
Eric A. Brewer
University of California, Berkeley,
and Inktomi Corporation

Lessons from
Giant-Scale Services

Giant Web services require new tools and methods for issues

of scale, availability, and evolution.

W eb portals and ISPs such as
AOL, Microsoft Network, and
Yahoo have grown more than

tenfold in the past five years. Despite
their scale, growth rates, and rapid evo-
lution of content and features, these sites
and other “giant-scale” services like
instant messaging and Napster must be
always available. Many other major Web
sites such as eBay, CNN, and Wal-Mart,
have similar availability requirements. In
this article, I look at the basic model for
such services, focusing on the key real-
world challenges they face — high avail-
ability, evolution, and growth — and
developing some principles for attacking
these problems.

This is very much an “experience” arti-
cle. Few of the points I make here are
addressed in the literature, and most of my
conclusions take the form of principles and
approaches rather than absolute quantita-
tive evaluations. This is due partly to my
focus on high-level design, partly to the
newness of the area, and partly to the pro-
prietary nature of some of the information
(which represents 15-20 very large sites).
Nonetheless, the lessons are easy to under-
stand and apply, and they simplify the
design of large systems.

The Basic Model
I focus on “infrastructure services” —
Internet-based systems that provide
instant messaging, wireless services such
as iMode, and so on. These services pri-
marily reside remotely from the user,
although they might include local access
software, such as a browser. My discus-
sion is limited primarily to single-site,
single-owner, well-connected clusters,
which may be part of a larger service, as
in the case of e-mail servers. I do not
cover wide-area issues such as network
partitioning, low or intermittent band-
width, or multiple administrative
domains. There are many other important
challenges that I do not address here,
including service monitoring and config-
uration, network quality of service (QoS),
security, and logging and log analysis.

This article is essentially about bridg-
ing the gap between the basic building
blocks of giant-scale services and the real-
world scalability and availability they
require. It focuses on high availability and
the related issues of replication, graceful
degradation, disaster tolerance, and online
evolution.

Database management systems (DBMs)
are an important part of many large sites,

46 JULY • AUGUST 2001 http://computer.org/internet/ 1089-7801/01/$10.00 ©2001 IEEE IEEE INTERNET COMPUTING

Sc
al

ab
le

 I
n
te

rn
et

 S
er

vi
ce

s

but I intentionally ignore them here because they
are well studied elsewhere and because the issues
in this article are largely orthogonal to the use of
databases.

Advantages
The basic model that giant-scale services follow
provides some fundamental advantages:

� Access anywhere, anytime. A ubiquitous infra-
structure facilitates access from home, work,
airport, and so on.

� Availability via multiple devices. Because the
infrastructure handles most of the processing,
users can access services with devices such as
set-top boxes, network computers, and smart
phones, which can offer far more functionali-
ty for a given cost and battery life.

� Groupware support. Centralizing data from
many users allows service providers to offer
group-based applications such as calendars, tele-
conferencing systems, and group-management
systems such as Evite (http://www.evite.com/).

� Lower overall cost. Although hard to measure,
infrastructure services have a fundamental cost
advantage over designs based on stand-alone
devices. Infrastructure resources can be multi-
plexed across active users, whereas end-user
devices serve at most one user (active or not).
Moreover, end-user devices have very low uti-
lization (less than 4 percent), while infrastruc-
ture resources often reach 80 percent utiliza-
tion. Thus, moving anything from the device
to the infrastructure effectively improves effi-
ciency by a factor of 20. Centralizing the
administrative burden and simplifying end
devices also reduce overall cost, but are harder
to quantify.

� Simplified service updates. Perhaps the most
powerful long-term advantage is the ability to
upgrade existing services or offer new services
without the physical distribution required by
traditional applications and devices. Devices
such as Web TVs last longer and gain useful-
ness over time as they benefit automatically
from every new Web-based service.

Components
Figure 1 shows the basic model for giant-scale
sites. The model is based on several assumptions.
First, I assume the service provider has limited
control over the clients and the IP network.
Greater control might be possible in some cases,
however, such as with intranets. The model also

assumes that queries drive the service. This is true
for most common protocols including HTTP, FTP,
and variations of RPC. For example, HTTP’s basic
primitive, the “get” command, is by definition a
query. My third assumption is that read-only
queries greatly outnumber updates (queries that
affect the persistent data store). Even sites that we
tend to think of as highly transactional, such as e-
commerce or financial sites, actually have this
type of “read-mostly” traffic1: Product evaluations
(reads) greatly outnumber purchases (updates), for
example, and stock quotes (reads) greatly out-
number stock trades (updates). Finally, as the side-
bar, “Clusters in Giant-Scale Services” (next page)
explains, all giant-scale sites use clusters.

