A Comparison of Software Architectures for E-Business Applications

Emmanuel Cecchet, Anupam Chanda, Sameh Elnikety, Juli Marguerite and Willy Zwaenepoel Rice University – Department of Computer Science

resented By: Stan Rajar

Dynamic Web Content

- Front-end Web server
- Executes the application logic
- Returns the page as an HTTP response to the client
- Back-end database
- Stores the content of the site

Application Logic

- Provides access to the content
- Issues queries to the database
- Formats the results as an HTML page

Application Logic

- Various Forms
 - Scripting Languages
 - A Module in the Apache Web server
 - Microsoft Active Server Pages
 - Separate Java virtual machine

Application Logic

PHP

- Scripting language with embedded SQL queries
- Java Servlets
- Allow embedded SQL Queries in Java code
- *In both cases, the application programmer writes the SQL Queries

Application Logic

- Java Servlets with Enterprise Java Beans
- Beans represent items in the database
- Java servlets call bean methods
- Bean methods issue SQL Queries to the database

Application Logic

Java Servlets with Enterprise Java Beans

- Provides a level of indirection between the application and the database
- Servlets do not have to be located on the Web Server
- Can be located on the database machine or on an altogether separate machine

PHP (Hypertext Preprocessor)

Scripting Language

- An extension of the HTML language
- Can be directly embedded into an HTML page
- Executed within a Web server process
- No inter-process communication overhead
- HTTP invokes PHP interpreter that executes the script
 - _ Requests to the database performed using ad hoc interface

Java HTTP Servlets

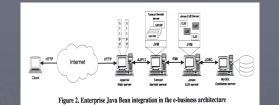
Java class that can be dynamically loaded by a servlet server

- Runs in a Java Virtual Machine
- Server invokes the servlet
- _ Inter-process communication
- _ Concurrent requests handled by separate threads
- Servlets access database using standard JDBC interface

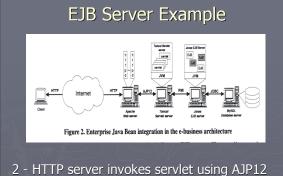
Enterprise Java Beans (EJB)

Server abstracts the application business logic from underlying middleware

Two Types of EJB

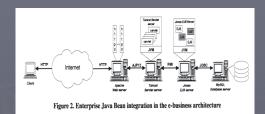

- Entity Beans
- _ Map data stored in the database
- Session Beans
 - Perform temporary operations (stateless)
 Represent temporary objects (stateful)

Enterprise Java Beans (EJB)

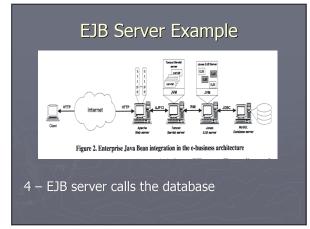

Services provided by EJB server

- Database access (JDBC)
- Transactions (JTA)
- Security (JMS)
- Naming (JNDI)
- Management Support (JMX)


EJB Server Example



1 - Client sends request to the HTTP server



2 - HTTP server invokes servlet using AJP12 protocol

3 - Servlet queries the EJB server using RMI to retrieve info from the database in order to generate the HTML reply

PHP

- _ Pros
 - Easy to write
 - Reasonably efficient
 - Minimized communication overheads Scripts execute in same address space as Web server

Cons

- Database interfaces are ad hoc
- ___New code needed for each new database acce

Java Servlets

Pros

- Easily portable between databases (JDBC interface)
- Servlet server can be placed on a machine different from the Web server to balance the load

Cons

- Overhead of the JVM
- Cost of IPC with servlet and Web server executing on separate machines

EJB

Pros

- Abstracts the application logic from any specific platform, protocol, or middleware infrastructure
- Level of indirection between the application and the database

Cons

Seen in the application benchmarks

Auction Site

- Significant load on the Web server
- Functionality
- Selling, browsing, bidding
- User Sessions
- Visitor (only allowed to browse)
- Buyer, seller (require registration)

Auction Site

- **Buyer Session**
- Bid on items
- Summary of current bids
- Rating and other users comments

Seller Session

- Require a fee before selling an item
- Specify a minimum price

Auction Site

Seven database tables

- Users, items, bids, buy_now, comments, categories, regions
- 26 client web browser interactionsBidding, buying, selling, leaving comments, etc.

