
CS 553 Spring 2004
Web service descriptions

Table of contents

Overview Diagram
1

Purchasing Stan A-1
Accounting Jiangpen C-1
Human Resources Amit H-1
Inventory Yufei I-1
Sales Mike W. S-1
Project Management Vijay P-1
Manufacturing Scott M-1
Deployment Mike P. D-1
Asset management Rich P. F-1
Trouble Ticketing John T-1

Services Overview Diagram

Vijay

Ticketing

Jiangpen
AccountingPurchasing

Yufei Mike W

Amit

Inventory Sales Project Management

Human
Resources

Rich P.
Mike P.Scott

John

Manufacturing Deployment
Asset Management

Trouble

Stan

Stan Rajan
CS 553 – Internet Services

PURCHASING

Types

PurchaseOrder

Purchasing requires keeping track of every purchase order either pending or complete.

Field XML-RPC Type
PurchaseOrderNum - int
VendorID - int
VendorPartNum - string
BuyerID - int
ShippingCode - int
OrderStatusCode - int
OrderDate - dateTime
PricePerUnit - double
QuantityOrdered - int

OrderStatus

Each order must be tracked and in a known state (completed, shipped, etc.).

Field XML-RPC Type
OrderStatusCode - int
StatusDescription - string

ShippingMethod

The shipment method of each purchase must be tracked to anticipate arrivals.

Field XML-RPC Type
ShippingCode - int
MethodDescription - string
ArrivalLocation - string

Buyer

Each purchase order must be linked with a buyer for billing and delivery purposes.

Field XML-RPC Type
BuyerID - int
DepartmentID - int
ContactName - string
ContactPhone - string

Vendor

Vendor information is necessary to track where each piece of equipment was purchased.

Field XML-RPC Type
VendorID - int
Name - string
StreetAddress - string
City - string
State - string
ContactName - string
ContactPhone - string

Return

Necessary to track the status of each return request.

Field XML-RPC Type
ReturnID - int
PurchaseOrderNum - int
ReturnDescription - string
ReturnDate - dateTime

Types needed from other services:

Department type with a unique Department ID field (int)
 - Human Resources

Methods

Purchase Order Processing

CreatePurchaseOrder(VendorID, VendorPartNum, BuyerID, ShippingMethod, OrderStatus,
OrderDate, PricePerUnit, QuantityOrdered)

- Create a new purchase order. Purchase order ID is automatically generated.

CancelPurchaseOrder(PurchaseOrderNum) - cancels the specified purchase

GetVendorID(PurchaseOrderNum) - returns the VendorID
SetVendorID(PurchaseOrderNum, VendorID) - sets the VendorID

GetVendorPartNumber(PurchaseOrderNum) - returns the Vendor part number
SetVendorPartNumber(PurchaseOrderNum, VendorPartNum) - sets the Vendor part number

GetBuyerID(PurchaseOrderNum) - returns the BuyerID
SetBuyerID(PurchaseOrderNum, BuyerID) - sets the BuyerID

GetShippingMethod(PurchaseOrderNum) - returns the shipping method code
SetShippingMethod(PurchaseOrderNum, ShippingMethod) - sets the shipping method code

GetOrderStatus(PurchaseOrderNum) - returns the order status
SetOrderStatus(PurchaseOrderNum, OrderStatus) - sets the order status

GetOrderDate(PurchaseOrderNum) - returns the purchase date
SetOrderDate(PurchaseOrderNum, OrderDate) - sets the purchase date

GetPrice(PurchaseOrderNum) - returns the purchase price per unit
SetPrice(PurchaseOrderNum, PricePerUnit) - sets the purchase price per unit

GetQuantityOrdered(PurchaseOrderNum) - returns the quantity ordered
SetQuantityOrdered(PurchaseOrderNum, QuantityOrdered) - sets the quantity ordered

DisplayPurchaseOrder(PurchaseOrderNum) - displays the specified purchase order info
DisplayAllPurchaseOrders() - displays all purchase orders

Vendors

AddVendor(Name, Street, City, State, Contact, ContactPhone) - adds a new vendor
RemoveVendor(VendorID) - removes the specified vendor

GetVendorName(VendorID) - returns the vendor name
SetVendorName(VendorID, Name) - sets the vendor name

GetVendorStreet(VendorID) - returns the vendors street address
SetVendorStreet(VendorID, StreetAddress) - sets the vendors street address

GetVendorCity(VendorID) - returns the vendors city

SetVendorCity(VendorID, City) - sets the vendors city

GetVendorState(VendorID) - returns the vendors state
SetVendorState(VendorID, State) - sets the vendors state

GetVendorContact(VendorID) - returns the vendors contant name
SetVendorContact(VendorID, ContactName) - sets the vendors contact name

GetVendorContactPhone(VendorID) - returns the vendors contant phone number
SetVendorContactPhone(VendorID, ContactPhone) - sets the vendors contact phone #

DisplayVendor(VendorID) - displays the specified vendors info
DisplayAllVendors() - displays info for all vendors

Returns

ProcessReturn(PurchaseOrderNum, ReturnDescription, ReturnDate) - process a return on the
given PO, ReturnID is automatically generated

GetReturnID(PurchaseOrderNum) - returns the ReturnID if it is not null

GetReturnDescription(ReturnID) - returns the reason for the return
SetReturnDescription(ReturnID, ReturnDescription) - sets the reason for the return

GetReturnDate(ReturnID) - returns the return date
SetReturnDate(ReturnID, ReturnDate) - sets the return date

DisplayReturn(ReturnID) - displays the specified return info
DisplayAllReturns() - displays all return info

