
Performance Scalability of EJB
Applications

Emmanuel Cechet, Julie Marquerite, Willy
Zwaenepoel (Rice University)

Presented by:
Vijay Lakshminarayanan



EJB

• Enterprise JavaBeans (EJB) technology is the server-
side component architecture for the Java 2 Platform,
Enterprise Edition (J2EE) platform. EJB technology
enables rapid and simplified development of distributed,
transactional, secure and portable applications based on
Java technology.

• Enterprise application developers were increasingly
employing component-based software development
techniques, which enable them to reduce their time to
market and improve their software quality.

• Growing trend toward "componentization"



EJB

• EJB provides a number of services like DB access (JDBC),
transactions (JTA), messaging (JMS), naming (JNDI), and
management support (JMX).

• EJB server manages one or more ‘container’ – container
responsible for providing component pooling and lifecycle
management, client session management, database connection
pooling, persistence, transaction management, authentication, and
access control.

• 2 types of EJB – entity beans (maps data stored in the DB, one
bean instance per table row), and session beans (stateless for
temporary operations or stateful for temporary objects)

• Persistence maintained either in the bean – BMP (embed SQL in
the bean code) or in the container – CMP (mapping between bean
instance and DB column).



Design Alternatives
Session Beans

• Use session beans to implement business logic,
leaving only presentation logic in servlets

• Connection pooling and transaction
management by EJB server, greatly simplifying
the servlets code where connection pooling may
have to be manually coded.

• Ideal for short-term conversations between
multiple clients and a server – store client state
in stateful session beans.



Entity Beans CMP

• Extract Data Access Code from servlets
and move to entity beans.

• Business logic in the servlets invoke
methods on entity beans that map the
data stored in the DB.

• Management of persistent identity – where
many clients will look up data over a long
period of time.



Entity beans BMP

• DAO separation, as before
• With BMP, SQL queries have to be hand

coded in beans; while with CMP, SQL
queries generated by the EJB container.

• In both cases, stateless beans to execute
complex joins.

• Two different versions to track difference
in persistence maintenance cost at
container and at bean level.



Session Facade

• Stateless beans as a façade that abstract
the entity components.

• Reduces number of business objects
exposed over the network.

• Calls between façade and entity beans are
local to the EJB server.



EJB 2.0 local interfaces

• EJB 2.0 optimizes intra-JVM calls to
communicate between the entity beans and
façade (in EJB 1.x, RMI is employed to
communicate between them)

• Entity beans with a local interface cannot be
called remotely, only session façade beans have
a remote interface that is exposed to servlets.

• Interaction between session and entity beans
therefore, bypass the communication layers in
EJB 2.0.



Container

• Container provides EJB servives to a
particular EJB.

• Interface between client and the bean.
• Client only interacts with home and

component interfaces provided by
Container, and container forwards the call
to the appropriate bean.

• Beans accessed through container-
generated classes.



Container design

• Pre-compiled approach – container generates custom
implementations of the home and component interfaces
– call appropriate method of the bean instance directly.
More popular approach.
Resulting classes available to client by way of the class-
path or the ejb-jar file.

• Dynamic proxy based container – generate home and
component interfaces at runtime by using Java
Reflection.
Map method signatures to appropriate implementations
or locate bean, given the name of the class.



Implementation

• RUBiS (Rice
University Bidding
System) – auction site
like eBay.

• 2 workload mixes –
browsing mix (read-
only) and bidding mix
(15% read-write)



Implementation Key-Points

• Both EB and servlets version use servlet for user
authentication. Business logic done by servlets.

• All other implementations, business logic moved from
servlets to session beans and user authentication done
in beans.

• Each bean requires 3 classes – home interface, remote
interface, and the bean implementation.

• Entity beans provide a large number of getter-setter
methods.

• Remote entity bean access not permitted in EJB 2.0
implementation.

• EJB’s are easy to write, but makes code very verbose,
because the number of beans can become very large.



Experimental Results



Summarized Results



Key Points

• Session beans gives best throughput.
• DAO separation with EB gives least scalable resulsts. Reason: Too

many remote accesses from servlets. CMP marginally better than
BMP.

• Reflection overhead evident in session façade implementations.JDK
1.4 decreases Reflection costs, but increasing container cost,
resulting in not much better performance.

• JOnAS-Jeremie – pre-compiled container classes with optimized
communication layer.

• EJB 2.0 local interfaces performs much better than EJB 1.x session
facades.

• Interestingly, bean code written by programmer represents abt 2%
of execution time. Application implementation method and
middleware design have greatest impact of performance.



Summary

• Stateless session beans with BMP, coupled with efficient
communication layer offers performance comparable to servlets.

• EB impose row-level access to DB – lowers performance.
• Container design has no significant influence on session beans,

because communication costs dominate, but has a direct impact on
performance with EB.

• Dynamic proxy approach has large overhead. Therefore, pre-
compiled approach – better scalability.

• Container design and local communication cost – determining
factors for scalability of session façade.

• Reflection cost increases with number of beans, quickly resulting in
bottleneck.

• EJB 2.0 allow RMI-based configurations to scale better and avoid
communication layers for local communication.


