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Abstract

Technology trends are combining to fundamentally raise the
information management burden using today’s storage sys-
tems. Currently, users manually track file replicas across
different systems, such as file systems, Web servers, and
CVS trees, all using different names and spanning numer-
ous devices. In addition, users must reason about the im-
pact of disconnected operation because devices frequently
change their connectivity and bandwidth status. In this
paper, we describe Wayfinder, a peer-to-peer file system
designed to reduce the increasing burden of information
management by directly supporting the needs of dynamic
medium-sized collaborative communities within a familiar
file system interface. Wayfinder achieves this goal by ex-
porting three critical abstractions: a unified namespace built
by merging multiple directory views, content addressing via
semantic directories, and availability conscious replication.
We demonstrate the feasibility of our approach by measur-
ing the performance of a prototype implementation.

1 Introduction

Social networks offering unprecedented content sharing
such as Gnutella, KaZaA, and DMOZ are rapidly develop-
ing over the Internet. Unfortunately, locating specific infor-
mation in these systems can be quite frustrating. First, these
systems typically export a publishing paradigm where each
individual’s published content is stored in a private reposi-
tory that is read-only to other users. This makes content lo-
cation through browsing very time consuming because each
repository is typically organized in a completely different
way. Second, content search is typically too primitive to be
useful except in cases where the community is externally
indexed by a web search engine, e.g., Google’s indexing of
Usenet. Finally, it is impossible to reason about data avail-
ability when content is hosted by community members be-
cause of extensive disconnected operation [1, 24].

Managing shared content is also difficult, particularly
when users participate in multiple networks, as users must
manually track content replicas across multiple publish-
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Figure 1: Wayfinder’s shared namespace is constructed by
merging local directory hierarchies (hoards) across con-
nected nodes. This figure shows 5 nodes originally being
connected so that the shared namespace is the merged view
of hoards H1 through H5. When the connectivity changes
and the community separates into three connected subsets,
Wayfinder maintains a merged view for each subset. When
the subsets reconnect, Wayfinder dynamically re-merges the
shared namespace.

ing infrastructures and their local writable storage systems.
This problem is further exacerbated as users increasingly
depend on multiple devices such as PCs, laptops, and PDAs,
some of which may frequently change in their connectivity
and bandwidth status, requiring explicit reasoning about the
impact of disconnected operation.

Together, the above problems will fundamentally limit
users’ ability to manage the ever growing volume of shared
data and to develop richer sharing patterns. Thus, in this pa-
per, we present Wayfinder, a novel P2P file system that ad-
vances the state of the art by unifying publishing, search and
storage. In particular, Wayfinder addresses the above lim-
itations by exporting three synergistic abstractions: a uni-
fied global namespace, content addressing, and availability-
conscious replication.

Unified Namespace. To support sharing, Wayfinder con-
structs a universal shared namespace across a connected
community. This shared namespace is formed by overlay-
ing the local namespaces of participating nodes as shown
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in Figure 1. Each node’s local namespace is called its
hoard and consists of a directory structure and files stored
in a local file system. The community may, at any point,
split into multiple connected subsets, each with its own
shared namespace, and later rejoin to recreate the commu-
nal namespace. In essence, Wayfinder presents a shared
view of all data stored across any set of connected nodes
that expands and contracts smoothly on node arrival and de-
parture.

Wayfinder’s communal namespace aids users in three
ways. First, it eases content sharing by presenting a familiar
file system model yet publishes any file created or updated
inside the hoard of a device. Second, it allows users to build
on each other’s organizational efforts. Finally, it aids a user
in managing his data set across multiple devices by remov-
ing the need to explicitly reason about what replica resides
on which device.

Content Addressing. Wayfinder supports content address-
ing by providing semantic directories [8, 9], which repre-
sent search queries and are populated with their query re-
sults. Semantic directories allow users to embed a multi-
dimensional content-based navigation structure within the
normal directory hierarchy. For example, a file discussing
P2P file systems might be found through a semantic direc-
tory querying for “P2P” or through one querying for “file
system.” More over, this structure actively organizes files
as their content change since semantic directories are peri-
odically reevaluated. Similar to [9], Wayfinder allows users
to explicitly fine-tune the content of a semantic directory
rather than having to manipulate the query until it returns
the exact set of desired files. Search results can also be
content-ranked to assist users in finding the most relevant
files.