OrderStatus

AddOrderStatus(StatusDescription) - adds a new order status, code automatically generated
RemoveOrderStatus(OrderStatusCode) - removes the specified order status

GetOrderStatusDescription(OrderStatusCode) - returns the status description
SetOrderStatusDescription(OrderStatusCode, StatusDescription) - sets the status description

DisplayOrderStatus(OrderStatusCode) - displays specified order status info
DisplayAllOrderStatus() - displays all order status info

ShippingMethods

AddShippingMethod(StatusDescription, ArrivalLocation) - adds a new shipping method
RemoveShippingMethod(ShippingCode) - removes the specified shipping method

GetShippingMethodDescription(ShippingCode) - returns shipping description

SetShippingMethodDescription(ShippingCode, StatusDescription) - returns shipping description

GetShippingArrival(ShippingCode) - returns the arrival location
SetShippingArrival(ShippingCode, ArrivalLocation) - sets the arrival location

DisplayShippingMethod(ShippingCode) - displays specified shipping info
DisplayAllShippingMethods() - displays all shipping method info

Buyers

AddBuyer(Department, ContactName, ContactPhone) - adds a new buyer
RemoveBuyer(BuyerID) - removes the specified buyer

GetBuyerDepartment(BuyerID) - returns the buyers department
SetBuyerDepartment(BuyerID, Department) - sets the buyers department

GetBuyerContactName(BuyerID) - returns the contact name for the buyer
SetBuyerContactName(BuyerID, ContactName) - sets the contact name for the buyer

GetBuyerContactNumber(BuyerID) - returns the contact phone number for the buyer
SetBuyerContactNumber(BuyerID, ContactPhone) - sets the contact phone number for the buyer

DisplayBuyer(BuyerID) - displays specified buyer info
DisplayAllBuyers() - displays info for all buyers

Justification of Types and Methods

The purchasing types and methods used in this web service are based on the business
model found in the SAP tutorial in addition to commercial purchase order software
packages. The Buyer and Purchase types and methods are based on those used in the
Purchase Order software package by Cougar Mountain Software. Vendor and Shipping
methods were also based on this package in addition to KDI Information Systems
Support Purchase Orders documentation.

Simulated Load

The initial load of the purchasing service will be loaded from a flat file. This initial load
will be predominantly populated with completed purchase orders but will also include
new and in progress orders. A client program will simulate the daily interactions of the
purchasing service. The client program will use a flat file containing a list of method
calls and queries as input to simulate the various day to day interactions with the service.

Jiangpeng Wang
jiangpeng.wang@rutgers.edu

1

CS533 – Internet Services
Proposal for Web Service #1 – Accounts Payable & Accounts Receivable

Objects:

Expense

Expense represents expenses occurred during all purchases.
Assumptions:

 Amount is always paid in full (no partial payment)
 The vender specified by VenderId is the payee
 Vender object is stored by the Purchasing WS
 Ignore late fee, etc.

Field Type
ExpenseId int
PONumber int
Amount double
VenderId int
EmployeeId int
ScheduledDate date
PaidDate date
IsPaid Boolean
CheckId int

Invoice

Invoice represents invoices that are going to be sent to customers.
Assumptions:

 All payers are considered as customers
 Amount is always paid in full (no partial payment)
 The customer specified by CustomerId is the payer
 Customer object is stored by the Sales WS
 Ignore late fee, etc.

Field Type
InvoiceId int
InvoiceNumber int
Amount double
DueDate date
PaidDate date
CustomerId int
CustomerPONum int
IsPaid boolean
Reminders date[]
CheckId int

Jiangpeng Wang
jiangpeng.wang@rutgers.edu

2

Check

Check represents checks that carry money.
Assumptions: Only consider the basic information of a check

Field Type
CheckId int
CheckNumber int
Amount double
CheckDate date
IsCustomerCheck boolean

Methods:

Accounts Payable

ScheduleExpense
 PONumber int
 ScheduledDate date
 Amount double
 VerderId int
 EmployeeId int
 (ExpenseId) int

PayExpense
 ExpenseId int
 CheckNumber

IsExpensePaid
 ExpenseId int
 (IsPaid) boolean

GetExpensePONumber
 ExpenseId int
 (PONum) int

GetExpenseAmount
 ExpenseId int
 (Amount) double

GetExpenseVenderId
 ExpenseId int
 (VenderId) int

GetExpenseScheduledDate
 ExpenseId int
 (ScheduledDate) date

GetExpensePaidDate
 ExpenseId int
 (PaidDate) date

GetExpenseCheck
 ExpenseId int

Jiangpeng Wang
jiangpeng.wang@rutgers.edu

3

 (Check) Check

SetExpensePONumber
 ExpenseId int
 PONum int
 void

SetExpenseAmount
 ExpenseId int
 Amount double
 void

SetExpenseVenderId
 ExpenseId int
 VenderId int
 void

SetExpenseScheduledDate
 ExpenseId int
 ScheduledDate date
 void

SetExpensePaidDate
 ExpenseId int
 PaidDate date
 Void

ReportAllExpenses
 void
 (ExpenseId’s) int[]

ReportExpensesOfPO
 PONum int
 (ExpenseId’s) int[]

ReportExpensesOfVender
 VenderId int
 (ExpenseId’s) int[]

ReportExpensesOfEmployee
 EmployeeId int
 (ExpenseId’s) int[]

ReportAllPaidExpenses
 void
 (ExpenseId’s) int[]

ReportAllUnpaidExpenses
 void
 (ExpenseId’s) int[]

DumpExpenses
 ExpenseIds int[]
 (Expenses) Expense[]

Jiangpeng Wang
jiangpeng.wang@rutgers.edu

4

Accounts Receivable
* Some Getters & Setters are omitted

IssueInvoice
 CustomerId int
 CustomerPONum int
 DueDate date
 Amount double
 (InvoiceId) int

