] N. P. Lopes and J. Monteiro. Automatic equivalence checking of uf+ia programs.

In Proceedings of the 20th International Symposium on Model Checking Software,

SPIN, pages 282–300, July 2013.

[79] W. Mansky and E. Gunter. A cross-language framework for verifying compiler

optimizations. In Proceedings of the 5th Workshop on Syntax and Semantics of

Low-Level Languages, 2014.

[80] M. Martel. Semantics-based transformation of arithmetic expressions. In Proceed-

ings of the 14th International Symposium on Static Analysis, SAS, pages 298–314.

Springer, 2007.

[81] H. Massalin. Superoptimizer: A look at the smallest program. In Proceedings

of the 2nd International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), pages 122–126, 1987.

[82] W. M. McKeeman. Differential testing for software. Digital Technical Journal,

10(1):100–107, Dec. 1998.

[83] D. Menendez. LLVM’s shifty semantics. https://compilersatrutgers.

wordpress.com/2017/05/24/llvms-shifty-semantics/, May 2017. Retrieved

2017-10-11.

[84] D. Menendez and S. Nagarakatte. Alive-NJ. https://github.com/

rutgers-apl/alive-nj. Retrieved 2016-04-16.

https://compilersatrutgers.wordpress.com/2017/05/24/llvms-shifty-semantics/
https://compilersatrutgers.wordpress.com/2017/05/24/llvms-shifty-semantics/
https://github.com/rutgers-apl/alive-nj
https://github.com/rutgers-apl/alive-nj

183

[85] D. Menendez and S. Nagarakatte. Termination-checking for LLVM peephole op-

timizations. In Proceedings of the 38th International Conference of Software En-

gineering, ICSE, pages 191–202, May 2016.

[86] D. Menendez and S. Nagarakatte. Precondition inference for peephole optimiza-

tions in LLVM. In Proceedings of the 38th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI, pages 49–63, June 2017.

[87] D. Menendez, S. Nagarakatte, and A. Gupta. Alive-FP: Automated verification

of floating point based peephole optimizations in LLVM. In Proceedings of the

23rd Static Analysis Symposium, pages 317–337, 2016.

[88] D. Monniaux. The pitfalls of verifying floating-point computations. ACM Trans-

actions on Programming Languages and Systems (TOPLAS), 30(3):12:1–12:41,

May 2008.

[89] R. Morisset, P. Pawan, and F. Z. Nardelli. Compiler testing via a theory of sound

optimisations in the C11/C++11 memory model. In Proceedings of the 34th ACM

SIGPLAN Conference on Programming Language Design and Implementation,

PLDI, pages 187–196, 2013.

[90] E. Mullen, D. Zuniga, Z. Tatlock, and D. Grossman. Verified peephole optimiza-

tions for CompCert. In Proceedings of the 37th ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI, pages 448–461, June

2016.

[91] E. Nagai, H. Awazu, N. Ishiura, and N. Takeda. Random testing of C compilers

targeting arithmetic optimization. In Workshop on Synthesis And System Inte-

gration of Mixed Information Technologies (SASIMI 2012), pages 48–53, 2012.

[92] E. Nagai, A. Hashimoto, and N. Ishiura. Scaling up size and number of expressions

in random testing of arithmetic optimization of C compilers. In Workshop on

Synthesis And System Integration of Mixed Information Technologies (SASIMI

2013), pages 88–93, 2013.

184

[93] G. C. Necula. Translation validation for an optimizing compiler. In Proceedings

of the ACM SIGPLAN 2000 Conference on Programming Language Design and

Implementation, PLDI, pages 83–94, 2000.

[94] A. Nistor, P.-C. Chang, C. Radoi, and S. Lu. CARAMEL: Detecting and fixing

performance problems that have non-intrusive fixes. In Proceedings of the 37th

International Conference on Software Engineering (ICSE), pages 902–912, 2015.

[95] A. Nötzli and F. Brown. LifeJacket: Verifying precise floating-point optimizations

in LLVM. http://arxiv.org/pdf/1603.09290v1.pdf, 2016. Retrieved 2016-04-

04.