Availability-Conscious Replication. Similar to previous
systems that support disconnected operation, Wayfinder is
faced with the dual issues of hoarding and availability.
However, Wayfinder’s explicit support for partitioned op-
eration blurs the distinction between these issues: in a con-
nected subset, is successful access an availability issue or
a hoarding issue? Our ultimate goal is to support a unified
metric where a file is available if it can be accessed, regard-
less of the accessing device’s connectivity state.

In this paper, however, we first consider the constrained
problem of ensuring file availability when nodes are con-
nected to a core set of peers that are rarely partitioned.
Specifically, availability is defined as the probability of find-
ing a file at any point in time within the connected subset
containing the core. As an example, the core set of our
laboratory’s Wayfinder community is comprised of our lab
server and the faculty members’ PCs. (Note that the core
set only serves to define the connected state; they are not
required to serve as highly available replication stores.)

Wayfinder implements the availability-conscious repli-

cation (ACR) approach previously introduced by Cuenca-
Acuna et al. [3] to address the above availability problem.
ACR has two important characteristics. First, it supports
an explicitly non-uniform availability model, where files
can have different target availabilities. Second, rather than
maintaining a fixed number of replicas per file, it period-
ically adjusts the number of replicas depending on an ex-
plicit estimate of each file’s availability. Both these charac-
teristics are important for P2P systems, where maintaining
uniform file availability through a fixed number of replicas
is often impractical [3].

Cuenca-Acuna et al. have shown that ACR can achieve
practical availability levels, e.g., 99.9%, in challenging P2P
environments. ACR also scales gracefully with available
resources, thus providing an interesting continuum. The
availability model can range from one with extensive non-
uniformity, similar to today’s P2P file sharing systems, or
almost completely uniform similar to server-based file sys-
tems. Where in the range a community exists depends on
the amount of storage, placement, and availability of server-
like nodes.

Design and Implementation. Wayfinder is really a meta
file system in that it stores files in a node’s hoard on any lo-
cal file system and its meta-data in a lower layer called Plan-
etP [5]. Currently, Wayfinder targets medium size commu-
nities of tens to hundreds of users as the common unit of so-
cial interaction. A good example of such a social group is a
local P2P network of several hundred students sharing 6TB
of data. Sharing within our laboratory (and department) is
another example environment where we plan to actually de-
ploy and use Wayfinder. Finally, Wayfinder implements a
simple security model that uses public key encryption to
control writes. We will not describe Wayfinder’s security
model further here, however, because of space constraints;
we refer the interested reader to [19].

Our contributions include:

� The design and evaluation of a file system that unifies
name and content addressing within a dynamic navi-
gational structure targeted to sharing and collaborative
data management. Our system supports content ad-
dressing and ranking without requiring any centralized
indexing.

� Introducing a configurable availability model that
spans the fixed availability model of current file sys-
tems to the highly non-uniform models of current P2P
systems.

� Unify the use of two recent paradigms for building ro-
bust decentralized systems, DHT and replication using
gossiping, to build a P2P file system that supports par-
titioned operation. We discuss this synergistic design
further in Sections 2 and 3.
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2 Background: PlanetP

We begin by briefly describing PlanetP since Wayfinder
uses it as a distributed data store for its meta-data. Es-
sentially, PlanetP is a multidimensional indexed P2P data
store. Members of a PlanetP data store share information
by publishing bindings of the form

���������	�
���������	�������
,

where k is a text key and
�

an arbitrary object (although in
Wayfinder,

�
is always a small XML document). We say

that keys � ���������������
�����������	���
. Published documents are

then retrieved by specifying a query comprised of a set of
keys combined using three operators, and ( � ), or (  ), and
without ( ! ). For example, a query (“cat” � “dog” ! “bird”)
would retrieve the set

���#"��
cat
�
dog

�%$
keys � ��� � ��&('*)�+,�.-$

keys � �/�(� .
When a node publishes a binding

����0/12�	�3�4�
, Plan-

etP stores
�

in a local persistent data store and
����0/12�	�

in a
two-level index1. The top level of this two-level structure is
a globally replicated key-to-node index, where a mapping�5��6

is in the index if and only if
6

has published at least
one object

�
where

�87
keys � ��� . We call this first level in-

dex the global index. The second level is comprised of a set
of independent local indexes, one per node, that maintains
the set of key-to-object bindings for all bindings published
at that node. The global index is currently implemented as
a set of Bloom filters [2], one per node that summarizes the
set of unique keys in that node’s local index.