ReceivePayment //assuming always pay in full
 InvoiceId int
 CustomerCheckNumber int
 CustomerCheckDate date
 void

RemindCustomer
 InvoiceId int
 void

IsInvoiceOverDue
 InvoiceId int
 (IsOverDue) Boolean

IsInvoicePaid
 InvoiceId int
 (IsPaid) boolean

ReportAllInvoices
 void
 (InvoiceId’s) int[]

ReportInvoiceOfCustomerPO
 CustomerPONum int
 (InvoiceId’s) int[]

ReportExpensesOfCustomer
 CustomerId int
 (InvoiceId’s) int[]

ReportAllPaidinvoices
 void
 (InvoiceId’s) int[]

ReportAllUnpaidInvoices
 void
 (InvoiceId’s) int[]

DumpInvoices
 InvoiceIds int[]
 (Invoicess) Invoice[]

Check Controlling

GetCheckInformation
 CheckNumber int
 (Check) Check

Jiangpeng Wang
jiangpeng.wang@rutgers.edu

5

Amit Gaur
CS 553-Internet Services
Professor Martin

Process Web Service – Human Resource Management

The basic types I will model are:

Employee

This the main type which forms the basis of HR Management

Field XML RPC Type
Employee ID String
FirstName String
MiddleName String
LastName String
DOB dateTime
Sex String
JobID int
DepartmentID int
Status/Field boolean

Department
Tracks the Departments in the company

Field XML RPC Type

DepartmentID int
DepartmentName String
EmployeeList[] int

Job Description
Keeps a list of All the Job Descriptions in the company.:PositionID is an instance of a
particular Job
Field XML RPC Type
JobID int
DepartmentID int
PositionID int

Position Description
Describes the specific position/job
Field XML RPC Type
PositionID int
PositionTitle String
SalaryGrade int
Status/Field boolean

Salary
Keeps track of Salary Information for Each employee
Field XML RPC Type

EmployeeID int
SalaryGrade int
SalaryAmount int
BonusPlan(YearlyAmt) int

Hiring/Promotions
Keeps Hiring and Promotion Information for Each Employee

Field XML RPC Type

EmployeeID int
HireDate dateTime
PromotionDates[] dateTime
ReleaseDate dateTime

Benefits
Keeps tracks of Benefits for Each Employee
Field XML RPC Type

EmployeeID int
SavingsPlan String
MedicalPlan String
DentalPlan String

METHODS

AddEmployee(EmployeeID,FirstName,MiddleName,LastName,DOB,Sex,JobID,
SalaryAmount,BonusPlan,HireDate,SavingsPlan,MedicalPlan,DentalPlan)-used to add
employees to the system
DelEmployee(EmployeeID,ReleaseDate)-removes employee from the system:sets
Status/Field to false
ListEmployees()-gives the list of employees

AddDepartment(DepartmentID,DepartmentName)-Add a department to the system
RemoveDepartment(DepartmentID)-removes a department
ListDepartments()-list all the departments
ListEmpDepartment(DepartmentID)-list employees working in a particular department

AddJob(JobID,PositionID,PositionTitle,Status,DepartmentID,SalaryGrade)-add a job to
the system
RemoveJob(JobID)-remove a job from the system
ListJobs()-list the current active jobs
OpenJobs()-Lists open positions

ChangeSalary(EmployeeID,SalaryAmount,Bonus)-change the salary of a particular
employee
ListSalaries()-generate a list of all employees with their salaries

AddPromotions(EmployeeID,PromoDate,NewSalary)-Assign a promotion
ListPromotions(EmployeeID)-List the Promotion dates for a particular emplpyee
ListHireDate(EmployeeID)-List the Hire Date for a particular employee

ChangeBenefits(EmployeeID,Savings,Medical,Dental)-change the benefit plan
ListBenefits(EmployeeID)-list benefits for a particular employee

SIMULATION

For populating jobs and employees to the system I will first generate a list of jobs and
assign these jobs to a list of Employees.
I plan to use flat files to store my data structures
After there are sufficient employees in the system, the program will randomly call one of
the methods to
i)change employee information: change job description,change salary information,change
benefits information
ii)change job information:either to add new jobs, remove jobs from the system

In order to keep payroll/salary information for each employee I will need to interact with
the Payroll webservice, to keep Department information I would need to track changes
such as creation/deletion of departments in the company

CS 553 Spring 2004
Web service descriptions

Table of contents

Overview Diagram
1

Purchasing Stan A-1
Accounting Jiangpen C-1
Human Resources Amit H-1
Inventory Yufei I-1
Sales Mike W. S-1
Project Management Vijay P-1
Manufacturing Scott M-1
Deployment Mike P. D-1
Asset management Rich P. F-1
Trouble Ticketing John T-1

CS553: Inventory service design

Yufei Pan

Interaction with other services:

Data Types:

ProductType
Field XML-RPC Type

 PartNum string
 Name string
 Description string

Field specification:
• PartNum: a unique identification number standing for the

product type
• Name: a string giving the human-readable name for the type
• Description: a string describing the product-specific properties

ProductItem

Field XML-RPC Type
 SerialNum int
 BarCode string

Inventory

Purchase Manufacturing Sales

Deployment

 PartNum string
 UnitID int
 LocationID int

 Field specification:

• SerialNum: a unique serial number for a product item.
• BarCode: a unique bar code for a product item
• PartNum: the ID of the type of the product item
• LocationID: the id of the location where item is stored

currently. -1 means that item is on the way.