[96] S. Padhi, R. Sharma, and T. Millstein. Data-driven precondition inference with

learned features. In Proceedings of the 37th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI ’16, pages 42–56, 2016.

[97] P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tatlock. Automatically

improving accuracy for floating point expressions. In Proceedings of the 36th ACM

SIGPLAN Conference on Programming Language Design and Implementation,

PLDI, pages 1–11. ACM, June 2015.

[98] P. M. Phothilimthana, A. Thakur, R. Bodik, and D. Dhurjati. Scaling up su-

peroptimization. In Proceedings of the 21st International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, ASPLOS,

pages 297–310, Apr. 2016.

[99] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In TACAS

’98: Proceedings of the 4th International Conference on Tools and Algorithms for

Construction and Analysis of Systems, 1998.

[100] P. Purdom. A sentence generator for testing parsers. BIT Numerical Mathematics,

12(3):366–375, 1972.

[101] N. Ramsey, J. Dias, and S. P. Jones. Hoopl: A modular, reusable library for

http://arxiv.org/pdf/1603.09290v1.pdf

185

dataflow analysis and transformation. In Proc. of the 3rd ACM Symposium on

Haskell, 2010.

[102] M. Rinard. Credible compilation. Technical Report MIT-LCS-TR-776, Mas-

sachusetts Institute of Technology, Mar. 1999.

[103] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan, K. Sen,

D. H. Bailey, C. Iancu, and D. Hough. Precimonious: Tuning assistant for floating-

point precision. In Proceedings of the International Conference on High Perfor-

mance Computing, Networking, Storage and Analysis, SC ’13, pages 27:1–27:12,

New York, NY, USA, 2013. ACM.

[104] A. Saabas and T. Uustalu. Program and proof optimizations with type systems.

The Journal of Logic and Algebraic Programming, 77(1–2):131–154, 2008.

[105] H. Samet. Proving the correctness of heuristically optimized code. Communica-

tions of the ACM, 21(7):570–582, July 1978.

[106] S. Sankaranarayanan, S. Chaudhuri, F. Ivančić, and A. Gupta. Dynamic inference

of likely data preconditions over predicates by tree learning. In Proceedings of

the 2008 International Symposium on Software Testing and Analysis, ISSTA ’08,

pages 295–306, 2008.

[107] R. L. Sauder. A general test data generator for COBOL. In Proceedings of the

May 1-3, 1962, spring joint computer conference, pages 317–323. ACM, 1962.

[108] E. R. Scherpelz, S. Lerner, and C. Chambers. Automatic inference of optimizer

flow functions from semantic meanings. In Proceedings of the 28th ACM SIG-

PLAN Conference on Programming Language Design and Implementation, PLDI,

pages 135–145, June 2007.

[109] E. Schkufza, R. Sharma, and A. Aiken. Stochastic superoptimization. In Pro-

ceedings of the 18th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS, pages 305–316, 2013.

186

[110] M. N. Seghir and D. Kroening. Counterexample-guided precondition inference.

In Proceedings of the 22nd European Conference on Programming Languages and

Systems, ESOP, pages 451–471, Mar. 2013.

[111] T. A. L. Sewell, M. O. Myreen, and G. Klein. Translation validation for a verified

os kernel. In Proceedings of the 34th ACM SIGPLAN Conference on Programming

Language Design and Implementation, 2013.

[112] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, P. Liang, and A. V. Nori. A

data driven approach for algebraic loop invariants. In Proceedings of the 22Nd

European Conference on Programming Languages and Systems, ESOP’13, pages

574–592, 2013.

[113] F. Sheridan. Practical testing of a C99 compiler using output comparison. Soft-

ware: Practice and Experience, 37(14):1475–1488, Nov. 2007.

[114] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat. Combinatorial

sketching for finite programs. Proceedings of the 12th International Conference on

Architectural Support for Programming Languages and Operating Systems, pages

404–415, Oct. 2006.

[115] A. Solovyev, C. Jacobsen, Z. Rakamarić, and G. Gopalakrishnan. Rigorous es-

timation of floating-point round-off errors with symbolic Taylor expansions. In

Proceedings of the 20th International Symposium on Formal Methods, FM, pages

532–550. Springer, June 2015.