The basic model includes six components:

� Clients, such as Web browsers, standalone e-
mail readers, or even programs that use XML
and SOAP initiate the queries to the services.

� The best-effort IP network, whether the public
Internet or a private network such as an
intranet, provides access to the service.

� The load manager provides a level of indirection
between the service’s external name and the
servers’ physical names (IP addresses) to preserve
the external name’s availability in the presence
of server faults. The load manager balances load
among active servers. Traffic might flow through
proxies or firewalls before the load manager.

� Servers are the system’s workers, combining
CPU, memory, and disks into an easy-to-repli-
cate unit.

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2001 47

Giant-Scale Services

Client

Client

Client

Load
manager

Persistent data store

Client

IP network

Single-site server

Optional
backplane

Figure 1.The basic model for giant-scale services. Clients connect via
the Internet and then go through a load manager that hides down
nodes and balances traffic.

� The persistent data store is a replicated or par-
titioned “database” that is spread across the
servers’ disks. It might also include network-
attached storage such as external DBMSs or
systems that use RAID storage.

� Many services also use a backplane. This
optional system-area-network handles inter-
server traffic such as redirecting client queries
to the correct server or coherence traffic for the
persistent data store.

Nearly all services have several other service-spe-
cific auxiliary systems such as user-profile data-
bases, ad servers, and site management tools, but
we can ignore these in the basic model.

Load Management
Load management has seen rapid improvement
since around 1995. The original approach used
“round-robin DNS,” which distributes different IP
addresses for a single domain name among
clients in a rotating fashion. Although this

approach balances load well, it does not hide
inactive servers; a client with a down node’s
address will continue to try to use it until the
DNS mapping expires, which might take several
hours. (Short “time-to-live” settings have short-
er outages, but require the client to make more
DNS lookups.) Many browsers exacerbate the
problem by mishandling DNS expiration.

Fortunately, many vendors now sell “layer-4”
switches to solve load management (for example,
Cisco’s CSS 11800 content switch, F5 Networks’
Big-IP enterprise switch, and Foundry Networks’
ServerIron Web switch). Such transport-layer
switches understand TCP and port numbers, and
can make decisions based on this information.
Many of these are “layer-7” (application layer)
switches, in that they understand HTTP requests
and can actually parse URLs at wire speed. The
switches typically come in pairs that support hot
failover — the ability for one switch to take over
for another automatically — to avoid the obvious
single point of failure, and can handle throughputs

48 JULY • AUGUST 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Scalable Internet Services

Clusters are collections of commodity
servers that work together on a single
problem. Giant-scale services use clusters
to meet scalability requirements that
exceed those of any single machine.Table
A shows some representative clusters and
their traffic.

Other examples include some of Exo-
dus Communications’ data centers, which
house several thousand nodes that support
hundreds of different services; and AOL’s
recently added US$520 million data center,
which is larger than three football fields and
filled almost entirely with clusters.
Although I assume that all giant-scale ser-
vices use clusters, it is useful to review the
driving forces behind their use.

� Absolute scalability. A successful net-

work service must scale to support a
substantial fraction of the world’s
population. Users spend increasingly
more time online each day, and
analysts predict that about 1.1 billion
people will have some form of
infrastructure access within the next
10 years.

� Cost and performance. Although a
traditionally compelling reason for
using clusters, hardware cost and
performance are not really issues for
giant-scale services. No alternative to
clusters can match the required scale,
and hardware cost is typically dwarfed
by bandwidth and operational costs.

� Independent components. Users expect
24-hour service from systems that
consist of thousands of hardware and

software components. Transient
hardware failures and software faults
due to rapid system evolution are
inevitable, but clusters simplify the
problem by providing (largely)
independent faults.

� Incremental scalability. Clusters should
allow for scaling services as needed to
account for the uncertainty and
expense of growing a service. Nodes
have a three-year depreciation lifetime,
for example, and should generally be
replaced only when they no longer
justify their rack space compared to
new nodes. Given Moore’s law, a unit
of rack space should quadruple in
computing power over three years,
and actual increases appear to be
faster due to improvements in
packaging and disk size.