ItemHistoryEntry
Field XML-RPC Type

 SerialNum int
 Action string
 LocationID int
 Time dateTime

 Field specification:
• SerialNum: the serial number of item.
• Action: the defined action is “REMOVE” and “ADD”.
• LocationID: the id of location involved.
• Time: the time when action is taken

Unit

Field XML-RPC Type
 UnitID int
 ItemArray array of string

Field specification:
• UnitID: the id of Unit, which is a group of items.
• ItemArray: the serial numbers of items in the Unit

Location
Field XML-RPC
LocationID int

 Site int
 Building string
 Floor string
 Room string

 Field specification

I just keep the same definition of location used in Asset Service.

Methods:

BarCoding
Boolean assignBarCode(string SerialNum, string barCode);;
string queryBarCode(string SerialNum);;
int queryItemSN(string barcode);;

Warehouse Management

boolean assignUnit(string SerialNum, Unit Unit);
boolean addItemToUnit(String serialNum, Integer unitID);
String[] getItemsInUnit(Integer unitID);
boolean storeUnitToWH(Integer unitID, Integer locationID);
boolean removeUnitFromWH(Integer unitID);
int queryUnit(string SerialNum);

 Location Query
int queryItemLocation(string Seria lNum);
int queryItemLocation(string SerialNum);

 History Query

ItemHistory[] queryItemHistory(string SerialNum);

Type tracking
String queryProductType(string SerialNum);

Quantity tracking

int queryQuantity(string PartNum);

Indirection query

ProductType getProductType(string PartNum);
ProductItem getProductItem(string SerialNum);
Unit getUnit(int UnitID);
Location getLocation(int locationID);

Junk Query

int[] getAllItems();
int[] getAllUnits();

 Sales Order
 boolean handleSalesOrder(String partNum, Integer quantity) ;

Simulated load generation:

I will generate about 100 locations, 100 production types, 1,000 - 10,000 items for
each type. Also, I will execute about 2 random movements (from one location to
another location); for each item.

Michael Wood
CS 553 Web Service Proposal

My project is to develop a Sales Management package for Fubar, Inc. Here are the data types and
methods I propose.

DATA TYPES

Product
The system needs to know about Fubar’s products so that sales reps can enter orders without
having to fill in all the details. The product information maintained here will likely be different
from that maintained by the Inventory and Manufacturing services.

 PartNumber string
 ProductLineID int
 Description string -- the product name
 BasePrice double
 DiscountCodes array of strings
 DiscountRates array of doubles
 SubstitutePartNumber string -- what to substitute if this item is out of stock
 IsActive boolean -- set “false” for discontinued items

Customer
We must store the customer’s address for shipping and returns purposes. The status value tells us
if a contract job is ongoing, if the customer is no longer valid, etc.

 CustomerID int
 CustomerName string
 CustomerPhone string
 BillingStreetAddress string
 BillingTown string
 BillingState string
 BillingZip string
 ShippingStreetAddress string
 ShippingTown string
 ShippingState string
 ShippingZip int
 AccountBalance double -- sales or accounts receivable?
 Status string

Sale
The Sale object comprises the information a sales rep needs in order to fill out an invoice and
complete a sale.

 ReferenceNo int
 CustomerID int
 SalespersonID string
 DateAndTime dateTime.iso8601
 LineItems array of SalesLineItem objects
 SalesTax double
 ShippingCharge double
 DeliveryTax double -- related to the customer’s location
 Total double
 AmountPaid double
 Status Boolean -- shipped yet (Y/N)
 TrackingNo int

SalesLineItem
BillingRate applies to contract jobs, in which case Quantity will be the hours billed.

 PartNumber string
 SerialNumbers array of string
 BillingRate double
 HoursBilled double
 DiscountCode string
 SoftwareKey string

Return
Keeps a record of all merchandise returns; Fubar’s decision to accept or reject the return (based
on condition, etc.) and the amount credited to the customer’s account.

 ReferenceNo int -- local key
 SalesReferenceNo int -- foreign key into the Sales database
 PartNumber string
 QuantityReturned array of SerialNums
 DateReturned dateTime.iso8601
 IsAccepted array of Boolean
 AmountCredited array of double
 Comments string
 ReplacementReferenceNo string

METHODS

Sales order processing
 CreateOrder (customerID, salesperson) – sets up a new order/invoice for the sales rep.

AddItemToOrder (SalesLineItem) – adds a line item to an invoice. Fills in product
description, software key (if applicable)

 RemoveFromOrder (productID, quantity) – deletes a line item from an invoice
PostOrder () – Creates and returns a ReferenceNo for this order. Posts the order/invoice

so that the warehouse can fulfill it and it can be shipped.
DisplayOrder (ReferenceNo) – Displays a simple list of the sales line items, tax, total,

and customer name/ID
CreateLineItem(productID, quantity)—initializes a new SalesLineItem object
Get/SetItemQuantity(SalesLineItem)
Get/SetSoftwareKey(SalesLilneItem)
SetDiscountCode(SalesLineItem)
CalculateTax(Sale object), CalculateTotal(Sale object)
DisplayBalance (CustomerID) – returns the balance on an account
CreateProduct (description, price, discount rate) – adds a new product to the database;

creates and returns a product ID
Get/Set{product attribute}(productID, attributeValue) – for those attributes that should be

readable/writable by a salesperson
 DiscontinueProduct (productID)

DisplayProduct (productID) – Displays the product information maintained in the sales
database

ProductName2ID(productID), ProductID2Name(description)
CreateCustomer (Name, {Shipping,Billing}{Address, Town, State, Zip}) – adds a new

customer to the database
Get/Set{customer attribute}(CustomerID, attributeValue) – for those attributes that

should be readable/writable by a salesperson
 DeactivateCustomer (CustomerID) – marks a customer as no longer valid/active

