CS 553 Spring 2004

Web service descriptions
Table of contents

Overview Diagram

Purchasing Stan
Accounting Jiangpen
Human Resources Amit
Inventory Yufei
Sales Mike W.
Project Management Vijay
Manufacturing Scott
Deployment Mike P.
Asset management Rich P.

Trouble Ticketing John

Purchasing

Stan

Services Overview Diagram

Inventory
Y ufel

Manufacturing |
Scott

Accounting
Jiangpen

Project Management
Vijay

Y

Deployment

Mike P.

Y
Trouble

Ticketing
John

Asset Management |
Rich P.

Stan Rajan
CS 553 — Internet Services

PURCHASING
Types
PurchaseOrder

Purchasing requires keeping track of every purchase order either pending or complete.

Field XML-RPC Type
PurchaseOrderNum - int
VendorID - int
VendorPartNum - string
BuyerID - int
ShippingCode - int
OrderStatusCode - int
OrderDate - dateTime
PricePerUnit - double
QuantityOrdered - int
OrderStatus

Each order must be tracked and in a known state (completed, shipped, etc.).

Field XML-RPC Type

OrderStatusCode - int

StatusDescription - string
ShippingMethod

The shipment method of each purchase must be tracked to anticipate arrivals.

Field XML-RPC Type
ShippingCode - int
MethodDescription - string

ArrivalLocation - string

Buyer

Each purchase order must be linked with a buyer for billing and delivery purposes.

Field XML-RPC Type
BuyerID - int
DepartmentID - int
ContactName - string
ContactPhone - string

Vendor

Vendor information is necessary to track where each piece of equipment was purchased.

Field XML-RPC Type
VendorID - int

Name - string
StreetAddress - string

City - string

State - string
ContactName - string
ContactPhone - string

Return

Necessary to track the status of each return request.

Field XML-RPC Type
ReturnID - int
PurchaseOrderNum - int
ReturnDescription - string
ReturnDate - dateTime

Types needed from other services:

Department type with a unique Department ID field (int)
- Human Resources

Methods
Purchase Order Processing

CreatePurchaseOrder(VendorID, VendorPartNum, BuyerID, ShippingMethod, OrderStatus,
OrderDate, PricePerUnit, QuantityOrdered)
- Create a new purchase order. Purchase order ID is automatically generated.

CancelPurchaseOrder(PurchaseOrderNum) - cancels the specified purchase

GetVendorID(PurchaseOrderNum) - returns the VendorID
SetVendorID(PurchaseOrderNum, VendorID) - sets the VendorID

GetVendorPartNumber(PurchaseOrderNum) - returns the Vendor part number
SetVendorPartNumber(PurchaseOrderNum, VendorPartNum) - sets the Vendor part number

GetBuyerID(PurchaseOrderNum) - returns the BuyerID
SetBuyerlD(PurchaseOrderNum, BuyerID) - sets the BuyerID

GetShippingMethod(PurchaseOrderNum) - returns the shipping method code
SetShippingMethod(PurchaseOrderNum, ShippingMethod) - sets the shipping method code

GetOrderStatus(PurchaseOrderNum) - returns the order status
SetOrderStatus(PurchaseOrderNum, OrderStatus) - sets the order status

GetOrderDate(PurchaseOrderNum) - returns the purchase date
SetOrderDate(PurchaseOrderNum, OrderDate) - sets the purchase date

GetPrice(PurchaseOrderNum) - returns the purchase price per unit
SetPrice(PurchaseOrderNum, PricePerUnit) - sets the purchase price per unit

GetQuantityOrdered(PurchaseOrderNum) - returns the quantity ordered
SetQuantityOrdered(PurchaseOrderNum, QuantityOrdered) - sets the quantity ordered

DisplayPurchaseOrder(PurchaseOrderNum) - displays the specified purchase order info
DisplayAllPurchaseOrders() - displays all purchase orders

Vendors

AddVendor(Name, Street, City, State, Contact, ContactPhone) - adds a new vendor
RemoveVendor(VendorID) - removes the specified vendor

GetVendorName(VendorID) - returns the vendor name
SetVendorName(VendorID, Name) - sets the vendor name

GetVendorStreet(VendorID) - returns the vendors street address
SetVendorStreet(VendorID, StreetAddress) - sets the vendors street address

GetVendorCity(VendorID) - returns the vendors city

SetVendorCity(VendorID, City) - sets the vendors city

GetVendorState(VendorID) - returns the vendors state
SetVendorState(VendorID, State) - sets the vendors state

GetVendorContact(VendorID) - returns the vendors contant name
SetVendorContact(VendorID, ContactName) - sets the vendors contact name

GetVendorContactPhone(VendorID) - returns the vendors contant phone number
SetVendorContactPhone(VendorID, ContactPhone) - sets the vendors contact phone #

DisplayVendor(VendorID) - displays the specified vendors info
DisplayAllVendors() - displays info for all vendors

Returns

ProcessReturn(PurchaseOrderNum, ReturnDescription, ReturnDate) - process a return on the
given PO, ReturnID is automatically generated

GetReturnID(PurchaseOrderNum) - returns the ReturnlID if it is not null

GetReturnDescription(ReturnID) - returns the reason for the return
SetReturnDescription(ReturnID, ReturnDescription) - sets the reason for the return

GetReturnDate(ReturnID) - returns the return date
SetReturnDate(ReturnID, ReturnDate) - sets the return date

DisplayReturn(ReturnID) - displays the specified return info
DisplayAllReturns() - displays all return info

OrderStatus

AddOrderStatus(StatusDescription) - adds a new order status, code automatically generated
RemoveOrderStatus(OrderStatusCode) - removes the specified order status