Given these advantages,we view commodi-
ty nodes as the basic building blocks for
giant-scale services. The goal is then to
exploit these advantages, particularly inde-
pendent faults and incremental scalability,
into our higher-level goals of availability,
graceful degradation, and ease of evolution.

Clusters in Giant-Scale Services

Table A. Example clusters for giant-scale services.

Service Nodes Queries Nodes

AOL Web cache >1,000 10B/day 4-CPU DEC 4100s
Inktomi search engine >1,000 >80M/day 2-CPU Sun Workstations
Geocities >300 >25M/day PC Based
Anonymous Web-based e-mail >5,000 >1B/day FreeBSD PCs

above 20 Gbits per second. They detect down
nodes automatically, usually by monitoring open
TCP connections, and thus dynamically isolate
down nodes from clients quite well.

Two other load-management approaches are
typically employed in combination with layer-4
switches. The first uses custom “front-end” nodes
that act as service-specific layer-7 routers (in soft-
ware).2 Wal-Mart’s site uses this approach, for
example, because it helps with session manage-
ment: Unlike switches, the nodes track session
information for each user.

The final approach includes clients in the load-
management process when possible. This general
“smart client” end-to-end approach goes beyond
the scope of a layer-4 switch.3 It greatly simplifies
switching among different physical sites, which in
turn simplifies disaster tolerance and overload
recovery. Although there is no generic way to do
this for the Web, it is common with other systems.
In DNS, for instance, clients know about an alter-
native server and can switch to it if the primary
disappears; with cell phones this approach is
implemented as part of roaming; and application
servers in the middle tier of three-tier database
systems understand database failover.

Figures 2 and 3 illustrate systems at opposite
ends of the complexity spectrum: a simple Web farm
and a server similar to the Inktomi search engine
cluster. These systems differ in load management,
use of a backplane, and persistent data store.

The Web farm in Figure 2 uses round-robin
DNS for load management. The persistent data
store is implemented by simply replicating all con-
tent to all nodes, which works well with a small
amount of content. Finally, because all servers can
handle all queries, there is no coherence traffic
and no need for a backplane. In practice, even
simple Web farms often have a second LAN (back-
plane) to simplify manual updates of the replicas.
In this version, node failures reduce system capac-
ity, but not data availability.

In Figure 3, a pair of layer-4 switches manages
the load within the site. The “clients” are actually
other programs (typically Web servers) that use the
smart-client approach to failover among different
physical clusters, primarily based on load.

Because the persistent store is partitioned
across servers, possibly without replication, node
failures could reduce the store’s effective size and
overall capacity. Furthermore, the nodes are no
longer identical, and some queries might need to
be directed to specific nodes. This is typically
accomplished using a layer-7 switch to parse

URLs, but some systems, such as clustered Web
caches, might also use the backplane to route
requests to the correct node.4

High Availability
High availability is a major driving requirement
behind giant-scale system design. Other infra-

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2001 49

Giant-Scale Services

Client

Client

Client

Round-
robin DNS

Simple replicated store

Client

IP network

Single-site server

Figure 2. A simple Web farm. Round-robin DNS assigns different
servers to different clients to achieve simple load balancing. Persis-
tent data is fully replicated and thus all nodes are identical and can
handle all queries.

Program

Program

Program

Load
manager

Partitioned data store

Program

IP network

Single-site server

Myrinet
backplane

Figure 3. Search engine cluster. The service provides support to other
programs (Web servers) rather than directly to end users.These pro-
grams connect via layer-4 switches that balance load and hide faults.
Persistent data is partitioned across the servers, which increases
aggregate capacity but implies there is some data loss when a server
is down. A backplane allows all nodes to access all data.

structures — such as the telephone, rail, and water
systems — aim for perfect availability, a goal that
should apply to IP-based infrastructure services as
well. All these systems plan for component failures
and natural disasters, but information systems
must also deal with constantly evolving features
and unpredictable growth.

Figure 4 shows a cluster designed for high
availability: It features extreme symmetry, no peo-
ple, very few cables, almost no external disks, and
no monitors. Each of these design features reduces
the number of failures in practice. In addition, Ink-
tomi manages the cluster from offsite, and con-
tracts limit temperature and power variations.