DisplayCustomerHistory (CustomerID, Date) – shows the purchases on record for this
customer since date

DisplayCustomer(CustomerID) – Displays the customer information maintained in the
sales database

CustomerName2ID(), CustomerID2Name()
 ApplyCharge(CustomerID, Amount) – returns the account balance after the charge
 ApplyCredit(CustomerID, Amount) – returns the account balance after the credit

Quotations

GetPriceOrRate (ProductID, discountCode, bool includeTax) – returns the full or
discounted price of an item, or the rate for contract work

Invoicing
** Invoices and orders display different collections of “sale” information in different ways**
 DisplayInvoice (ReferenceNo) – displays the full invoice pertaining to a specific order

Vijay Lakshminarayanan
mailvj@paul

CS 553 – Internet Services
Dr. Richard Martin

Project – Stage I Description
Topic: Project Management

Based on my understanding of the topic and the ways to interpret it, I chose to break it down into
2 broad components –

1) Project Management is often used to track the progress of and manage the resources (i.e.
people, equipment, subcontractors, etc.) used in complex projects.

2) From a customer’s perspective, it involves preparing bills (including pricing) and
tracking orders.

This web service may interact with Asset management (which may place asset requests),
Purchasing (where the asset requests will be checked and redirected), and HR(place staffing
requests)

These are the various types I feel the need for, as I make an initial design of the system:

Asset Requirements
This type would get information from Asset Management when the need is felt for asset
purchases and the information would be passed on to the Purchases Department
asset_req_id int
asset_type string
quantity int
requirements_text string
date_required_by datetime

Department
Various departments in the company that can place requests for staff
department_id string
department_name string
requirement_text string
requirement_num int

Staffing Requirements
This type would get information regarding staffing requirements from any department and the
matter would be referred to HR.
staff_req_id int
department_id string
requirements_text string
number_required int
date_required_by datetime

Bill
Get order information and generate a bill for customer.

CustomerID string
Purchase Order Number int

All classes/tables created by Stan Rajan for Purchasing will be crucial to my implementation.
Maybe, the ‘return products’ implementation is better suited in my project – since Project
Management deals with customer interaction and status checking.

//in Customer table/entity, “Boolean payment_received” to be included for the purposes of my
project.

Methods:

submit_asset_req(type, number, date, notes)
submit_staffing_req(dept, number, date, notes)
send_asset_req(asset_req_id)
remove_staffing_req(asset_req_id)
remove_staffing_req(staff_req_id)
send_staffing_req(staff_req_id)
create_bill(cust_id, order_id)
update_status(order_id, status_text, shipping_date, delivery_date)
create_return(order_id, return_reason, date)
track_return(return_id)
credit_payment(return_id)

Simulated Load
A program would create a simulated system with a bunch of customers, orders, and departments.
Then, the asset management department will place various asset requests, various other
departments will place many staffing requests, the status of various orders would be updated, bills
generated, customer tracking requests placed, and the ability of the web service to handle such
multiple simultaneous requests correctly will be tested.

CS553 Web Services

Updated: Monday, April 26, 2004 by Scott Battaglia

JavaDocs are available via:
http://battaglia.homeip.net:8000/cs553/doc/

Sample JSP pages are available via:
http://battaglia.homeip.net:8000/client/

Services are available via:
http://battaglia.homeip.net:8000/cs553/services/InventoryManagerService
http://battaglia.homeip.net:8000/cs553/services/ManufacturingManagerService

Manufacturing Web Service

Vendor Class
• Address (Address class)
• ContactName (String)
• ContactNumber (String)
• Id (int)
• Name (String)

SpecificPart
A vendor specific instance of a part (i.e. Radio Shack’s battery pack).

• Cost (double)
• GenericPart (GenericPart)
• Id (int)
• Quantity (int)
• Vendor (Vendor)
• VendorPartNumber (String)
• VendorSpecificName (String)

ProductInstance
Represents the creation of one of our products (i.e. Mote with Serial Number 1434432)

• Parts (Collection of SpecificParts0
• Product (Product)
• SerialNumber (String)
• ManufacturedDate (Date)

Product
• Name (String)
• PartNumber (String)

PartSwap (used by ECN)
Denotes two parts that need to be swapped in an ECN

• Part (int)
• Replacement (int)
• ReplacementAmount (int)

GenericPart
Denotes something like a screw

• Id (int)
• Name (String)
• Quantity (int)

EngineeringChangeNotice

• Id (int)
• Product (Product)
• ReplacementParts (Collection of PartSwaps)

BillOfMaterial

• Id (int)
• Parts (Collection of GenericParts)
• Product (Product)

Address
• Address (String)
• City (String)
• State (String)
• ZipCode (String)

Inventory Manager Service
Collection getOutOfStockParts() // get the out of stock parts
Collection getLowStockParts() // get parts with what we defined as low stock
Collection getPartsWithStockLessThan(int amount) // get parts with stock less than what is
passed in

Collection getPartsWithStockGreaterThan(int amount) // get parts with stock greater than what is
passed in
Collection getSpecificPartsFromGenericPartId(int id) // get all the specific parts for a generic
type
int incrementPartAmount(int id, int amount) // increment the amount we have for a part
int decrementPartAmount(int id, int amount) // decrement the amount we have for a part
GenericPart addPartType(String name) // add a generic part type
SpecificPart addSpecificPart(SpecificPart part) // add a specific part
void updateSpecificPart(String partId, String partName) // update a specific part
Collection getVendors() // get the list of vendors in the database
Vendor getVendor(int vendorId) // get a specific vendor
Collection getPartsByVendor(int vendorId) // get all the parts a vendor has
Double getAveragePartPrice(int genericPartId) // get the average price for a part
double getAverageProductCost(String productId) // get the average product cost
void updateGenericPart(GenericPart part) // update the name of a generic part
BillOfMaterial insertBillOfMaterial(BillOfMaterial b) // insert a bill of material
Collection getGenericParts()