GetOrderStatusDescription(OrderStatusCode) - returns the status description
SetOrderStatusDescription(OrderStatusCode, StatusDescription) - sets the status description

DisplayOrderStatus(OrderStatusCode) - displays specified order status info
DisplayAllOrderStatus() - displays all order status info

ShippingMethods

AddShippingMethod(StatusDescription, ArrivalLocation) - adds a new shipping method
RemoveShippingMethod(ShippingCode) - removes the specified shipping method

GetShippingMethodDescription(ShippingCode) - returns shipping description

SetShippingMethodDescription(ShippingCode, StatusDescription) - returns shipping description

GetShippingArrival(ShippingCode) - returns the arrival location
SetShippingArrival(ShippingCode, ArrivalLocation) - sets the arrival location

DisplayShippingMethod(ShippingCode) - displays specified shipping info
DisplayAllShippingMethods() - displays all shipping method info

Buyers

AddBuyer(Department, ContactName, ContactPhone) - adds a new buyer
RemoveBuyer(BuyerID) - removes the specified buyer

GetBuyerDepartment(BuyerID) - returns the buyers department
SetBuyerDepartment(BuyerID, Department) - sets the buyers department

GetBuyerContactName(BuyerID) - returns the contact name for the buyer
SetBuyerContactName(BuyerID, ContactName) - sets the contact name for the buyer

GetBuyerContactNumber(BuyerID) - returns the contact phone number for the buyer
SetBuyerContactNumber(BuyerID, ContactPhone) - sets the contact phone number for the buyer

DisplayBuyer(BuyerID) - displays specified buyer info
DisplayAllBuyers() - displays info for all buyers

Justification of Types and Methods

The purchasing types and methods used in this web service are based on the business
model found in the SAP tutorial in addition to commercial purchase order software
packages. The Buyer and Purchase types and methods are based on those used in the
Purchase Order software package by Cougar Mountain Software. Vendor and Shipping
methods were also based on this package in addition to KDI Information Systems
Support Purchase Orders documentation.

Simulated Load

The initial load of the purchasing service will be loaded from a flat file. This initial load
will be predominantly populated with completed purchase orders but will also include
new and in progress orders. A client program will simulate the daily interactions of the
purchasing service. The client program will use a flat file containing a list of method
calls and queries as input to simulate the various day to day interactions with the service.

iangpeng ang
jiangpeng.wang__rutgers.edu

CS533 — Internet Services
Proposal for eb Service # — Accounts Payable Accounts Receivable

Objects:

pense

pense represents € penses occurred during all purchases.
Assumptions:
= Amount is always paid in full (no partial payment)
= The vender specified by Vender d is the payee

n oice

= Vender object is stored by the Pu chasin S

= JIgnore late fee, etc.
Field Type
E penseld int
PONumber int
Amount double
Venderld int
Employeeld int
ScheduledDate date
PaidDate date
IsPaid Boolean
Checkld int

n oice represents invoices that are going to be sent to customers.
Assumptions:

= All payers are considered as customers

= Amount is always paid in full (no partial payment)
= The customer specified by us o er d is the payer

" uso erobjectis stored by the Sales

= JIgnore late fee, etc.

Field Type
Invoiceld nt
InvoiceNumber int
Amount double
DueDate date
PaidDate date
Customerld int
CustomerPONum int
IsPaid boolean
Reminders date
Checkld int

hec

hec represents checks that carry money.
Assumptions: Only consider the basic information of a check

Field

Checkld
CheckNumber
Amount
CheckDate
IsCustomerCheck

Methods:
ccounts Paya e

ScheduleE pense
PONumber
ScheduledDate
Amount
Verderld
Employeeld

(E penseld)

MYV

PayE pense
- E penseld
< CheckNumber

IsE pensePaid
- E penseld
& (IsPaid)

GetE pensePONumber
- E penseld
< (PONum)

GetE penseAmount
- E penseld
< (Amount)

GetE penseVenderld
- E penseld
< (Venderld)

GetE penseScheduledDate

- E penseld
<& (ScheduledDate)

GetE pensePaidDate
- E penseld
& (PaidDate)

GetE penseCheck
- E penseld

int
date
double
int

int

int

int

int
boolean

int
int

int
double

int
int

int
date

int
date

int

iangpeng ang
jiangpeng.wang__rutgers.edu

Type
int

int
double
date
boolean

< (Check)

SetE pensePONumber
- E penseld
- PONum
< void

SetE penseAmount
- E penseld
- Amount
< void

SetE penseVenderld
- E penseld
- Venderld
< void

SetE penseScheduledDate
- E penseld
- ScheduledDate
< void

SetE pensePaidDate
- E penseld
- PaidDate
< Void

ReportAllE penses
- void
< (E penseld s)

ReportE pensesOfPO
- PONum
<& (E penseld s)

ReportE pensesOfVender
- Venderld
< (E penseld s)

ReportE pensesOfEmployee
- Employeeld
< (E penseld s)

ReportAllPaidE penses
> void
< (E penseld s)

ReportAllUnpaidE penses
> void
<& (E penseld s)

DumpE penses
- E penselds
<& (E penses)

Check

int
int

int
double

int
int

int
date

int
date

int

int
int

int
int

int

int

int

int

int
E pense

iangpeng ang
jiangpeng.wang__rutgers.edu

ccounts Recei a e
Some Getters Setters are omitted
Issuelnvoice
- Customerld
- CustomerPONum
- DueDate
- Amount
< (Invoiceld)

int

int
date
double
int

ReceivePayment assuming always pay in full

- Invoiceld

- CustomerCheckNumber
- CustomerCheckDate

&< void

RemindCustomer
- Invoiceld
< void

IsInvoiceOverDue
- Invoiceld
< (IsOverDue)