Availability Metrics
The traditional metric for availability is uptime,
which is the fraction of time a site is handling traf-
fic. Uptime is typically measured in nines, and tra-
ditional infrastructure systems such as the phone
system aim for four or five nines (“four nines”
implies 0.9999 uptime, or less than 60 seconds of
downtime per week). Two related metrics are mean-
time-between-failure (MTBF) and mean-time-to-
repair (MTTR). We can think of uptime as:

uptime = (MTBF – MTTR)/MTBF (1)

Following this equation, we can improve uptime
either by reducing the frequency of failures or
reducing the time to fix them. Although the for-
mer is more pleasing aesthetically, the latter is
much easier to accomplish with evolving systems.

For example, to see if a component has an MTBF
of one week requires well more than a week of
testing under heavy realistic load. If the compo-
nent fails, you have to start over, possibly repeat-
ing the process many times. Conversely, measur-
ing the MTTR takes minutes or less and achieving
a 10-percent improvement takes orders of magni-
tude less total time because of the very fast debug-
ging cycle. In addition, new features tend to reduce
MTBF but have relatively little impact on MTTR,
which makes it more stable. Thus, giant-scale sys-
tems should focus on improving MTTR and simply
apply best effort to MTBF.

We define yield as the fraction of queries that
are completed:

yield = queries completed/queries offered (2)

Numerically, this is typically very close to uptime,
but it is more useful in practice because it directly
maps to user experience and because it correctly
reflects that not all seconds have equal value.
Being down for a second when there are no queries
has no impact on users or yield, but reduces
uptime. Similarly, being down for one second at
peak and off-peak times generates the same
uptime, but vastly different yields because there
might be an order-of-magnitude difference in load
between the peak second and the minimum-load
second. Thus we focus on yield rather than uptime.

Because these systems are typically based on
queries, we can also measure query completeness
— how much of the database is reflected in the
answer. We define this fraction as the harvest of
the query:

harvest = data available/complete data (3)

A perfect system would have 100 percent yield
and 100 percent harvest. That is, every query
would complete and would reflect the entire data-
base. Similarly, we can extend this idea to the
fraction of features available; systems such as
eBay can have some features, such as seller pro-
files, unavailable while the rest of the site works
perfectly.

The key insight is that we can influence
whether faults impact yield, harvest, or both.
Replicated systems tend to map faults to reduced
capacity (and to yield at high utilizations), while
partitioned systems tend to map faults to reduced
harvest, as parts of the database temporarily dis-
appear, but the capacity in queries per second
remains the same.

50 JULY • AUGUST 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Scalable Internet Services

Figure 4. 100-node 200-CPU cluster. Key design
points include extreme symmetry, internal disks,
no people, no monitors, and no visible cables.

DQ Principle
The DQ Principle is simple:

Data per query × queries per second → constant
(4)

This is a principle rather than a literal truth, but it
is remarkably useful for thinking about giant-scale
systems. The intuition behind this principle is that
the system’s overall capacity tends to have a par-
ticular physical bottleneck, such as total I/O band-
width or total seeks per second, which is tied to
data movement. The DQ value is the total amount
of data that has to be moved per second on aver-
age, and it is thus bounded by the underlying
physical limitation. At the high utilization level
typical of giant-scale systems, the DQ value
approaches this limitation.

Various systems have used versions of this
principle for a long time. For example, the query
optimizer in System R used the number of I/O
operations as the metric of optimization.5 The DQ
principle focuses more on bandwidth than on the
number of I/Os (or seeks) — mainly because I
have found that it correlates better with capaci-
ty and seems easier to affect gracefully. On a
more intuitive level, service work corresponds to
the amount of data moved because of data copy-
ing, presentation layers, and the many indepen-
dent connections that tend to make these sys-
tems more network-bound than disk-bound.
Also, the workload distribution tends to be fair-
ly stable overall because of the scale (we are
aggregating over thousands of connections),
which means the ratio of bandwidth to I/Os is
fairly consistent. Thus, either would be a good
metric for most systems.

The DQ value is measurable and tunable. Adding
nodes or implementing software optimizations
increases the DQ value, while the presence of faults
reduces it. The absolute value is not typically that
important, but the relative value under various
changes is very predictive. Thus, the first step is to
define the specific DQ metric for the service by
defining the target workload and using a load gen-
erator to measure a given combination of hardware,
software, and database size against this workload.
Every node has a DQ capacity that depends on this
combination. Different nodes might have different
values if they were bought separately; knowing the
relative DQ values tells you how unevenly to do
partitioning or load balancing.