Manufacturing Manager Service
ProductInstance buildSensor(String productId) // build one sensor
Collection buildSensors(String productId, int amount) // build a specific amount if possible
Collection buildSensorsToStock(String productId) // build all we can
boolean increaseStage(String serialNumber) // increase the stage of a product
Collection getProducts() // get the list of product types
Collection getProductInstances(String productId) // get the product instances of a product

Simulated Load
Data will be entered in to the database. This will either be done using a script to enter directly
into the database, or via the methods provided. A program will then be created that will simulate
building up an inventory of parts and then continually building sensors and updating parts via
simulation of both build-to-stock and build-to-order. This should simulate the day-to-day build-
up and use of parts as well as the creation of new products. At the end the reporting methods can
be used to see what was created and used.

 public void removeProductFromMasterProductionSchedule(Product product, Date estimatedStartDate);
}

Note: There will also be other methods to do things such as addBillOfMaterial, etc. that will essentially be the data
entry into the database.

Simulated Load

Data will be entered in to the database. This will either be done using a script to enter directly into the database, or via
the methods provided. A program will then be created that will simulate building up an inventory of parts and then
continually building sensors and updating parts via simulation of both build-to-stock and build-to-order. This should
simulate the day-to-day build-up and use of parts as well as the creation of new products. At the end the reporting
methods can be used to see what was created and used.

Michael Pagliorola
Internet Services

A deployment web service, as researched, is best be described as unifying system of post
inventory management and support services. The methods described below should be
adiquite to allow for the support service to get information on individual, and the over
all, states of the deployed products. As such this service should be fed by the sales and
trouble ticket webservices in order to keep the information up to date.

Objects:

Product

Field XML- RPC Type
Product Name - String
Part Number - String
Serial Number - String
Customer ID - Int
Software Version - String
Operational Status - boolean
Recall Notice - boolean
Manufacture Date - dateTime
End of Mantenence - dateTime
End of Life - dateTime

Customer

Field XML- RPC Type
Customer ID - Int
Customer Name - String
Street Address - String
City - String
State - String
Postal Code - String
Country - String
Contact Name - String
Contact Email - String
Contact Phone Number - String

Software

Field XML- RPC Type
Product Name - String
Customer ID - Int
Software Version - String
Update Available - Boolean
Recall Notice - Boolean
End of Mantenence - dateTime
End of Life - dateTime

Methods:

Product
addProduct(Product, Customer, dateTime)
removeProduct(serialNumber)
updateProductStatus(serialNumber, operationalStatus)
getProductStatus(serialNumber)

Software
addSoftware(Software, Customer, dateTime)
removeSoftware(productName, customerID)
updateSoftwareAvailable(productName)
getSoftwareAvailable(productName)

* Calls support services to check if an update is available
updateSoftwareVersion(productName, softwareVersion);

Shared
getRecall(productName);

* Calls support services to check for a recall
updateRecall(String productName, Boolean status)

- Announce / ca ncel recall of specified product
getEndOfMantenence(productName, customerID);
updateMantence(produc tName, CustomerID)
getEndOfLife(String productName);

* Calls support service to check for EndofLife
updateEndOfLife(productName, dateTime)

Informative Queries
getTotalDeployed(productName, dateTime, dateTime)

- Returns the total amount of product deployed between a
 given date

getTotalCustomers(customerID, productName);
- Returns the total amount of customers with the specified
 product

getTotalFailedProducts(productName);
getFailedProducts(productName, dateTime, dateTime)

- Returns product(s) that failed during the time period
getCustomersByProducts(productName);

- Returns all products a customer has
getProductsByCustomer(customerID);

- Returns all customers that have a product

Simulated Load:

A basic main program will randomly create sales and service events then update
the system appropriately while also dumping it's output to a log file for verification upon
completion. After a given amount of time the main program will then ask for statics
from the serivice which can be checked against the output file to ensure proper
execution.

 Richard Psota
 CS 553 – Internet Services
 Professor Martin

For my job, one of my projects is the deployment of an enterprise asset management system for my
division. Based on my familiarity with the system and the data stored in the system, I put together the
following types and methods.

TYPES:

Employee

The asset tracking module would need to track some basic information on employees since it is necessary
to know who owns the equipment.

 Field XML-RPC Type
 Employee ID - string
 First Name - string
 Last Name - string
 Department Number - int

Asset

The asset tracking module would need to track detailed information on all of Fubar’s assets. This includes
information related to the purchase, installation, and disposal of the assets.

 Field XML-RPC Type
 Asset ID - int
 Asset Description - string
 Asset Classification - string
 Model # - string
 Serial # - string
 Owner – Employee ID - string
 Department Number - int
 Purchase Date - dateTime
 Purchase Price - double
 Installation Date - dateTime
 Location ID - int
 Vendor ID - int
 Disposal Date - dateTime
 Status - string

Vendor

The asset tracking module would need to track some basic information on vendors since it is necessary to
know who sold the equipment to Fubar.

 Field XML-RPC Type
 Vendor ID - int
 Vendor Name - string
 Vendor Street Address - string
 Vendor Town - string
 Vendor State - string
 Vendor Country - string
 Vendor Contact - string
 Vendor Contact Phone # - string

Location

The asset tracking module would need to track the exact location of the equipment. In order to achieve this
level of detail, the location type would be required.