IsInvoicePaid
- Invoiceld
& (IsPaid)

ReportAlllnvoices
- void
< (Invoiceld s)

ReportlnvoiceOfCustomerPO
- CustomerPONum
< (Invoiceld s)

ReportE pensesOfCustomer
- Customerld
< (Invoiceld s)

ReportAllPaidinvoices
> void
< (Invoiceld s)

ReportAllUnpaidInvoices
- void
< (Invoiceld s)

Dumplnvoices
- Invoicelds
< (Invoicess)

hec ontro ing

GetCheckInformation
- CheckNumber
< (Check)

int
int
date

int

int

Boolean

int
boolean

int

int
int

int

int

int

int

int
Invoice

int
Check

iangpeng ang
jiangpeng.wang__rutgers.edu

iangpeng ang
jlangpeng.wang _rutgers.edu

Amit Gaur
CS 553-Internet Services
Professor Martin

Process eb Service — Human Resource Management

The basic types [will model are:

mployee

This the main type which forms the basis of HR Management

Field XML RPC Type
Employee ID String
irstName String
MiddleName String
LastName String
DOB dateTime
Se String
obID int
DepartmentID int
Status 1eld boolean
epa tment

Tracks the Departments in the company

Field XML RPC Type
DepartmentID int
DepartmentName String
EmployeeList int

Jo esc iption
Keeps a list of All the ob Descriptions in the company.:PositionID is an instance of a
particular ob

Field XML RPC Type
obID int
DepartmentID int

PositionID int

Position esc iption
Describes the specific position job

Field XML RPC Type
PositionID int

PositionTitle String
SalaryGrade int

Status 1eld boolean

Sala y

Keeps track of Salary Information for Each employee

Field XML RPC Type
EmployeelD int

SalaryGrade int
SalaryAmount int

BonusPlan(earlyAmt) int

Hi in P omotions
Keeps Hiring and Promotion Information for Each Employee

Field XML RPC Type
EmployeelD int
HireDate dateTime
PromotionDates dateTime
ReleaseDate dateTime

enefits
Keeps tracks of Benefits for Each Employee
Field XML RPC Type
EmployeelD int
SavingsPlan String
MedicalPlan String

DentalPlan String

METHODS

AddEmployee(EmployeelD, irstName,MiddleName,LastName,DOB,Se , obID,
SalaryAmount,BonusPlan,HireDate,SavingsPlan,MedicalPlan,DentalPlan)-used to add
employees to the system

DelEmployee(EmployeelD,ReleaseDate)-removes employee from the system:sets
Status ield to false

ListEmployees()-gives the list of employees

AddDepartment(DepartmentID,DepartmentName)-Add a department to the system
RemoveDepartment(DepartmentID)-removes a department

ListDepartments()-list all the departments

ListEmpDepartment(DepartmentID)-list employees working in a particular department

Add ob(obID,PositionID,PositionTitle,Status,DepartmentID,SalaryGrade)-add a job to
the system

Remove ob(obID)-remove a job from the system

List obs()-list the current active jobs

Open obs()-Lists open positions

ChangeSalary(EmployeelD,SalaryAmount,Bonus)-change the salary of a particular
employee
ListSalaries()-generate a list of all employees with their salaries

AddPromotions(EmployeelD,PromoDate,NewSalary)-Assign a promotion
ListPromotions(EmployeelD)-List the Promotion dates for a particular emplpyee
ListHireDate(EmployeelD)-List the Hire Date for a particular employee

ChangeBenefits(EmployeelD,Savings,Medical,Dental)-change the benefit plan
ListBenefits(EmployeelD)-list benefits for a particular employee

SIMULATI N

or populating jobs and employees to the system I will first generate a list of jobs and
assign these jobs to a list of Employees.
I plan to use flat files to store my data structures
After there are sufficient employees in the system, the program will randomly call one of
the methods to
1)change employee information: change job description,change salary information,change
benefits information
i1)change job information:either to add new jobs, remove jobs from the system

In order to keep payroll salary information for each employee I will need to interact with
the Payroll webservice, to keep Department information I would need to track changes
such as creation deletion of departments in the company

CS 553 Spring 2004

Web service descriptions
Table of contents

Overview Diagram

Purchasing Stan
Accounting Jiangpen
Human Resources Amit
Inventory Yufei
Sales Mike W.
Project Management Vijay
Manufacturing Scott
Deployment Mike P.
Asset management Rich P.

Trouble Ticketing John

CS553: Inventory service design

Y ufei Pan
I nteraction with other services:
Purchase Manufacturing Sales
Inventory
Deployment
Data Types:
Product Type
Field XML-RPC Type
PartNum string
Name string
Description string
Field specification:
PartNum: a unique identification number standing for the
product type
Name: a string giving the human readable name for the type
Description: a string describing the product-specific properties
Productl tem

Field XML-RPC Type
SerialNum int
BarCode string

PartNum string
LotID int
LocationlD int

Field specification:
SerialNum: a unique serial number for a product item.
BarCode: a unique bar code for a product item
PartNum: the ID of the type of the product item
LocationlD: the id of the location where item is stored
currently. -1 means that item is on the way.

ltemHistoryEntry

L ocation

Field XML-RPC Type
SerialNum int

Action string
LocationlD int

Time dateTime

Field specification:
SerialNum: the serial number of item.
Action: the defined action is“REMOVE” and “ADD”.
LocationlID: the id of location involved.
Time: the time when action is taken

Field XML-RPC Type
LotID int
I[temArray array of string

Field specification:
LotID: theid of lot, which is a group of items.
IltemArray: the serial numbers of itemsin the lot

Field XML-RPC
LocationID int
Site int
Building string
Floor string
Room string

Field specification
| just keep the same definition of location used in Asset Service.