PlanetP uses gossiping to replicate and weakly synchro-
nize the global index and a membership directory. In par-
ticular, each member periodically tells a randomly selected
peer about changes to the replicated data structures so that
changes eventually diffuse to all nodes. In the absence of
changes, however, PlanetP throttles the gossiping rate so
that bandwidth use quickly becomes negligible.

PlanetP evaluates a query by using the global index to
identify the set of nodes that contain relevant bindings and
passes the query to these nodes. The target nodes then eval-
uate the query against their local indexes and return URLs
for matching objects to the querier. PlanetP can contact all
targets in order to retrieve an exhaustive list or a ranked sub-
set to retrieve only the most relevant objects [4].

To complement the gossip-based persistent indexing in-
frastructure, PlanetP also implements a lightweight, unreli-
able DHT as a distributing caching and fast rendezvous ser-
vice. The DHT may loose data arbitrarily, however, because
nodes may leave (fail) without redistributing their portion of
the DHT. Thus, all data stored in the DHT must be recon-
structible from the persistent store.

Finally, with respect to performance, we have previously

1For simplicity, we assume that there is only one instance of PlanetP
(and Wayfinder) running on each node in our discussion. Our implemen-
tation supports many instances running on each node, each instance acces-
sible by many users.
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Figure 2: An overview of Wayfinder’s architecture. Dashed
lines represent key bindings while solid lines represent
Wayfinder’s mapping of waynodes to local files and directo-
ries.

shown that PlanetP can scale to thousands of nodes [5],
which is more than sufficient for Wayfinder’s current target
community sizes.

3 Files and Directories

We now describe how Wayfinder implements files and di-
rectories. Figure 2 gives an overview of Wayfinder’s archi-
tecture. Broadly, Wayfinder stores each user’s hoard in a
local file system and its meta-data in a PlanetP data store.
Each file and directory can have many replicas. Each replica
of a file or directory is described by a small data structure
called a waynode. Each waynode is bound to content keys
and Wayfinder assigned IDs. Wayfinder can then retrieve
waynodes using a combination of content or ID searches.

Files. Each replica of a file /path/name is stored at
path/name in some hoard. Each Wayfinder file is identi-
fied by a unique identifier while each replica is described
by a waynode. Each waynode contains a file ID, a version,
a content hash, and a URL indicating where the replica can
be retrieved. Waynodes are implemented as XML snippets
and are stored in PlanetP2. They are bounded to the file ID
and keys extracted from the replica’s content.

To illustrate this design, suppose that the hoard of a node6
is stored at /WFRoot in

6
’s local file system. When a file

/path/f is opened, Wayfinder retrieves 9 ’s ID from the meta-
data associated with /path (see below) and queries the DHT
for 9 ’s latest version and a set of URLs where replicas or
diffs can be downloaded. If this query fails, then Wayfinder
queries PlanetP for all the waynodes of all replicas of 9 to

2Typically, PlanetP is used to denote just the indexed persistent store;
we always explicitly state when we use the DHT to cache information.
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compute the latest version and where replicas or diffs can
be retrieved. Wayfinder then caches the result in the DHT
for future accesses to 9 . (Cached entries are discarded after
they have not been accessed for some expiration period.)

Then, if
6

does not have a local replica of 9 , Wayfinder
retrieves a copy, stores it at /WFRoot/path/f, and creates and
publishes a new waynode for this replica. The new wayn-
ode contains the same file ID and version number but has
a new URL pointing to

6
’s hoard. If

6
has an old ver-

sion, Wayfinder updates the local copy to the latest ver-
sion, re-publishes the waynode with the new version num-
ber, and updates the meta-data cached in the DHT. Finally,
Wayfinder completes the open on the local replica. Cre-
ation works similar to open except that Wayfinder generates
a new file ID for the newly created file.

If 9 was opened for write, on closing, Wayfinder incre-
ments the replica’s version number, republishes its wayn-
ode, and updates the meta-data cached in the DHT for 9
if one exists. Wayfinder also computes a diff that contains
all changes since the open and stores it in /WFRoot/path to-
gether with f. (Of course, diffs are hidden from the user’s
view of the directory in the global namespace.) Diffs allow
nodes to update replicas of large files without downloading
the entire file. Diffs also allow Wayfinder to unroll changes
as necessary to resolve write conflicts (see Section 5). Fi-
nally, Wayfinder schedules the file to be indexed in the back-
ground; if the file has already been indexed in the past, then
Wayfinder can do an incremental index using just the diff.
Once the index is completed, Wayfinder rebinds the wayn-
ode to the extracted content keys.