[116] F. Spoto, F. Mesnard, and É. Payet. A termination analyzer for Java bytecode

based on path-length. ACM Transactions on Programming Languages and Sys-

tems (TOPLAS), 32(3):8:1–8:70, Mar. 2010.

[117] J. Steinbach. Simplification orderings: History of results. Fundamenta Informat-

icae, 24(1–2):47–87, Apr. 1995.

[118] M. Stepp, R. Tate, and S. Lerner. Equality-Based translation validator for LLVM.

187

In CAV ’11: Proceedings of the 23rd International Conference on Computer Aided

Verification, 2011.

[119] R. Tate, M. Stepp, and S. Lerner. Generating compiler optimizations from proofs.

In Proc. of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, 2010.

[120] Z. Tatlock and S. Lerner. Bringing extensibility to verified compilers. In PLDI ’10:

Proceedings of the ACM SIGPLAN 2010 Conference on Programming Language

Design and Implementation, 2010.

[121] C. Topper. [llvm-dev] where did alive go? http://lists.llvm.org/pipermail/

llvm-dev/2017-September/117601.html, Sept. 2017. Retrieved 2017-10-11.

[122] E. Torlak and R. Bodik. A lightweight symbolic virtual machine for solver-

aided host languages. In Proceedings of the 35th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI, pages 530–541,

June 2014.

[123] J.-B. Tristan, P. Govereau, and G. Morrisett. Evaluating value-graph translation

validation for llvm. In Proceedings of the 32nd ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI, 2011.

[124] V. Vafeiadis, T. Balabonski, S. Chakraborty, R. Morisset, and F. Z. Nardelli.

Common compiler optimisations are invalid in the C11 memory model and what

we can do about it. In Proc. of the 42nd ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, 2015.

[125] D. L. Whitfield and M. L. Soffa. An approach for exploring code improving

transformations. ACM Transactions on Programming Languages and Systems

(TOPLAS), 19(6):1053–1084, Nov. 1997.

[126] H. Xi. Towards automated termination proofs through “freezing”. In Rewriting

Techniques and Applications, pages 271–285. Springer, 1998.

http://lists.llvm.org/pipermail/llvm-dev/2017-September/117601.html
http://lists.llvm.org/pipermail/llvm-dev/2017-September/117601.html

188

[127] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding bugs in

C compilers. In Proceedings of the 32nd ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI, pages 283–294. ACM,

2011.

[128] A. Zaks and A. Pnueli. Covac: Compiler validation by program analysis of the

cross-product. In FM ’08: Proceedings of the 15th international symposium on

Formal Methods, pages 35–51, Berlin, Heidelberg, 2008. Springer-Verlag.

[129] C. Zhao, Y. Xue, Q. Tao, L. Guo, and Z. Wang. Automated test program gen-

eration for an industrial optimizing compiler. In Automation of Software Test,

2009. AST’09. ICSE Workshop on, pages 36–43. IEEE, May 2009.

[130] J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Formalizing the

LLVM intermediate representation for verified program transformations. In Pro-

ceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL), pages 427–440, 2012.

[131] J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Formal verification

of ssa-based optimizations for llvm. In ACM SIGPLAN 2013 Conference on

Programming Language Design and Implementation, 2013.

[132] L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. VOC: A methodology for the

translation validation of optimizing compilers. Journal of Universal Computer

Science, 9(3):223–247, 2003.