M ethods:

BarCoding
Boolean assignBarCode(string SerialNum, string barCode)
string queryBarCode(string Serial Num)
int gueryltemSN(string barcode)
War ehouse M anagement
Boolean removeltem(string SerialNum,
dataTime time)
Boolean storeltem(string SerialNum,
int locationID,
dateTime time)
Boolean transferToDeployment(string SerialNum,
dataTime time)
int gueryL ocation(string Serial Num)

I[temHistory[] queryltemHistory(string SerialNum)

Lotstracking

int queryLot(string SerialNum)
Boolean assignLot(string SerialNum, Lot lot)
int[] getltemsinLot(Lot lot)

Typetracking
string gueryProduct Type(string Serial Num)

Quantity tracking
int gueryQuantity(string PartNum)

Indirection query
ProductType getProductType(string PartNum)
Productltem getProductltem(string SerialNum)
Lot getLot(int lotID)
Location getLocation(int locationl D)

Junk Query
int[] getAllltems()
int[] getAll Types()
int[] getAllLots()
int[] getL ocations()

Simulated load generation:

| will generate about 100 locations, 100 production types, 1,000 - 10,000 items for
each type. Also, | will execute about 2 random movements (from one location to
another location) for each item.

Michael ood
CS 553 eb Service Proposal

My project is to develop a Sales Management package for ubar, Inc. Here are the data types and

methods I propose.
ATAT P S

P oduct

The system needs to know about ubar s products so that sales reps can enter orders without
having to fill in all the details. The product information maintained here will likely be different
from that maintained by the Inventory and Manufacturing services.

PartNumber
ProductLinelD
Description

BasePrice
DiscountCodes
DiscountRates
SubstitutePartNumber
IsActive

Custome

string

int

string -- the product name

double

array of strings

array of doubles

string -- what to substitute if this item is out of stock
boolean-- set false for discontinued items

e must store the customer s address for shipping and returns purposes. The status value tells us
if a contract job is ongoing, if the customer is no longer valid, etc.

CustomerID
CustomerName
CustomerPhone
BillingStreetAddress
BillingTown
BillingState

Billing ip
ShippingStreetAddress
ShippingTown
ShippingState
Shipping ip
AccountBalance
Status

Sale

int
string
string
string
string
string
string
string
string
string
int
double -- sales or accounts receivable
string

The Sa e object comprises the information a sales rep needs in order to fill out an invoice and

complete a sale.

ReferenceNo
CustomerID
SalespersonlD
DateAndTime
Lineltems
SalesTa

int

int

string

dateTime.iso

array of SalesLineltem objects
double

ShippingCharge double

DeliveryTa double -- related to the customer s location
Total double
AmountPaid double
Status Boolean -- shipped yet (N)
TrackingNo int
SalesLineltem
Bi ing a e applies to contract jobs, in which case wuan i y will be the hours billed.
PartNumber string
SerialNumbers array of string
BillingRate double
HoursBilled double
DiscountCode string
SoftwareKey string
Retu n

Keeps a record of all merchandise returns ubar s decision to accept or reject the return (based
on condition, etc.) and the amount credited to the customer s account.

M TH

Sales o

ReferenceNo int -- local key
SalesReferenceNo int -- foreign key into the Sales database
PartNumber string
QuantityReturned array of SerialNums
DateReturned dateTime.iso
IsAccepted array of Boolean
AmountCredited array of double
Comments string
ReplacementReferenceNo string

S
de p ocessin

CreateOrder (customerlID, salesperson) — sets up a new order invoice for the sales rep.

AddItemToOrder (SalesLineltem) — adds a line item to an invoice. 1ills in product
description, software key (if applicable)

Remove romOrder (productID, quantity) — deletes a line item from an invoice

PostOrder () — Creates and returns a ReferenceNo for this order. Posts the order invoice
so that the warehouse can fulfill it and it can be shipped.

DisplayOrder (ReferenceNo) — Displays a simple list of the sales line items, ta , total,
and customer name 1D

CreateLineltem(productID, quantity) initiali es a new SalesLineltem object

Get SetltemQuantity(SalesLineltem)

Get SetSoftwareKey(SalesLilneltem)

SetDiscountCode(SalesLineltem)

CalculateTa (Sale object), CalculateTotal(Sale object)

DisplayBalance (CustomerID) — returns the balance on an account

CreateProduct (description, price, discount rate) — adds a new product to the database
creates and returns a product ID

Get Set product attribute (productID, attributeValue) — for those attributes that should be
readable writable by a salesperson

DiscontinueProduct (productID)

DisplayProduct (productID) — Displays the product information maintained in the sales
database

ProductName ID(productID), ProductID Name(description)

CreateCustomer (Name, Shipping,Billing Address, Town, State, ip)—adds a new
customer to the database

Get Set customer attribute (CustomerlD, attributeValue) — for those attributes that
should be readable writable by a salesperson

DeactivateCustomer (CustomerID) — marks a customer as no longer valid active

DisplayCustomerHistory (CustomerID, Date) — shows the purchases on record for this
customer since da e

DisplayCustomer(CustomerID) — Displays the customer information maintained in the
sales database

CustomerName ID(), CustomerID Name()

ApplyCharge(CustomerID, Amount) — returns the account balance after the charge

ApplyCredit(CustomerID, Amount) — returns the account balance after the credit

uotations
GetPriceOrRate (ProductID, discountCode, bool includeTa) — returns the full or
discounted price of an item, or the rate for contract work