 Field XML-RPC Type
 Location ID - int
 Site - string
 Building - string
 Floor - string
 Room - string

Department

The asset tracking module would need to track some basic information on the departments within the
company.

 Field XML-RPC Type
 Department Number - int
 Department Name - string

Depreciation

The asset tracking module would need to track important values to be used in the depreciation calculations.

 Field XML-RPC Type
 Asset Classification - string
 Depreciation Percentage per year - double
 Expected lifetime in years - int

Methods

Detailed Tracking
AddEmployee(FirstName,LastName,EmployeeID,DepartmentNumber) – Adds a new employee to the
employee table.
RemoveEmployee(EmployeeID) – Removes an employee from the employee table.
GetAllEmployees() – Returns an array of all employees.
GetAllAssets() – Returns an array of all assets.
AddVendor(Name,StreetAddress,Town,State,Country,Contact,ContactPhone) – Adds a new vendor to the
vendor table.
RemoveVendor(VendorID) – Removes the vendor from the vendor table.
GetAllVendors() – Returns an array of all vendors.
AddLocation(Site,Building,Floor,Room) – Adds a new location to the location table.
RemoveLocation(LocationID) – Removes the location from the location table.
GetAllLocations() – Returns an array of all locations.
AddDepartment(DepartmentNumber,DepartmentName) – Adds a new department to the department table.
RemoveDepartment(DepartmentNumber) – Removes a department from the department table.
GetAllDepartments() – Returns an array of all departments.
AddDepreciationValue(Class,Percentage,Lifetime) – Adds a new depreciation value to the table.
RemoveDepreciationValue(Class,Percentage,Lifetime) – Removes the depreciation value from the table.
GetAllDepreciationValues() – Returns an array of all depreciation values.
CreateAsset(Description,Classification,SerialNumber,ModelNumber,EmployeeID,PurchasePrice,Purchase
Date,Department,LocationID, VendorID) – Create a new asset record with the required fields provided.
GetAssetDescription(AssetID) – returns a description of the asset with the given asset ID
SetAssetDescription(AssetID,Description) – sets the description of the asset
GetAssetClassification(AssetID) – returns the classification of the asset with the given asset ID
SetAssetClassification(AssetID,Classification) – sets the classification of the asset
GetModelNumber(AssetID) – returns the model number of the asset with the given asset ID
SetModelNumber(AssetID,ModelNumber) – sets the model number of the asset
GetSerialNumber(AssetID) – returns the serial number of the asset with the given asset ID
SetSerialNumber(AssetID,SerialNumber) – sets the serial number of the asset
GetPurchaseDate(AssetID) – returns the purchase date of the asset
SetPurchaseDate(AssetID,PurchaseDate) – sets the purchase date of the asset
GetPurchasePrice(AssetID) – returns the purchase price of the asset
SetPurchasePrice(AssetID,PurchasePrice) – sets the purchase price of the asset
GetInstallationDate(AssetID) – returns the installation date of the asset
SetInstallationDate(AssetID,InstallationDate) – sets the installation date of the asset
GetLocationID(Site,Building,Floor,Room) – returns the location id for the entered location
GetLocation(AssetID) – returns the Site + “-“ + Building + “-“ + Floor + “-“ + Room of the given asset ID
SetLocation(AssetID,LocationID) – sets the location id of the asset
GetVendorId(VendorName) – returns the vendor id for the given vendor name
GetVendor(AssetID) – returns the Vendor Name for the given asset
SetVendor(AssetID,VendorID) – sets the vendor id for the given asset
GetAvailableCount(Classification) – returns the number of assets available for the inputted classification

Depreciation and Gain/Loss Detail
CalculateDepreciation(AssetID) – returns the depreciated value for the given asset using the depreciation
percentages in the Depreciation table.
RunningTotal() – returns the total value of assets that have not been disposed

Ownership
GetEmployeeID(FirstName,LastName) – returns the employee identifier for the given employee
GetOwnerName(AssetID) – returns the first and last name of the employee that owns the asset
SetOwnerName(AssetID,EmployeeID) – sets the employee id for the owner of the asset
GetDepartment(AssetID) –returns the department that owns the asset
SetDepartment(AssetID,DepartmentNumber) – sets the department that owns the asset

Disposal
GetCurrentStatus(AssetID) – returns the current status of the asset
SetCurrentStatus(AssetID,Status) – sets the current status of the asset (In Service, Broken, Disposed)
GetDisposalDate(AssetID) – returns the date that the asset was disposed
DisposeOfAsset(AssetID,DisposalDate) – sets the disposal date of the asset to DisposalDate and updates
the status to disposed

Simulated Load

 There will be a main client program that initially generates new assets. This will simulate the initial
population of assets into the asset management system. After there are sufficient assets in the system, the
program will randomly choose different get and set methods to represent daily asset operations. This will
simulate the day to day queries and updates that would take place in Fubar. During this time, new assets
would be sporadically added and other items would be disposed. The function calls would allow for the
correct system operation to be verified. At the end of the program, the RunningTotal() function would be
run to determine the total value of Fubar’s assets.

External Interfaces

 Fixed Asset Management will receive the employee number for a first name and last name combination
by calling a getEmployeeID function in the HR system. FAM will store only employees listed as owners of
Fubar assets. Two of the other modules will be utilizing Fixed Asset Management. Purchasing will call
the CreateAsset method in FAM when new company assets are purchased. Project Management will call
the GetAvailableCount method to check the availability of different classes of assets.

John Francisco

Internet Services

Rich Martin

19 February, 2004

Trouble Ticketing Web Service Revised API

Types:

 There are three data types in the Trouble Ticketing API (TT-API); the Trouble

Ticket (TT), Incident Report (IR), and Bug Report (BR).