Given the metric and load generator, it is then
easy to measure the (relative) DQ impact of faults,

database sizes, and hardware and software
upgrades. Overall, DQ normally scales linearly
with the number of nodes, which means a small
test cluster is a good predictor for DQ changes on
the production system. For example, Inktomi has
been able to use four-node clusters to predict per-
formance improvements on 100-node clusters due
to software optimizations. The DQ impact can and
should be evaluated for all proposed hardware and
software changes prior to deployment. Similarly,
the best case under multiple node faults is a linear
reduction in overall DQ.

We can translate future traffic predictions into
future DQ requirements and thus into hardware
and software targets. This lets us convert traffic
predictions into capacity planning decisions, tak-
ing into account any expected hardware or soft-
ware improvements.

In terms of availability, these principles are espe-
cially valuable for analyzing fault impact. As I
mentioned, the best we can do is
to degrade DQ linearly with the
number of (node) faults. The
design goal for high availability
is thus to control how DQ reduc-
tions affect our three availability
metrics. The obvious limit of this
principle is that it is for data-
intensive sites. Computation-
bound sites (such as simulation
engines) or sites with long-laten-
cy external actions (such as chat
sites) behave differently. The vast
majority of the top 100 sites are data intensive,
however, which is not surprising given that the
Internet is primarily a communication medium.

Replication vs. Partitioning
Replication is a traditional technique for increas-
ing availability, and I will compare it to parti-
tioning from the perspective of DQ and our
availability metrics. Consider a two-node clus-
ter: The replicated version has traditionally been
viewed as “better” because it maintains 100 per-
cent harvest under a fault, whereas the parti-
tioned version drops to 50 percent harvest. Dual
analysis shows that the replicated version drops
to 50 percent yield, however, while the parti-
tioned version remains at 100 percent yield. Fur-
thermore, both versions have the same initial DQ
value and lose 50 percent of it under one fault:
Replicas maintain D and reduce Q (and thus
yield), while partitions keep Q constant and
reduce D (and thus harvest).

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2001 51

Giant-Scale Services

Absolute value is

not typically that

important,but

relative value is

very predictive.

The traditional view of replication silently
assumes that there is enough excess capacity to
prevent faults from affecting yield. We refer to this
as the load redirection problem because under
faults, the remaining replicas have to handle the
queries formerly handled by the failed nodes.
Under high utilization, this is unrealistic.

Table 1 generalizes this analysis to replica groups
with n nodes. Losing two of five nodes in a replica
group, for example, implies a redirected load of 2/3
extra load (two loads spread over three remaining
nodes) and an overload factor for those nodes of 5/3
or 166 percent of normal load.

The key insight is that replication on disk is
cheap, but accessing the replicated data requires
DQ points. For true replication you need not only
another copy of the data, but also twice the DQ
value. Conversely, partitioning has no real savings
over replication. Although you need more copies
of the data with replication, the real cost is in the
DQ bottleneck rather than storage space, and the
DQ constant is independent of whether the data-
base is replicated or partitioned. An important
exception to this is that replication requires more
DQ points than partitioning for heavy write traf-
fic, which is rare in giant-scale systems.

According to these principles, you should
always use replicas above some specified through-
put. In theory, you can always partition the data-
base more thinly and avoid the extra replicas, but
with no DQ difference, it makes more sense to
replicate the data once the partitions are a conve-
nient size. You will enjoy more control over har-
vest and support for disaster recovery, and it is
easier to grow systems via replication than by
repartitioning onto more nodes.

We can vary the replication according to the
data’s importance, and generally control which
data is lost in the presence of a fault. For example,
for the cost of some extra disk space we can repli-
cate key data in a partitioned system. Under nor-
mal use, one node handles the key data and the
rest provide additional partitions. If the main node
fails, we can make one of the other nodes serve the

key data. We still lose 1/n of the data, but it will
always be one of the less important partitions. This
combined approach preserves the key data, but
also allows us to use our “replicated” DQ capacity
to serve other content during normal operation.

Finally, we can exploit randomization to make
our lost harvest a random subset of the data, (as
well as to avoid hot spots in partitions). Many of
the load-balancing switches can use a (pseudo-
random) hash function to partition the data, for
example. This makes the average and worst-case
losses the same because we lose a random subset
of “average” value. The Inktomi search engine uses
partial replication; e-mail systems use full replica-
tion; and clustered Web caches use no replication.
All three use randomization.