Directories. When a user opens or creates a file /path/f at
a node

6
, Wayfinder creates the directory path in

6
’s hoard

if it does not already exist. Thus, directories are replicated
across nodes’ hoards as well, although as shall be seen, they
are only partially replicated. Directories are uniquely iden-
tified by their pathnames since directories with the same
name are merged in the global view.

Each directory replica is represented by a waynode that
stores all the name-to-replica bindings in the local hoard.
That is, if a directory path in

6
’s hoard contains two files,

9 � and 9 � , then the waynode for /path would contain two
bindings, one binding the name 9 � to 9 � ’s ID and one bind-
ing 9 � to 9 � ’s ID. Each waynode � is published with the
binding

�
“/path”

� �
� .

To construct a global view of a directory /path (for exam-
ple, when the user does an ls), Wayfinder retrieves all wayn-
odes bound to the key “/path” and merges their content. To
avoid repeatedly contacting a large number of nodes to con-
struct a view of the same directory, we cache the merged
result as soft state in PlanetP’s DHT.

In caching directory views, however, we are faced with
what to do when the view changes (e.g. files are added or
deleted from the directory). One option is to allow cached

views to become out-of-date but discard them after some
amount of time to limit inconsistencies. We chose the op-
posite approach of continuously updating cached views and
only discarding a view if it has not been accessed for some
time. Thus, whenever a node adds, deletes, or writes a file,
if a view of the file’s parent directory exists in the cache,
then it updates the cache view to reflect the operation.

Semantic Directories. A semantic directory is one whose
name maps to a content query [8]. In Wayfinder, mkdir
creates a semantic directory if the first character of the name
is a “$”. Currently, a semantic directory’s name just consists
of a sequence of space-separated terms that are combined
using the “and” operator to form the query.

On creation, a semantic directory is populated with all
files within its scope that matches the directory’s query. A
file is defined to match a query if the keys that its wayn-
odes, i.e., the waynodes of the replicas with the latest ver-
sion, are bound to satisfy the query. The set of matching
files can be ranked using PlanetP’s relevance ranking if de-
sired. Wayfinder periodically reevaluates each semantic di-
rectory’s query to refresh its content; the reevaluation period
may be specified by the user.

When a user creates a semantic directory
������&

, if
�

is
a regular directory, then the user has a choice of populat-
ing

&
with matching files from the entire file system (global

scope) or only files contained in
�

(parent scope). If
�

is
a semantic directory, however, then only parent scoping is
allowed. Thus, a chain of three semantic directories

&�������+
would give three sets of files equivalent to the queries

&
,& � �

, and
& � � � + .

Similar to [9], Wayfinder’s semantic directories can be
directly manipulated by users. That is, users can add files
to, or remove from, a semantic directory just like a nor-
mal directory. Files explicitly removed by a user are never
brought back by a reevaluation although they can be added
back explicitly. Likewise explicitly added files are never re-
moved by reevaluation, even if their content do not match
the directory’s query.

Semantic directories are implemented as follows. When
a node accesses a semantic directory, a replica is created in
its hoard along with a waynode. The waynode is used to
record explicit user manipulations of the semantic directory
at that node, i.e., additions and deletions. On (re)evaluation,
Wayfinder poses the directory’s query to PlanetP and re-
trieves all waynodes that matches the query. Wayfinder also
gathers all waynodes describing replicas of the directory.
It then modifies the set of matching file waynodes by the
union of the actions contains in the directory waynodes. Ac-
tions are ordered using logical timestamps; conflicting op-
erations are resolved conservatively, favoring adding over
deletion.

The result of the above evaluation is cached in memory
until the next evaluation. When a file inside a semantic di-

4



rectory is accessed, a copy of it is downloaded to the hoard
just as for a normal directory. If that file is later accessed
through another pathname, or if a local replica already ex-
ists, Wayfinder only keeps one copy in the hoard and uses
hard links to support accesses through the different path-
names.

4 Availability

In this section, we describe how Wayfinder replicates files
to increase their availability. Recall that we currently define
availability as the probability of finding a file within the
connected subset surrounding a core set of nodes. Given
this metric, Wayfinder exports a novel non-uniform avail-
ability model by implementing an adaptation of Cuenca-
Acuna et al.’s availability-conscious replication (ACR) ap-
proach [3].