Trouble Ticket:

Attribute: XML Type: Description:

Ticket ID dateTime.iso8601 Time ticket was opened, primary key

Owner string Owner of the faulty product

PartNumber string Part # of faulty product

CloseDate dateTime.iso8601 Time ticket is closed

Closer string Person who closes the ticket

Status int Determines status of ticket

Description string Description of problem

Logical Ticket Types:

Pending Ticket: Newly created TT Status = -1

- newly created with little or no Incident Reports assigned to it

Trouble Ticket: Active TT Status = 0

- complete and active Ticket

Closed Ticket: Inactive TT Status = 1

- a Ticket for a problem that is no longer an issue

Incident Report:

Attribute: XML Type: Description:

Ticket ID dateTime.iso8601 Ticket this IR is associated with

Incident ID dateTime.iso8601 Time this IR was generated, primary key

Description string Description of the problem

SerialNumber string Serial # / version of the faulty product

PartNumber string Part # of the faulty product

Owner string Owner of faulty product

Bug Report:

Attribute: XML Type: Description:

Bug ID dateTime.iso8601 Time this BR was created

PartNumber string Part # of buggy product

SerialNumber string Serial # of product bug was initially found in

Description string Description of bug

Workaround string Workaround, if any, for this bug

Methods:

CreateIncidentReport(Owner, ProductNumber, SerialNumber, Description)

-create a new Incident Report; Ticket ID and Incident ID are set automatically

CreateTicket(Owner, ProductNumber, Description)

-create a new Trouble Ticket; Ticket ID and Status are set automatically

OpenTicket(Ticket ID)

-opens a Pending or Closed Ticket and makes it an Active Ticket

CloseTicket(Ticket ID, Closer)

-closes an Active Ticket and makes it an Inactive Ticket

DeleteTicket(Ticket ID)

-removes an Inactive Ticket from the system

DeleteIncident(Incident ID)

-removes an Incident Report from the system that either is not associated with a Ticket,

or whose Ticket has been deleted

DeleteBug(Bug ID)

-removes a Bug Report from the system

CreateBugReport(PartNumber, SerialNumber, Description, Workaround)

-creates a new Bug Report; Bug ID is set automatically

MakeBugReport(Incident ID, Workaround)

-makes a Bug Report out of the Incident Report specified

SetIncidentTicketID(Incident ID)

-set the Ticket ID that an Incident Report belongs to

GetIncidentTicketID(Incident ID)

-returns the Ticket ID that an Incident Report belongs to

GetAll()

-returns all Tickets and Reports

GetAll(Ticket ID, Ticket ID)

-returns all Tickets for a date range

GetTicket(Ticket ID)

-returns Ticket

GetBugReport(Bug ID)

-returns Bug Report

GetAllBugReports()

-returns all Bug Reports

GetAllBugReports(Bug ID, Bug ID)

-returns all Bugs for a date range

GetAllIncidentReports()

-returns all Incident Reports

GetAllIncidentReports(Incident ID, Incident ID)

-returns all Incidents for a date range

GetAllActiveTickets()

-returns all Active Tickets

GetAllActiveTickets(Ticket ID, Ticket ID)

-returns all Active Tickets for a date range

GetAllInactiveTickets()

-returns all Inactive Tickets’ Ticket IDs

GetAllInactiveTickets(Ticket ID, Ticket ID)

-returns all Inactive Tickets for a date range

GetAllBugReports()

-returns all Bug Reports

GetAllBugReports(Bug ID, Bug ID)

-returns all Bug Reports for a date range

GetAllIncidentReportsByOwner(Owner)

-returns all Incident Reports for a specific Owner

GetAllActiveTicketsByOwner(Owner)

-returns all Active Tickets for a specific Owner

GetAllInactiveTicketsByOwner(Owner)

-returns all Inactive Tickets for a specific Owner

GetAllIncidentReportsByOwner(Owner)

-returns all Incident Reports for a specific Owner

GetAllIncidentReportsByPart(PartNumber)

-returns all Incident Reports for a specific part

GetAllActiveTicketsByPart (PartNumber)

-returns all Active Tickets for a specific part

GetAllInactiveTicketsByReporter (PartNumber)

-returns all Inactive Tickets for a specific part

GetAllBugReportsByPart(PartNumber)

-returns all Bug Reports for a specific part

GetOwner(Ticket ID / Incident ID)

-returns the Owner of a Ticket or Incident

GetPart(Ticket ID / Incident ID)

-returns the PartNumber of a Ticket or Incident

GetDescription(Ticket ID / Incident ID / Bug ID)

-returns the Description of a Ticket, Incident or Bug

GetNewestIncident()

-returns the most recently logged Incident Report

GetOldestIncident()

-returns the oldest logged Incident Report

Load:

 In order to simulate accesses to the service, a client program will be written to

first generate Incident Reports. As the database begins to be populated it will create less

Incident Reports while executing the other web service status-changing and lookup

functions more often.

	Overview Figure
	Puchasing
	Accounting
	jiangpen-accounting.pdf
	Objects:
	Expense

	Field Type
	Invoice

	Field Type
	Check

	Field Type
	Methods:
	Accounts Payable
	Accounts Receivable
	Check Controlling

	Human Resources
	Inventory
	Sales
	mike-wood-sales.pdf
	DATA TYPES
	Product
	Customer
	Sale
	SalesLineItem
	Return
	METHODS
	Sales order processing
	CreateCustomer (Name, {Shipping,Billing}{Address, Town, Stat
	Quotations
	Invoicing
	Shipping
	Returns
	SIMULATED LOAD

	Project Management
	Manufacturing
	Deployment
	Asset Management
	Trouble Ticketing