Graceful Degradation
It would be nice to believe that we could avoid sat-
uration at a reasonable cost simply by good design,
but this is unrealistic for three major reasons.

� The peak-to-average ratio for giant-scale sys-
tems seems to be in the range of 1.6:1 to 6:1,
which can make it expensive to build out
capacity well above the (normal) peak.

� Single-event bursts, such as online ticket sales
for special events, can generate far above-aver-
age traffic. In fact, moviephone.com added 10x
capacity to handle tickets for “Star Wars: The
Phantom Menace” and still got overloaded.

� Some faults, such as power failures or natural
disasters, are not independent. Overall DQ
drops substantially in these cases, and the
remaining nodes become saturated.

Given these facts, mechanisms for graceful degra-
dation under excess load are critical for delivering
high availability. The DQ principle gives us new
options for graceful degradation: We can either
limit Q (capacity) to maintain D, or we can reduce
D and increase Q. We can focus on harvest through
admission control (AC), which reduces Q, or on
yield through dynamic database reduction, which
reduces D, or we can use a combination of the two.
Temporarily cutting the effective database size in
half, for instance, should roughly double our
capacity. Some giant-scale services have just start-
ed applying the latter strategy.

The larger insight is that graceful degradation
is simply the explicit process for managing the
effect of saturation on availability; that is, we
explicitly decide how saturation should affect
uptime, harvest, and quality of service. Here are

52 JULY • AUGUST 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Scalable Internet Services

Table 1. Overload due to failures.

Failures Lost capacity Redirected load Overload factor

1

k

1

n

1

1n -

n

n - 1

k

n

k

n k−

n

n k-

some more sophisticated examples taken from real
systems:

� Cost-based AC. Inktomi can perform AC based
on the estimated query cost (measured in DQ).
This reduces the average data required per
query, and thus increases Q. Note that the AC
policy affects both D and Q. Denying one
expensive query could thus enable several
inexpensive ones, giving us a net gain in har-
vest and yield. (Although I know of no exam-
ples, AC could also be done probabilistically
— perhaps in the style of lottery scheduling,
so that retrying hard queries eventually
works.)

� Priority- or value-based AC. Datek handles
stock trade requests differently from other
queries and guarantees that they will be exe-
cuted within 60 seconds, or the user pays no
commission. The idea is to reduce the required
DQ by dropping low-value queries, indepen-
dently of their DQ cost.

� Reduced data freshness. Under saturation, a
financial site can make stock quotes expire less
frequently. This reduces freshness but also
reduces the work per query, and thus increas-
es yield at the expense of harvest. (The cached
queries don’t reflect the current database and
thus have lower harvest.)

As you can see, the DQ principle can be used as
a tool for designing how saturation affects our
availability metrics. We first decide which met-
rics to preserve (or at least focus on), and then we
use sophisticated AC to limit Q and possibly
reduce the average D. We also use aggressive
caching and database reduction to reduce D and
thus increase capacity.

Disaster Tolerance
Disaster tolerance is a simple combination of man-
aging replica groups and graceful degradation. A
disaster can be defined as the complete loss of one
or more replicas. Natural disasters can affect all
the replicas at one physical location, while other
disasters such as fires or power failures might
affect only one replica.

Under the giant-scale services model, the basic
question is how many locations to establish and
how many replicas to put at each. To examine the
load redirection problem, I return to Table 1. With
two replicas at each of three locations, for exam-
ple, we expect to lose 2/6 of the replicas during a
natural disaster, which implies that each of the

remaining sites must handle 50 percent more traf-
fic. This will almost certainly saturate the site,
which will employ graceful-degradation tech-
niques to recover. For Inktomi, the best plan would
be to dynamically reduce D by 2/3 (to get 3/2 Q)
on the remaining replicas. The current plan actu-
ally reduces D to 50 percent for any disaster, which
is simpler, but not as aggressive.

Load management presents a harder problem for
disaster recovery. Layer-4 switches do not help
with the loss of whole clusters, so the external site
name might become unavailable during a disaster.
In that case, you must resort to DNS changes or
smart clients to redirect traffic to the other repli-
cas. As I mentioned, however, DNS might have a
very slow failover response time of up to several
hours. With a smart-client approach, clients can
perform the higher-level redirection automatical-
ly and immediately, which seems the most com-
pelling reason to use smart clients.