ACR assumes that each file has an explicit availabil-
ity target that is either specified by the user or inherited
by default from an ancestor directory. ACR also assumes
that nodes periodically advertise their past availability, com-
puted as a running average of time connected to vs. discon-
nected from the core. Given these measures, each node

6
is then independently responsible for maintaining the avail-
ability of files in its hoard, pushing additional replicas of a
file whenever it estimates the file’s availability to be below
the target. This autonomous approach allows nodes to act
independently, yet achieve the desired coherent global ef-
fect because information shared through PlanetP allows all
nodes to compute similar availability estimates. In essence,
Wayfinder will continuously monitor files with high avail-
ability targets since these files will either be replicated on
highly available nodes or on many less available nodes. On
the other hand, Wayfinder monitors files with low availabil-
ity targets less carefully since either less nodes or less avail-
able nodes are maintaining these files’ availability.

More specifically, each node
6

periodically chooses a
random file 9 from its hoard, computes the set of peers that
contain a replica of 9 using PlanetP’s global index, and esti-
mates 9 ’s availability assuming that peers’ individual avail-
abilities are uncorrelated. This estimate includes peers that
are currently offline under the assumption that they will re-
turn later with their hoard intact. (Of course, hoards will
change, in which case, everyone’s copy of the global index
will eventually be updated, and the availability estimates
will change accordingly.) If the estimated availability is be-
low the target availability, then

6
attempts to push a replica

of 9 to a randomly chosen online peer that is not currently
hoarding 9 . Otherwise,

6
contacts a randomly chosen peer

that is currently hoarding 9 and ensures that both nodes
have the latest version of 9 as known to them. This latter ac-
tion ensures that a file’s estimated availability (eventually)
reflects the availability of the latest version.

When a node � receives a replication push for 9 , it ac-
cepts 9 if it has excess space in its hoard. If � ’s hoard
is full, it can reject the push or evict files to free up
space. Specifically, � chooses the necessary victims us-
ing a weighted random selection, where the weights are
computed from files’ estimated availability. � should al-
ready have availability estimates for its hoarded files from
the above pushing process and so only needs to compute 9 ’s
estimated availability.

Eviction brings up an interesting conflict: a Wayfinder
node should not evict a file � , even if � is over-replicated,
if some user is likely to access � during a period of dis-
connected operation. Currently, Wayfinder implements the
simple policy of never evicting a file that some local user
previously accessed and so pulled to the local hoard. This
policy is limited in that most hoards will eventually fill up
with files no longer useful in near future periods of discon-
nected operation. Thus, we are currently exploring a value
function that allows Wayfinder to better balance between
hoarding and availability needs.

5 Consistency

Wayfinder exports a weak consistency model for both di-
rectories and files to support partitioned operation. In this
section, we describe this consistency model and its implica-
tions for users.

Files. Recall that when a user attempts to access a file 9 at
some node

6
,
6

simply opens the latest version of 9 that it
can find. This essentially implements a “single copy, any
version availability” model [10]. Under partitioned opera-
tion, this model can lead to users seeing stale data and con-
flicting non-concurrent writes because of incomplete hoard-
ing within

6
’s partition or recent writes outside of

6
’s par-

tition. (Note that these problems can arise even when the
entire community is connected: when cached entries in the
DHT are lost, gossiping delays may give rise to inconsis-
tent views of the global index, which in turn may lead to
inconsistent actions. These inconsistencies are subsumed
by those arising from partitioned operation, however, and
so are dealt with similarly.)

The above inconsistencies are inherent to any system that
supports partitioned operation. Wayfinder’s replication ap-
proach, however, reduces the probability of accessing stale
data when a node is connected to the community core. As
already mentioned, we are currently exploring how to en-
sure availability during disconnected operation. Finally, to
address write conflicts, Wayfinder maintains a version vec-
tor in each waynode, where a new version extends the vec-
tor with a monotonically increasing number and the ID (a
hash of a public key) of the writer. Then, when Wayfinder
detects write conflicts, it imposes an arbitrary but determin-
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istic and globally consistent ordering on the changes. This
allows nodes to resolve conflicts without the need to reach
a communal consensus.