In oicin
Invoices and orders display different collections of sale information in different ways
Displaylnvoice (ReferenceNo) — displays the full invoice pertaining to a specific order

Shippin
Grabltem (productID, quantity) — obtains the item needed for shipping and decrements
the inventory obtains substitute items if necessary.
SetShippingCost (ReferenceNo) — establishes the cost of shipping the order
GetShippingCost (ReferenceNo) — returns the shipping cost for the order
PostShipment (ReferenceNo) — informs the sales database that a shipment has been
performed by recording and returning a tracking number

Retu ns
AddReturn (SalesReferenceNo, Comments) — adds a return record to the database
AcceptReturn (bool IsAccepted, double AmountCredited) — marks return as
accepted rejected, credits the customer s account
RunningTotalReturns(Date) — returns the total value of all returns accepted since da e

SIMULAT L A

A temporary database of customers and products will be set up by a client program that calls the
Create() methods several times over. Then the actual testing will occur as the client simulates the
real-world activity of taking and fulfilling orders, making shipments, and accepting returns and
synchroni ing these transactions with the Inventory Service. The client will invoke some logical
sequence of these operations, and before terminating it will call DisplayCustomerHistory() on
each customer RunningTotalSales() and RunningTotalReturns() for purposes of auditing and
verification. I will also obtain statistics from Inventory Management to ensure Sales and
Inventory are properly synchroni ed.

Vijay Lakshminarayanan
mailvj@paul
CS 553 — Internet Services
Dr. Richard Martin

Project — Stage I Description
Topic: Project Management

Based on my understanding of the topic and the ways to interpret it, I chose to break it down into
2 broad components —
1) Project Management is often used to track the progress of and manage the resources (i.e.
people, equipment, subcontractors, etc.) used in complex projects.
2) From a customer’s perspective, it involves preparing bills (including pricing) and
tracking orders.

This web service may interact with Asset management (which may place asset requests),
Purchasing (where the asset requests will be checked and redirected), and HR(place staffing
requests)

These are the various types I feel the need for, as I make an initial design of the system:

Asset Requirements

This type would get information from Asset Management when the need is felt for asset
purchases and the information would be passed on to the Purchases Department

asset req id int

asset_type string

quantity int
requirements_text string
date required by datetime

Department
Various departments in the company that can place requests for staff

department id string

department name string
requirement _text string
requirement_num int

Staffing Requirements

This type would get information regarding staffing requirements from any department and the
matter would be referred to HR.

staff req id int

department id string

requirements_text string
number_required int

date required by datetime
Bill

Get order information and generate a bill for customer.

CustomerID string
Purchase Order Number int

All classes/tables created by Stan Rajan for Purchasing will be crucial to my implementation.
Maybe, the ‘return products’ implementation is better suited in my project — since Project
Management deals with customer interaction and status checking.

//in Customer table/entity, “Boolean payment received” to be included for the purposes of my
project.

Methods:

submit_asset req(type, number, date, notes)
submit_staffing req(dept, number, date, notes)
send_asset req(asset_req_id)

remove_staffing req(asset req id)
remove_staffing req(staff req id)
send_staffing req(staff req id)
create_bill(cust_id, order id)

update status(order id, status_text, shipping_date, delivery date)
create_return(order id, return_reason, date)
track return(return_id)
credit_payment(return_id)

Simulated Load

A program would create a simulated system with a bunch of customers, orders, and departments.
Then, the asset management department will place various asset requests, various other
departments will place many staffing requests, the status of various orders would be updated, bills
generated, customer tracking requests placed, and the ability of the web service to handle such
multiple simultaneous requests correctly will be tested.

Scott Battaglia
CS553 — Internet Services
Professor Richard Martin
February 18, 2004
TYPES:
Bill of Material

This type would represent the product and the parts that make up the product in the manufacturing process.

Field XML-RPC Type
Id int

Product Name String

PartNum String

Parts Array of ints

Engineering Change Notice

This would represent an Engineering Change Notice request.

Field XML-RPC Type

Id int

Product Name String

PartNum String

partChanges array of structs of ids
GenericPart

This represents the common part needed (i.e. screw but not say a screw by Home Depot).

Field XML-RPC Type
1d int

Amount int

Name String

Vendor

This represents the manufacturer of the specific part.

Field XML-RPC Type
Name String

vendorID int

Address String

State String

Zip Code String

City String

Contact Name String
Contact Number String
Product

This represents the product type (i.e. Temperature Sensor).

Field XML-RPC Type
Id int

Name String
ProductInstance

This represents a specific product instance, i.e. a specific Temperate Sensor

Field XML-RPC Type

Parts array of vendorPartNum
SerialNumber String
ManufacturedDate dateTime.is08601
Product Name String

Part Number String

SpecificPart

This represents a specific part type made by a manufacturer.

Field XML-RPC Type
Id int

Vendor ID int
VendorPartNum String

Cost double

Name String

Amount int

public interface InventoryManager
{
public Collection getOutOfStockParts();
public Collection getLowStockParts();
public Collection getPartsWithStockLessThan(int amount);
public Collection getPartsWithStockGreaterThan(int amount);
public Collection getSpecificParts(int id);
public int incrementPartAmount(String partld, int amount)
throws MaximumAmountException;
public int decrementPartAmount(String partld, int amount)
throws MinimumAmountException;
public GenericPart addPartType(int part_id);
public GenericPart addSpecificPart(String partld, int mid, double cost, String name, int count);
public SpecificPart updateSpecificPartCost(String partld, double cost);
public boolean removeSpecificPart(String partld);
public boolean removeGenericPart(int id);
public Collection getManufacturers();
public Manufacturer ManufacturerByld(int id);
public Collection getPartsByManufacturer(int mid);
public double getAveragePartPrice(int pid);
public double[] getPartPriceHistory(String partld);
public double getAverageProductCost(int bom);