Online Evolution and Growth
One of the traditional tenets of highly available
systems is minimal change. This directly conflicts
with both the growth rates of giant-scale services
and “Internet time” — the practice of frequent
product releases. For these services, we must plan
for continuous growth and frequent functionality
updates. Worse still, the frequency of updates
means that in practice, software is never perfect;
hard-to-resolve issues such as slow memory leaks
and nondeterministic bugs tend to remain
unfixed. The prevailing design philosophy aims to
make the overall system tolerant of individual
node failures and to avoid cascading failures.
Thus, “acceptable” quality comes down to soft-
ware that provides a target MTBF, a low MTTR,
and no cascading failures.

We can think of maintenance and upgrades as
controlled failures, and the “online evolution”
process — completing upgrades without taking
down the site — is important because giant-scale
services are updated so frequently. By viewing
online evolution as a temporary, controlled
reduction in DQ value, we can act to minimize
the impact on our availability metrics. In gener-
al, online evolution requires a fixed amount of
time per node, u, so that the total DQ loss for n
nodes is:

∆DQ = n · u · average DQ/node = DQ · u (5)

That is, the lost DQ value is simply the total DQ
value multiplied by the upgrade time per node.

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2001 53

Giant-Scale Services

Upgrade time is essentially recovery time, and
depends on the kind of change. Software upgrades
are most common and can be handled quickly
with a staging area, which allows both the new
and old versions to coexist on the node. System
administrators can do a controlled reboot (at
worst) to upgrade the node within the normal
MTTR. Without sufficient workspace, the down-
time is much greater because the administrator
must move the new version onto the node while
the system is down. Staging also simplifies return-
ing to the old version, which is helpful because live
traffic tends to expose new bugs. Other upgrades,
such as hardware, operating system, database
schema, or repartitioning, require significantly
more downtime.

Three main approaches are used for online
evolution:

� Fast reboot. The simplest approach is to quick-
ly reboot all nodes into the new version. The
fast reboot is straightforward, but it guarantees
some downtime. Thus, it is more useful to mea-
sure lost yield rather than downtime. By
upgrading during off-peak hours, we can
reduce the yield impact. In practice, this
requires a staging area because the upgrades all
occur at the same time and thus need to be
highly automated.

� Rolling upgrade. In this approach, we upgrade
nodes one at a time in a “wave” that rolls
through the cluster. This minimizes the overall
impact because only one node is down at a
time. In a partitioned system, harvest will be
reduced during the n upgrade windows, but in
a replicated system we expect 100 percent yield
and 100 percent harvest because we can update
one replica at a time, and we probably have
enough capacity (in off hours) to prevent lost
yield. One disadvantage with the rolling
upgrade is that the old and new versions must

be compatible because they will coexist. Exam-
ples of incompatible versions include changes
to schema, namespaces, or (intracluster) proto-
cols. Neither of the other two approaches has
this restriction.

� Big flip. The final approach is the most com-
plicated. The basic idea is to update the clus-
ter one half at a time by taking down and
upgrading half the nodes at once. During the
“flip,” we atomically switch all traffic to the
upgraded half using a layer-4 switch. After
waiting for connections to the old half to dis-
sipate (the switch only affects new connec-
tions), we then upgrade the second half and
bring those nodes back into use. As with fast
reboot, only one version runs at a time. Note
that the 50 percent DQ loss can be translated
into either 50 percent capacity for replicas
(which might be 100 percent off-peak yield) or
50 percent harvest for partitions.

The big flip is quite powerful and can be used for
all kinds of upgrades, including hardware, OS,
schema, networking, and even physical relocation.
When used for relocating a cluster, the big flip
must typically use DNS changes, and the upgrade
time includes physically moving the nodes, which
means the window of 50 percent DQ loss might
last several hours. This is manageable over a week-
end, however, and Inktomi has done it twice: first,
when moving about 20 nodes from Berkeley to
Santa Clara, California, (about an hour apart) using
DNS for the flip; and second, when moving about
100 nodes between two cages in the same data
center using a switch for the flip.