For example, suppose Wayfinder detects two waynodes
for the same file with conflicting versions [( � ,1)(

1
,2)] and

[( � ,1)( � ,2)]. Further suppose that
1��

� according to their
integer values. Wayfinder would then apply the diff be-
tween [( � ,1)] and [( � ,1)( � ,2)] to [( � ,1)(

1
,2)] to get the ver-

sion [( � ,1)(
1

,2)( � ,2)]. To address the cases when this reso-
lution is semantically incorrect—although often, similar to
CVS conflict resolution, this automatic resolution may be
correct—Wayfinder allows users to manually merge diffs to
create a new, semantically correct version. Continuing the
example, Wayfinder allows a user to create a new version
[( � ,1)(

1
,2)( � ,2)(u,3)] by providing the [( � ,1)] version using

diff rollback and the two conflicting diffs.

Directories. Wayfinder also supports a “single copy avail-
ability” model for directory accesses. Suppose a user at
some node

6
attempts to access a directory /path/dir. This

access will succeed if any node in
6

’s partition has a replica
of /path/dir. For similar reasons as above, this model can
cause users to not see bindings that actually exist, see bind-
ings that have been deleted, and create conflicting bindings.
Since replicating files involve replicating their ancestor di-
rectories, our replication approach also reduces the proba-
bility of incomplete views. To resolve conflicting bindings,
Wayfinder renames the bindings in the DHT cache entry and
notes this rebinding. When a user attempts to access a file
through the renamed binding, Wayfinder notifies the user of
the conflict so that a permanent rebinding can be affected.

To delete a binding /path/f, Wayfinder unlinks path/f in
the local hoard, removes 9 from the cached entry of /path
in the DHT, and publishes a delete notification to PlanetP.
Whenever a node accesses /path, it will see the delete and
remove its own local replica if it has one. Each node also
periodically looks for delete notices and removes any corre-
sponding local replicas. Delete notifications are discarded
after an expiration period currently set to four weeks. Thus,
it is possible for a node that was offline for longer than this
period to bring back a copy of a deleted file when it comes
back on-line.

To delete a directory, Wayfinder deletes all files within
the directory as described above and deletes the directory
itself from the hoard. When processing delete notifications,
a node also recursively delete ancestor directories if the
deleted binding was the last in that directory. This imple-
mentation has two implications. First, since deleted files
can reappear, so can deleted directories. Second, deleting
the last binding in a directory effectively deletes that direc-
tory as well.

Finally, since we depend on nodes to update cached di-
rectory entries in the DHT to reflect changes, these entries
may become stale when a node goes offline, modifies its

Modified Andrew Benchmark
Linux JNFSD Wayfinder: Wayfinder:
NFS 1 Node Worst Case

Ph. 1 0.02 0.04 0.04 0.10
Ph. 2 0.18 0.37 0.82 1.51
Ph. 3 1.03 0.82 0.85 1.08
Ph. 4 0.84 1.58 1.64 1.82
Ph. 5 2.09 3.13 3.30 3.49
Total 4.16 5.94 6.65 8.01

Table 1: Results of the Modified Andrew Benchmark using the
Linux NFS, original JNFSD, the JNFSD linked with Wayfinder
running in isolation and connected to a large community of nodes.

local hoard, then returns. To address this problem, cached
entries are automatically discarded after an expiration pe-
riod. Also, when a node rejoins an online community, it
lazily walks through its hoard and updates any stale cached
entries. When two connected subsets join, cached entries
for the same directory are merged.

6 Performance

We now consider the performance and robustness of a pro-
totype implementation. This prototype is written in Java
and uses a modified JNFSD server [13] to export its ser-
vices as a locally mounted user-level NFS system. All ex-
periments are performed on a cluster of PCs, each equipped
with an 800MHz PIII processor, 512MB of memory, and
a 9GB SCSI disk. Nodes run Linux 2.2.14 and Sun’s Java
1.4.1 2 SDK. The cluster is interconnected by a 100Mb/s
Ethernet switch.

Each Wayfinder node caches meta-data retrieved from
the DHT in local memory for 10 seconds. In our current
setup, this reduces the impact of accessing the DHT through
Java RMI, which requires on order of 2.5ms for a single
RPC. When Wayfinder is used by communities connected
over the Internet, this caching reduces the impact of com-
munication over the WAN. Note that this caching is similar
to caching done by the Linux NFS client (3–30 seconds),
although Linux has a more sophisticated policy of when to
disregard the cache.