Auction Site

Workload Mix

- 33,000 items for sale
- 40 categories
- 62 regions
- 500,000 auction history (old-items)
- 10 bids per item average 330,000 bids table entries

Auction Site

Workload Mix

- 1,000,000 users table entries
- Feedback for 95% of transactions 31,500 new-comments table entries 475,000 old-comments table entries

Total Size = 1.4 GB

Online Bookstore

Significant load on the database

Eight database tables

 Customers, address, orders, order_line, credit_info, items, authors, countries

14 Interactions

- 6 read-only
- 8 cause database updates

Online Bookstore

Payment gateway emulator (PGE)

- Represents an external system that authorizes payment of funds during purchasing
- Web server contacts the PGE using an SSL session to send the credit card information
- PGE replies with an authorization number

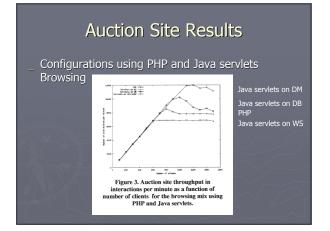
Online Bookstore

Workload Mix

- 95% read-only scripts
- 80% shopping mix
- 50% ordering mix

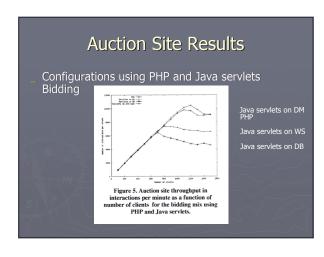
Database sizes

- 350 MB
- 3.5 GB


3-Phase Experiment

Warm-up phase

- Initializes the system until it reaches a steady-state throughput level
- Steady-state phase
- Measurements performed
 Cool-down phase
- Slows down the incoming request flow
- Auction 5 minutes, 30 minutes, 5 minutes Bookstore – 1 minute, 10 minutes, 10 seconds


Configurations

- PHP on same machine as the Web server
- Java servlets on same machine as Web server
- Java servlets on same machine as database
- Java servlets on dedicated machine
- Web server, servlet server, EJB server, and database server each on different machines

Auction Site Results

- Configurations using PHP and Java servlets Browsing
 - Java servlets on Web server
 - 6,840 interactions per minut
 - PHP
 - 8,520 interactions per minute for 800 clients
 Java servlets on database machine
 - 10,200 interactions per minute for 1,000 clients Java servlets on dedicated machine
 - 12,000 interactions per minute for 1,200 clien

Auction Site Results

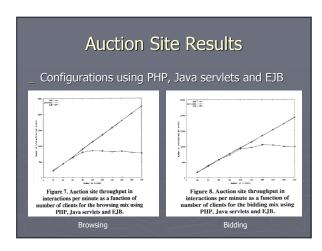
- Configurations using PHP and Java servlets Bidding
- Java servlets on database machine
- 6,480 interactions per minute for 700 client
- 7,380 interactions per minute for 700 clients PHP
- 9,780 interactions per minute for 1,100 clients Java servlets on dedicated machine
- 10,440 interactions per minute for 1,200 client

Auction Site Results

Configurations using PHP and Java servlets

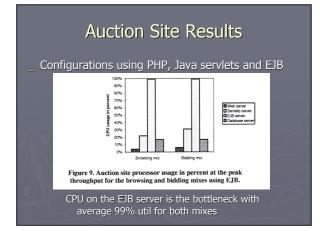
Servlet running on the Web Server

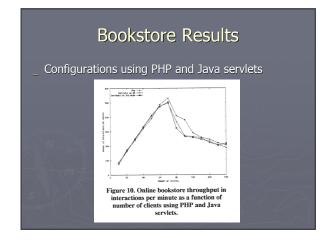
- Due to separate process for communication between Web server and servlet server which is not needed in PHP


Servlet running on the database machine

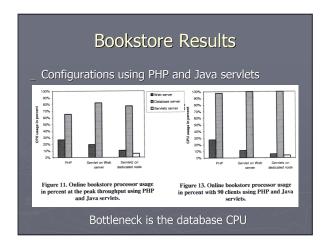
Util. substantially lower in browsing than bidding mix
21% browsing, 45% bidding

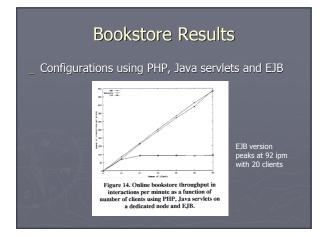
Auction Site Results


- Configurations using PHP and Java servlets
 - Servlet running on a dedicated machine


 - Benefit of an extra CPU outweighs the extra communication costs of the servlet server being on a separate machine

Auction Site Results


- Configurations using PHP, Java servlets and EJB
- EJB throughput initially grows linearly with # of clients
- Peaks at 850 ipm with 100 clients (browsing)
- Peaks at 1,051 ipm with 140 clients (bidding)
- Throughput of PHP and Java servlets continues to increase beyond peaks of EJB



Bookstore Results

- Configurations using PHP and Java servlets
- Throughput about the same for all 3 configurations
- Java servlets on Web server
 407 interactions per minute for 70 d
- Java servlets on dedicated machine
- PHP
- 532 interactions per minute for 70 clients

<section-header><section-header><text><figure><text>

Bookstore Results

Database CPU is the main bottleneck

 Minimal differences between PHP and Java servlets in performance

EJB throughput problematic

• Overall performance considerably lower than with PHP or Java servlets

Conclusions

- Web server and business logic on same machine PHP somewhat faster than Java servlets
- Web server or business logic bottleneck
- Re-locate Java servlets to database machine or separate machine to increase performance over PHP
- Database is the bottleneck
- No difference between PHP and Java servlets
- In all cases
- EJB considerably slower than PHP and Java servlets