All three approaches have the same DQ loss (for
a given upgrade), so we can plot their effective DQ
level versus time, which is shown in Figure 5. The
three regions have the same area, but the DQ loss is
spread over time differently. All three approaches
are used in practice, but rolling upgrades are eas-
ily the most popular. The heavyweight big flip is
reserved for more complex changes and is used
only rarely. The approaches differ in their handling
of the DQ loss and in how they deal with staging
areas and version compatibility, but all three ben-
efit from DQ analysis and explicit management of
the impact on availability metrics.

Conclusions
From my experience with several giant-scale ser-
vices, I have defined several tools for designing
and analyzing giant-scale services. Starting with
the basic architectural model leads to novel ways

54 JULY • AUGUST 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Scalable Internet Services

Big flip

Rolling upgrade

Fast reboot

Time

DQ
value

Ideal

Figure 5.Three approaches to upgrades.The shad-
ed regions map DQ loss (down from the ideal
value) over time for a four-node cluster. Note that
the area of the three regions is the same.

to think about high availability, including the DQ
principle and the use of harvest and yield. Expe-
rience has helped us develop several ways to con-
trol the impact of faults through combinations of
replication and partitioning. These tools are use-
ful for graceful degradation, disaster tolerance,
and online evolution.

I’ve learned several major lessons for develop-
ing giant-scale services:

� Get the basics right. Start with a professional
data center and layer-7 switches, and use sym-
metry to simplify analysis and management.

� Decide on your availability metrics. Everyone
should agree on the goals and how to measure
them daily. Remember that harvest and yield
are more useful than just uptime.

� Focus on MTTR at least as much as MTBF.
Repair time is easier to affect for an evolving
system and has just as much impact.

� Understand load redirection during faults. Data
replication is insufficient for preserving uptime
under faults; you also need excess DQ.

� Graceful degradation is a critical part of a
high-availability strategy. Intelligent admission
control and dynamic database reduction are
the key tools for implementing the strategy.

� Use DQ analysis on all upgrades. Evaluate all
proposed upgrades ahead of time, and do
capacity planning.

� Automate upgrades as much as possible.
Develop a mostly automatic upgrade method,
such as rolling upgrades. Using a staging area
will reduce downtime, but be sure to have a
fast, simple way to revert to the old version.

These techniques seem to get to the core issues in
practice and provide ways to think about avail-
ability and fault tolerance that are predictable,
analyzable, and measurable.

Current solutions are essentially ad hoc appli-
cations of these ideas. Techniques for online evo-

lution and graceful degradation, for example,
could be greatly automated. Similarly, future sys-
tems could provide more direct ways to integrate
simple application information, such as a query’s
cost or value, into availability and load manage-
ment mechanisms. Finally, better use of smart
clients could simplify disaster recovery, online
evolution, and graceful degradation.

References

1. A. Wolman et al., “On the Scale and Performance of

Cooperative Web Proxy Caching,” Proc. 17th Symp.

Operating Systems Principles 1999, ACM Press, New

York, 1999, pp. 16-31.

2. A. Fox et al., “Cluster-Based Scalable Network Services,”

Proc. 16th Symp. Operating System Principles, ACM Press,

New York, 1997, pp. 78-91.

3. C. Yoshikawa et al., “Using Smart Clients to Build Scalable

Services,” Proc. Usenix Annual Technical Conf., Usenix

Assoc., Berkeley, Calif., Jan. 1997.

4. Traffic Server Technical Specification, Inktomi Corpora-

tion, Foster City, Calif., 2001; http://www.inktomi.com/

products/cns/products/tscclass.html.

5. M.M. Astrahan et al., “System R: A Relational Approach to

Database Management,” ACM Trans. Database Systems,

ACM Press, New York, June 1976, p. 97.

Eric A. Brewer is founder and Chief Scientist of Inktomi and an

associate professor of computer science at UC Berkeley. He

received a PhD in computer science from MIT. His research

interests include mobile and wireless computing, scalable

servers, and application- and system-level security. Brew-

er founded the Federal Search Foundation in 2000, which

helped create the first U.S. government-wide portal, First-

Gov.gov, for which he won the 2001 Federal CIO Council’s

Azimuth Award.

Readers can contact the author at brewer@cs.berkeley.edu.

For further information on this or any other computing topic,

please visit our Digital Library at http://computer.org/

publications/dlib/.

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2001 55

Giant-Scale Services

Coming in 2002 ...

• Peer-to-Peer Networking
• Usability and the World Wide Web
• Internet Telephony

Calls for papers are available at http://computer.org/call4ppr.htm