}

NOTE: The InventoryManager will be required to interface with the Purchasing Service

public interface ManufacturingManager
{
public ProductInstance buildSensor(String productID)
throws NotEnoughMaterialsException;
public Collection buildSensors(String productID, int amount)
throws NotEnoughMaterialsException;
public Collection buildSesnsorsToStock(int id);
public ProductInstance increaseStage(String serialNumber)
throws FinishedProductException;
public Collection increaseStage(Collection collection);
public boolean updateBillOfMaterialsBasedOnECN(int nid);

}

NOTE: The ManufacturingManager will most likely need to talk with the Sales to determine how much product to
make.

public interface MaterialRequirementsPlanningManager

{
public Collection getListOfRecommendedPartsToReOrder();

public void addProductToMasterProductionSchedule(Product product, int quantity, Date estimatedStartDate);

public void removeProductFromMasterProductionSchedule(Product product, Date estimatedStartDate);

}

Note: There will also be other methods to do things such as addBillOfMaterial, etc. that will essentially be the data
entry into the database.

Simulated Load

Data will be entered in to the database. This will either be done using a script to enter directly into the database, or via
the methods provided. A program will then be created that will simulate building up an inventory of parts and then
continually building sensors and updating parts via simulation of both build-to-stock and build-to-order. This should
simulate the day-to-day build-up and use of parts as well as the creation of new products. At the end the reporting
methods can be used to see what was created and used.

Michael Pagliorola
Internet Services

A deployment web service, as researched, is best be described as unifying system of post
inventory management and support services. The methods described below should be
adiquite to allow for the support service to get information on individual, and the over
al, states of the deployed products. As such this service should be fed by the sales and
trouble ticket webservices in order to keep the information up to date.

Objects:

Product

Field

Product Name
Part Number

Serial Number
Customer ID
Software Version
Operational Status
Recall Notice
Manufacture Date
End of Mantenence
End of Life

Customer

Field

Customer 1D
Customer Name
Street Address
City

State

Postal Code
Country
Contact Name
Contact Email
Contact Phone Number

Software

Field

Product Name
Customer 1D
Software Version
Update Available
Recall Notice

End of Mantenence
End of Life

XML-RPC Type
- String

- String

- String

- Int

- String

- boolean
- boolean
- dateTime
- dateTime
- dateTime

XML-RPC Type
- Int

- String
- String
- String
- String
- String
- String
- String
- String
- String

XML-RPC Type
- String

- Int

- String

- Boolean

- Boolean

- dateTime

- dateTime

Methods:

Product

addProduct(Product, Customer, dateTime)
removeProduct(serialNumber)
updateProductStatus(serialNumber, operational Status)
getProductStatus(serialNumber)

Software
addSoftware(Software, Customer, dateTime)
removeSoftware(productName, customerlD)
updateSoftwareAvailable(productName)
getSoftwareAvailable(productName)

* Calls support services to check if an update is available
updateSoftwareVersion(productName, softwareVersion);

Shared
getRecall(productName);

* Calls support services to check for a recall
updateRecall(String productName, Boolean status)

- Announce/cancel recall of specified product
getEndOfMantenence(productName, customer|D);
updateMantence(productName, CustomerlD)
getEndOfLife(String productName);

* Calls support service to check for EndofLife
updateEndOfLife(productName, dateTime)

Informative Queries
getTotalDeployed(productName, dateTime, dateTime)
- Returns the total amount of product deployed between a
given date
getTotal Customers(customerlD, productName);
- Returns the total amount of customers with the specified
product
getTotal FailedProducts(productName);
getFailedProducts(productName, dateTime, dateTime)
- Returns product(s) that failed during the time period
getCustomersByProducts(productName);
- Returns all products a customer has
getProductsByCustomer(customerlD);
- Returns all customers that have a product

Simulated L oad:

A basic main program will randomly create sales and service events then update
the system appropriately while also dumping it's output to alog file for verification upon
completion. After a given amount of time the main program will then ask for statics
from the serivice which can be checked against the output file to ensure proper
execution.

Richard Psota
CS 553 — Internet Services
Professor Martin

For my job, one of my projects is the deployment of an enter prise asset management system for my
division. Based on my familiarity with the system and the data stored in the system, | put together the

following types and methods.
TYPES.

Employee

The asset tracking module would need to track some basic information on employees since it is necessary

to know who owns the equipment.

Field

Employee ID

First Name

Last Name
Department Number

Asset

XML-RPC Type
- string

- string

- string

-int

The asset tracking module would need to track detailed information on all of Fubar’s assets. Thisincludes
information related to the purchase, installation, and disposal of the assets.

Field

Asset ID

Asset Description
Asset Classification
Mode #

Serial #

Owner — Employee ID
Department Number
Purchase Date
Purchase Price
Installation Date
Location ID

Vendor ID

Disposal Date
Status

Vendor

XML-RPC Type
-int

- string

- string

- string

- string
-int

-int

- dateTime
- double

- dateTime
-int

-int

- dateTime
- string

The asset tracking module would need to track some basic information on vendors sinceiit is necessary to

know who sold the equipment to Fubar.

Field

Vendor ID

Vendor Name

Vendor Street Address
Vendor Town

Vendor State

Vendor Country

Vendor Contact

Vendor Contact Phone #

XML-RPC Type
-int

- string

- string

- string

- string

- string

- string

- string

Location

The asset tracking module would need to track the exact location of the equipment. In order to achieve this
level of detail, the location type would be required.