Andrew Benchmark. Table 1 shows the running time for
the Modified Andrew Benchmark [12] for Linux NFS, the
unmodified JNFSD, and Wayfinder. The benchmark con-
sists of five phases executed by a single client: (1) cre-
ate a directory structure, (2) copy a set of files into the
directory structure, (3) stat each file, (4) grep through the
files, and (5) compile the files. In all cases, the NFS server
and client ran on the same machine for comparison against
when Wayfinder is running on a single node. For Wayfinder,
“Worst Case” reflects performance for the hypothetical sce-
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Figure 3: (a) Time required to scan a namespace plotted against community size. (b) Scan time in the presence of node
failures; x-axis is a sequence of scans, dotted vertical lines indicate node failures, and solid vertical lines indicate the return
of failed nodes. 2 nodes failed after scan 6 while 4 nodes failed after scan 14. The vertical bar gives the standard deviation
for scan time across 10 samples.

nario where the community is very large so that each access
to the DHT requires a message exchange. Since all oper-
ations are performed on a single client, these remote DHT
accesses are the most significant source of overhead for this
benchmark.

Observe that Wayfinder imposes little overhead when the
workload is not entirely comprised of file system opera-
tions. In particular, Wayfinder imposes insignificant over-
heads for phase 4 and 5, when the client is grepping and
compiling, respectively. Phase 1 and 2 impose higher per-
formance penalty, particular phase 2 where each copy re-
quires Wayfinder to compute a diff and to synchronously
flush the corresponding waynode from the local cache, forc-
ing a remote DHT update. Phase 3 benefits from the cache
footprint resulting from phase 2 and so imposes only a mod-
est amount of overhead.

We thus conclude that while Wayfinder does impose
visible overheads on basic file system operations, these
overheads are quite acceptable given that the prototype is
a largely un-tuned Java program. We also observe that
the Andrew Benchmark gives the worst case scenario for
Wayfinder: all operations are performed at a single client
and so gives no measure of Wayfinder’s effectiveness for
collaborative workloads.

Scalability and Robustness. We now show the advantage
of Wayfinder’s dual nature, which uses gossiping for robust-
ness to failures and caching in the DHT for scalable perfor-
mance. In this experiment, we turn off the caching at the
local node to force accesses to use either the DHT or Plan-
etP’s retrieval.

Figure 3(a) plots the time required for a single node to

perform a complete traversal of a namespace, e.g., doing an
“ls -R” vs. community size with, and without, the use of
caching in the DHT. The namespace is a complete trinary
directory tree of depth 4, giving a total of 121 directories,
and each directory contains 1 file. Each node hoards the
entire namespace.

As expected, the scan time without caching in the DHT
grows linearly with community size since computing each
directory view requires contacting all nodes. With caching,
however, the scan time rises only slightly with community
size as more and more cached entries are stored at remote
nodes; this curve has an asymptote, however, corresponding
to the cost of a network access per directory access.

On the other hand, Figure 3(b) shows Wayfinder’s ro-
bustness to loss of DHT data. In this experiment, we run a
sequence of scans and, in two instances, we simulate node
crashes by causing 2 and 4 nodes, respectively, to drop all
of their DHT entries and leave the community. The scan
is performed over a similar (albeit slightly smaller) direc-
tory structure as before but where each file is replicated
only twice so that each crash leaves some files with only
one replica. Observe the rise in scan time right after the
simulated failures because some directory views had to be
reconstructed. These scans correctly recreated all views,
however, and re-cached them.

Space and Bandwidth. Finally, we consider the space
and bandwidth overheads of maintaining Wayfinder’s meta-
data. We have previously shown the space overheads of
PlanetP’s global index to be quite modest [5]. For exam-
ple, if the entire TREC collection [11] (944,651 documents,
256,686,468 terms, 592,052 unique terms, 3,428.41 MB)
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were uniformly distributed across a community of 1000
nodes, giving an average of almost 20,000 unique keys per
node, the global index would occupy about 16 MB of stor-
age, or 0.5% of the collection. By comparison, when we in-
dexed the files of 2 heavy users in our lab, including all files
with extensions html, pdf, ps, tex, and txt, we found 26,000
keys for one and 353,000 unique keys for the other. The lat-
ter, however, was storing a portion of the Gutenberg project
(http://www.gutenberg.net/index.shtml), which consists of
a large number of e-books in several languages. Thus, we
can expect the global index of a modest-sized community
to be in the range of several to tens of MB. We did not mea-
sure the storage required for the local indexes as we did not
implement any of a number of well-known optimizations to
limit their sizes.