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	1 Introduction
	1.1 Making Compilers Robust
	1.1.1 Random testing
	1.1.2 Formal correctness proofs
	Correctness of compilers
	Languages for automated correctness checking

	1.2 Peephole Optimizations
	1.3 Problem Statement
	1.4 Overview of Alive
	1.4.1 Verifying Transformations
	1.4.2 Inferring Preconditions
	1.4.3 Checking for Non-Termination

	1.5 Contributions to this Dissertation
	1.6 Organization of this Dissertation

	2 Background
	2.1 LLVM
	2.1.1 The LLVM Intermediate Representation
	2.1.2 Undefined behavior
	Deferred undefined behavior
	Undefined values
	Poison values
	Immediate undefined behavior

	2.2 Satisfiability Modulo Theories
	2.2.1 SMT bit vector theory
	2.2.2 SMT floating-point arithmetic theory

	3 Specifying Peephole Optimizations with Alive
	3.1 The Alive Language
	3.1.1 Abstract syntax
	Variable scope
	Contextual restrictions

	3.1.2 Concrete syntax
	3.1.3 Type checking
	Types
	Typing rules
	Type ambiguity

	3.1.4 DAG Representation

	3.2 Verification
	3.2.1 Structure of Alive encodings
	3.2.2 Encoding compile-time behavior
	3.2.3 Encoding run-time behavior
	3.2.4 Encoding undef values
	3.2.5 Encoding ``undefined results''
	3.2.6 Encoding data-flow analyses
	3.2.7 Correctness conditions
	Justifying separate existential quantifiers
	Why Qp is universally quantified
	Why Xp occurs in the precondition safety check
	Expressing the conditions as SMT queries

	3.3 Encoding Expressions for Verification
	3.3.1 Encoding types
	3.3.2 Encoding variables
	3.3.3 Encoding arithmetic and conversion instructions
	Assumptions about floating-point arithmetic

	3.3.4 Encoding instruction attributes
	3.3.5 Encoding comparison instructions
	3.3.6 Encoding select
	3.3.7 Encoding constant expressions
	Binary operators
	Functions

	3.3.8 Encoding predicates

	3.4 Code Generation
	3.4.1 Type references
	3.4.2 Matching the source
	3.4.3 Testing the precondition
	3.4.4 Creating the target

	3.5 Extensions to Alive
	3.5.1 Relation variables
	Relation functions

	3.5.2 Named type variables
	3.5.3 Multiple replacement
	3.5.4 Memory operations
	Additions to syntax and type system
	Encoding memory operations
	Memory correctness condition

	3.5.5 Combining poison and undef

	3.6 The Alive-NJ Toolkit
	3.7 Evaluation
	3.7.1 Translation of transformations from LLVM
	3.7.2 Performance of generated implementation
	3.7.3 Adoption by developers

	3.8 Summary

	4 Automated Precondition Inference
	4.1 Predicates and Preconditions
	4.2 Precondition Inference
	4.3 Generating Examples
	4.3.1 Classification of examples
	4.3.2 Explicit assumptions
	4.3.3 Generation methods
	Random selection
	Generation using a solver.

	4.4 Predicate Learning
	4.4.1 Predicate behavior
	4.4.2 Grouping examples by behavior
	Efficiently finding mixed groups

	4.4.3 Learning new predicates
	Selecting a mixed group
	Sampling the mixed group
	Finding a predicate

	4.4.4 Predicate enumeration

	4.5 Formula Learning
	4.5.1 Full formula learning
	4.5.2 Weighted partial formula learning
	4.5.3 Safety condition learning

	4.6 Generalizing Concrete Transformations
	4.7 Evaluation
	4.7.1 Effectiveness of Alive-Infer
	Inference within a time limit
	Comparison with initial preconditions

	4.7.2 Finding preconditions through enumeration
	4.7.3 Generalizing concrete transformations

	4.8 Summary

	5 Detecting Non-Termination
	5.1 Composing Transformations
	5.1.1 DAG alignment
	5.1.2 Checking Validity
	5.1.3 Selecting Replacements
	5.1.4 Constructing the composed transformation
	5.1.5 Off-root composition

	5.2 Detecting Cycles
	5.3 Searching for Cycles
	5.4 Generating Test Cases
	5.4.1 Shadowing of transformations

	5.5 Evaluation
	5.5.1 Methodology
	5.5.2 Experimental results
	Characterization of cycles
	Demonstrating non-termination

	5.6 Summary

	6 Related Work
	6.1 Compiler Correctness
	6.2 Precondition Inference
	6.3 Termination Checking

	7 Conclusion
	7.1 Technical Contributions
	7.2 Future Work
	7.3 Summary