Field XML-RPC Type

Location ID -int

Site - string

Building - string

Floor - string

Room - string
Department

The asset tracking module would need to track some basic information on the departments within the
company.

Field XML-RPC Type

Department Number -int

Department Name - string
Depreciation

The asset tracking module would need to track important values to be used in the depreciation calculations.

Fied XML-RPC Type
Asset Classification - string
Depreciation Percentage per year - double
Expected lifetimein years -int

Methods

Detailed Tracking

AddEmployee(FirstName,L astName,Employeel D, DepartmentNumber) — Adds a new employee to the
employee table.

RemoveEmpl oyee(Employeel D) — Removes an employee from the employee table.

GetAllEmployees() — Returns an iterator to access all employees.

GetAllAssets() — Returns an iterator to access all assets.

AddVendor(Name, StreetAddress, Town, State, Country,Contact, ContactPhone) — Adds a new vendor to the
vendor table.

RemoveV endor(Vendorl D) — Removes the vendor from the vendor table.

GetAllVendors() — Returns an iterator to access all vendors.

AddL ocation(Site,Building,Floor,Room) — Adds a new location to the location table.

Removel ocation(Locationl D) — Removes the location from the location table.

GetAllLocations() — Returns an iterator to access all locations.
AddDepartment(DepartmentNumber,DepartmentName) — Adds a new department to the department table.
RemoveDepartment(DepartmentNumber) — Removes a department from the department table.
GetAllDepartments() — Returns an iterator to access all departments.

AddDepreciationV alue(Class,Percentage, Lifetime) — Adds a new depreciation value to the table.
RemoveDepreciationV a ue(Class,Percentage, Lifetime) — Removes the depreciation value from the table.
GetAllDepreciationVaues() — Returns an iterator to access all depreciation values.

CreateA sset(Description,Classification,Employeel D,PurchasePrice,PurchaseDate, Department,L ocationI D,
VendorID) — Create a new asset record with the required fields provided.

GetAssetDescription(Assetl D) — returns a description of the asset with the given asset ID
SetAssetDescription(Assetl D,Description) — sets the description of the asset
GetAssetClassification(Assetl D) — returns the classification of the asset with the given asset ID
SetAssetClassification(Assetl D,Classification) — sets the classification of the asset

GetModel Number (A ssetl D) — returns the model number of the asset with the given asset ID

SetModel Number(Assetl D,ModelNumber) — sets the model number of the asset
GetSerialNumber(Asset| D) — returns the serial number of the asset with the given asset ID

SetSerial Number(Asset| D,Serial Number) — sets the serial number of the asset

GetPurchaseDate(Assetl D) — returns the purchase date of the asset

SetPurchaseDate(Assetl D,PurchaseDate) — sets the purchase date of the asset

GetPurchasePrice(Assetl D) — returns the purchase price of the asset

SetPurchasePrice(Assetl D,PurchasePrice) — sets the purchase price of the asset
GetlInstallationDate(Assetl D) — returns the installation date of the asset

SetlnstallationDate(Assetl D, I nstallationDate) — sets the installation date of the asset

GetL ocationl D(Site,Building,Floor,Room) — returns the location id for the entered location
GetLocation(Asset| D) —returns the Site + “-* + Building + “-* + Floor + “-“ + Room of the given asset ID
Setl ocation(Assetl D,Locationl D) — sets the location id of the asset

GetVendorld(VendorName) — returns the vendor id for the given vendor name

GetVendor(Assetl D) — returns the Vendor Name for the given asset

SetVendor(AssetI D,Vendorl D) — sets the vendor id for the given asset

Depreciation and Gain/Loss Detail

CalculateDepreciation(AssetI D) — returns the depreciated value for the given asset using the depreciation
percentages in the Depreciation table.

RunningTotal () — returns the total value of assets that have not been disposed

Ownership

GetEmployeel D(FirstName,LastName) — returns the employee identifier for the given employee
GetOwnerName(AssetI D) — returns the first and last name of the employee that owns the asset
SetOwnerName(Assetl D,Employeel D) — sets the employee id for the owner of the asset
GetDepartment(Assetl D) —returns the department that owns the asset

SetDepartment(Assetl D,DepartmentNumber) — sets the department that owns the asset

Disposal

GetCurrentStatus(Assetl D) — returns the current status of the asset

SetCurrentStatus(Assetl D, Status) — sets the current status of the asset (In Service, Broken, Disposed)
GetDisposal Date(Assetl D) — returns the date that the asset was disposed

DisposeOfAsset(Assetl D,Disposal Date) — sets the disposal date of the asset to Disposal Date and updates
the status to disposed

Simulated Load

There will be amain client program that initially generates new assets. Thiswill simulate the initial
population of assets into the asset management system. After there are sufficient assetsin the system, the
program will randomly choose different get and set methods to represent daily asset operations. Thiswill
simulate the day to day queries and updates that would take place in Fubar. During thistime, new assets
would be sporadically added and other items would be disposed. The function calls would allow for the
correct system operation to be verified. At the end of the program, the RunningTotal () function would be
run to determine the total value of Fubar’s assets.

ohn rancisco
Internet Services
Rich Martin
ebruary,

T ou le Tic etin e Se iceRe ised API

Types
There are three data types in the Trouble Ticketing API (TT-API) the Trouble
Ticket (TT), Incident Report (IR), and Bug Report (BR).