Finally, to give an idea of network usage, we estimate the
messaging volume required to keep the global indexes of a
community synchronized. This is the most significant of the
messaging overheads required by Wayfinder to maintain its
meta-data. In this experiment, we use the files and updates
for one paper (somewhat larger than this one) kept in our
CVS repository. Four people collaborated on the authoring
of this paper over a period of approximately 30 days.

Figure 4 shows the cumulative network volume used if
each CVS commit of a file was assumed to correspond to
an open/modify/close edit cycle. We collected this data
using a combination of micro-benchmarking of the proto-
type and modeling using our previous study of PlanetP [5].
The results show that 258 diffs that changed the content of
the files led to a combined gossiping volume of 13.9MB
when aggregated across all nodes in a community of 12
nodes. This network usage is negligible, giving an average
of 0.46MB of network traffic per day, or .04 MB per day

for each node. As each CVS commit may correspond to
multiple open/modify/close edit sessions, this estimate may
be conservative. Even if we assume an average of 10 edit
sessions per commit, however, this would translate to only
4.6MB per day.

7 Related Work

In this section, we briefly relate Wayfinder to previous ef-
forts spanning global namespaces, disconnected operation,
semantic and P2P file systems, as well as relaxed consis-
tency models.

Wayfinder differs from previous works building global
directory structures [18, 21] in that it provides an adjustable
namespace to accommodate the constraints of P2P environ-
ments. The Federated File System [25] is probably closest
to ours concerning namespace construction but FFS is tar-
geted specifically for a cluster rather than a P2P community.

The Semantic File System [8] introduced the concept of
semantic directories, which was further developed in the
HAC File System [9]. Wayfinder implements this abstrac-
tion in the context of P2P systems.

The Coda File System introduced the concept of hoard-
ing for disconnected operation [14]. Seer [15] attempted
to improve hoarding using semantic distance and cluster-
ing for prefetching content. To date, we have concentrated
on availability as opposed to hoarding given that Wayfinder
can leverage these previous works.

Many projects have recently explored P2P file systems.
To our knowledge, none of these systems have considered
content search, however. Further differences are as follows.
The Secure Read-Only File System [7] and the Cooperative
File System [6] are block-level, read-only publishing file
systems. Ivy [17] is a general file system that stores data
blocks in a DHT. This approach is fundamentally different
from ours in that the DHT attempts to keep all data online
all of the time. Wayfinder targets highly dynamic commu-
nities, however, where such a model can lead to unaccept-
ably high data movement [3]. Pasta [16], another P2P file
system, differs from Wayfinder in that its support for collab-
orative management of directory structures can lead to the
creation of unique directory structures for individual users.

Finally, a number of projects have experimented with
weak consistency models. In Bayou [20], nodes operate
in a mostly disconnected mode and use a form of gossip-
ing to exchange state. Updates are committed permanently
through a primary commit server. Similarly, the OceanStore
prototype Pond [22] uses replicated commit servers to ac-
cept updates. The Pangea [23] file system relies on the
construction of efficient communication structures for diff
propagation. Unlike these projects, Wayfinder’s optimistic
strategy avoids the need for commit servers but may require
users to resolve conflicts. Wayfinder’s optimistic approach
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is similar in spirit to Ficus [10]. Ficus, however, relies on
several communal two-phase algorithms to ensure consis-
tency.

8 Conclusions and Future Work

We have presented Wayfinder, a novel P2P file system that
seeks to unify publishing, searching, and collaborative or-
ganization within the context of a file system to better sup-
port the needs of medium-sized content sharing networks.
Specifically, we have described the three critical abstrac-
tions exported by Wayfinder: a unified namespace that
merges multiple directory views, content addressing via se-
mantic directories, and a probabilistic non-uniform avail-
ability model. We have also described how to build a robust
file system that realizes these abstractions using a combina-
tion of weakly consistent replication through gossiping and
caching of soft state using a lightweight unreliable DHT.
Finally, we have shown that a prototype gives reasonable
performance.

We are in the process of evaluating our implementation
of ACR and hope to have more availability results if this
paper is accepted. In the future, we plan to unify ACR
with hoarding to support the user-centric availability met-
ric discussed earlier. Finally, we would like to evaluate
Wayfinder’s actual impact on everyday data management
tasks. In particular, we plan to use Wayfinder in our labo-
ratory to manage our shared lab paper repository and blogs.
(A couple of the authors were already editing this paper on
Wayfinder for a short time.)
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