T ou le Tic et

Attribute: ML Type: Description:

Ticket ID dateTime.iso Time ticket was opened, primary key
Owner string Owner of the faulty product
PartNumber string Part # of faulty product

CloseDate dateTime.iso Time ticket is closed

Closer string Person who closes the ticket

Status int Determines status of ticket
Description string Description of problem

Lo ical Tic et Types:
Pending Ticket: Newly created TT Status -

- newly created with little or no Incident Reports assigned to it

Trouble Ticket: Active TT Status

- complete and active Ticket

Closed Ticket: Inactive TT Status

- a Ticket for a problem that is no longer an issue

Incident Repo t

Attribute:
Ticket ID
Incident ID
Description
SerialNumber
PartNumber
Owner

Live

u Repo t
Attribute:
Bug ID
PartNumber
SerialNumber
Description

orkaround

Methods

ML Type:

dateTime.iso
dateTime.iso
string
string
string
string

boolean

ML Type:

dateTime.iso
string
string
string

string

Description:
Ticket this IR is associated with

Time this IR was generated, primary key
Description of the problem

Serial # version of the faulty product
Part # of the faulty product

Owner of faulty product

True if product is still afield

Description:

Time this BR was created

Part # of buggy product

Serial # of product bug was initially found in
Description of bug

orkaround, if any, for this bug

CreateIncidentReport(Owner, ProductNumber, SerialNumber, Description)

-create a new Incident Report Ticket ID and Incident ID are set automatically

CreateTicket(Owner, ProductNumber, Description)

-create a new Trouble Ticket Ticket ID and Status are set automatically

OpenTicket(Ticket ID)

-opens a Pending or Closed Ticket and makes it an Active Ticket

CloseTicket(Ticket ID, Closer)

-closes an Active Ticket and makes it an Inactive Ticket

DeleteTicket(Ticket ID)

-removes an Inactive Ticket from the system

Deletelncident(Incident ID)

-removes an Incident Report from the system that either is not associated with a Ticket,
or whose Ticket has been deleted

DeleteBug(Bug ID)

-removes a Bug Report from the system

ReturnProduct(SerialNumber)

-updates all Incident Reports to reflect returning of product
GetAllLivelncidents()

-returns the Incident IDs of all Incident Reports for products in the field
GetAllDeadIncidents()

-returns the Incident IDs of all Incident Reports for products recalled or returned
IsLive(IncidentID)

-returns true if the product is still in the field, false if not
CreateBugReport(PartNumber, SerialNumber, Description, orkaround)
-creates a new Bug Report Bug ID is set automatically
MakeBugReport(Incident ID, orkaround)

-makes a Bug Report out of the Incident Report specified
SetIncidentTicketID(Incident ID)

-set the Ticket ID that an Incident Report belongs to
GetIncidentTicketID(Incident ID)

-returns the Ticket ID that an Incident Report belongs to

GetAll()

-returns all Tickets and Reports

GetAll(Ticket ID, Ticket ID)

-returns an array of all Tickets for a date range

GetTicket(Ticket ID)

-returns Ticket

GetAllBugs()

-returns Tickets IDs of all Bug Reports

GetAlllncidentReports()

-returns all Incident Reports Ticket IDs

GetAllActiveTickets()

-returns all Active Tickets Ticket IDs

GetAlllnactiveTickets()

-returns all Inactive Tickets Ticket IDs
GetAllActiveTickets(Ticket ID, Ticket ID)

-returns all Active Tickets for a date range
GetAlllnactiveTickets(Ticket ID, Ticket ID)

-returns all Inactive Tickets for a date range
GetAllBugReports(Bug ID, Bug ID)

-returns all Bug Reports for a date range
GetAllIncidentReports(Incident ID, Incident ID)

-returns all Incident Reports for a date range
GetAlllncidentReportsByOwner(Owner)

-returns the Incident IDs of all Incident Reports for a specific Owner
GetAllActiveTicketsByOwner(Owner)

-returns the Tickets IDs of all Active Tickets for a specific Owner
GetAlllnactiveTicketsByOwner(Owner)

-returns the Tickets IDs of all Inactive Tickets for a specific Owner
GetAlllncidentReportsByOwner(Owner)

-returns the Incident IDs of all Incident Reports for a specific Owner
GetAlllncidentReportsByPart(PartNumber)

-returns the Tickets IDs of all Incident Reports for a specific part
GetAllActiveTicketsByPaty (PartNumber)

-returns the Tickets IDs of all Active Tickets for a specific part
GetAlllnactiveTicketsByReporter (PartNumber)

-returns the Tickets IDs of all Inactive Tickets for a specific part
GetAllBugReportsByPart(PartNumber)

-returns the Tickets IDs of all Bug Reports for a specific part
GetOwner(Ticket ID Incident ID)

-returns the Owner of a Ticket or Incident

GetPart(Ticket ID Incident ID)

-returns the PartNumber of a Ticket or Incident
GetDescription(Ticket ID)

-returns the Description of a Ticket, Incident or Bug
GetNewestIncident()

-returns the most recently logged Incident Report
GetOldestIncident()

-returns the oldest logged Incident Report

Load

In order to simulate accesses to the service, a client program will be written to
first generate Incident Reports. As the database begins to be populated it will create less
Incident Reports while e ecuting the other web service status-changing and lookup

functions more often.

	Overview Figure
	Puchasing
	Accounting
	jiangpen-accounting.pdf
	Objects:
	Expense

	Field Type
	Invoice

	Field Type
	Check

	Field Type
	Methods:
	Accounts Payable
	Accounts Receivable
	Check Controlling

	Human Resources
	Inventory
	Sales
	mike-wood-sales.pdf
	DATA TYPES
	Product
	Customer
	Sale
	SalesLineItem
	Return
	METHODS
	Sales order processing
	CreateCustomer (Name, {Shipping,Billing}{Address, Town, Stat
	Quotations
	Invoicing
	Shipping
	Returns
	SIMULATED LOAD

	Project Management
	Manufacturing
	Deployment
	Asset Management
	Trouble Ticketing

