

Backdoors: A Remote Healing Architecture for Cluster-based Systems

Florin Sultan

Laboratory for Network Centric Computing http://discolab.rutgers.edu

Windows

A fatal exception OE has occurred at 0028:C00068F8 in VxD VMM(01) + 000059F8. The current application will be terminated.

* Press any key to terminate the application.

* Press CTRL+ALT+DEL to restart your computer. You will lose any unsaved information in all applications.

Press any key to continue

The Only Way Out...

...Not Good for All

What Do We Need?

- Monitor system health
 - OS/application failures
 - DoS attack, overload
 - intrusion
- Take action to heal the system
 - repair damaged state, clean-up corrupted state
 - extract and recover good state
 - contain fault/attack
 - repel intrusion
- Where should these operations be performed?

- Consumes processor cycles (intrusive)
- Relies on processor availability
 - hang failures make healing impossible
- Relies on OS resources
 - sensitive to resource depletion/unavailability
- Relies on system integrity
 - state may be corrupted
 - system may be compromised by an attacker

Alternative: Remote Healing

- Perform healing from another system
 - target system must allow remote access
 - the monitor system must be trusted
- Can we make remote healing nonintrusive?
 - no extra load on the target system
 - no reliance on target resources (processor, OS, etc.)

Target Failures

- OS/application hangs or cannot sustain service
 - hw: processor, network, disk, etc.
 - OS: driver bug, deadlock, resource exhaustion, etc.
 - DoS attack, overload
- Memory still available, yet not accessible via conventional paths (IP stack, console, etc.)
- Solution
 - monitor and detect failures
 - recover or repair software state of the affected system

The Backdoor

backdoor: a hidden software or hardware mechanism, usually created for testing and troubleshooting

-- American National Standard for Telecommunications

The Backdoor (BD) Architecture

- Introduction
- Remote Healing in Clusters of Computers
- Backdoor Architecture
- Case Study: Recovery in Internet Services
- Prototype
- Conclusions

Internet Services Today

Commercial shift in using the Internet

- e-commerce, banking, trading, auctioning, etc.
- transactional, time-critical services
- economic incentive to fault tolerance and service continuity

Cluster-based Internet Services

Cluster-based Internet Services

Remote Healing in Clusters

- Goal: survivability of live service state
 - OS and application-specific
- Target: state critical to service continuity
- Remote monitoring and diagnosis
 - detect failure, bad state, attack, intrusion
- Remote intervention
 - recovery of useful state from failed nodes
 - in-place repair of bad state

Backdoor-based Remote Healing

Backdoor Architecture Principles

1. Bidirectional access

 both remote input and output operations must be supported

2. Remote memory access

- memory must be accessible remotely
- remote I/O?

3. Availability

failure must not impair BD

4. Nonintrusive operation

 BD operations must not involve processors of the target system

Backdoor Architecture Principles (cont)

5. Transparency

BD operation must not be visible to target

6. Access control

- monitor and target negotiate access permissions at the beginning
- target cannot "close" the BD afterwards

7. Tamper resistance

target cannot modify the result of a BD operation

Question: How can we implement Backdoor using existing technologies?

Remote Memory Communication (RMC)

- Remote DMA (RDMA) Read/Write operations
- Remote processor not involved
- RMC-based networking technologies: VIA, InfiniBand, etc.

Backdoor with RMC

RMC Compliance with BD Principles

Bidirectional access	Υ
Remote memory access	Y
Availability	Y
Nonintrusiveness	Υ
Transparency	Y?
Access control	Y-
Tamper resistance	Y

Remote Healing Architecture

Monitoring over RMC-BD

Monitor: progress, anomalous events, integrity constraints, etc.

Repair over RMC-BD

Recovery over RMC-BD

And Possibly More...

- Remote control of I/O devices
 - access state in peripheral devices, e.g., OS swap space
- Dynamically inject code/data in a live system
 - test, diagnosis, repair handlers
 - fast system reboot through OS memory overlay
 - fast restart of application components (micro-reboot)
- Monitor for intrusion/attack detection

Case Study: Recovery In Internet Services

- Remote healing is not just RMC!
 - RMC provides just a way of access
- Requires OS support
 - Failure Detection
 - Session Recovery

OS Support

Monitoring: Progress Box (PB)

- progress counter: {scalar value, update deadline}
- PB = set of progress counters in OS memory
- API to allocate and update progress counters in PB
- monitor reads PB, checks counters, detects stalls

Recovery: State Box (SB)

- encapsulates per-session server state
- API to export/import application state to/from SB
- backup node reads SB, reinstates session, resumes service

Failure Detection with PB

- Target system updates progress counters in PB
 - Examples: interrupts (global, per-device), context switches, connections accepted, etc.
- Monitor process
 - scans remote PB, checks counters, detects stalls

Recovery With SB

- Fine-grained, essential service state
- Application-specific components (SB_APP)
 - E.g., document name, offset in document, etc.
- OS-specific components (SB_IO)
 - E.g., send/receive TCP buffers
- An SB can be distributed over multiple processes (multi-tier servers)
- Backup node extracts SB from a failed node and reinstates it locally

SB Structure

Backdoors Prototype

- Implemented using Myrinet NICs with modified firmware
 - remote Read/Write DMA
 - remote OS locking (syscalls, interrupt handlers)
- Modified FreeBSD kernel
 - Progress Box
 - State Box
- Modified server applications

A Realistic Sample Application: Multi-tier Auction Service (RUBiS)

Recoverable RUBiS

Experimental Evaluation

- 2.4 GHz, 1 GB RAM, 1Gbps Ethernet, Myrinet LanaiX 133 MHz PCI
- Fault injection
 - synthetic freeze: halt CPU, disable device interrupts, disable network interface, trap to kernel debugger
 - emulated crashes in buggy network drivers
- Experiments
 - Microbenchmarks
 - Failover correctness
 - Failover throughput and latency

Microbenchmarks

- Monitor CPU usage, sampling a 100-counter PB
 - 46% worst-case (infinite loop)
 - < 5% @ 10 ms, < 1% @ 100 ms</p>
 - High sampling rates possible
- Low overhead SB API
 - export/import: < 30 us</p>
 - extract + reinstate a 10 KB front-end SB: 358 us

Failure-free Overhead

Failover Correctness

- Workload/run: 600 requests from 200 clients
 - request = DB queries + DB table update
- Two correctness tests across crash & recovery
 - End-to-end consistency (crash invisible to client)
 - Database integrity (exactly-once semantics preserved)
- All crash-test runs were validated

Failover Throughput (FE+MT crash)

Failover Latency (FE+MT crash)

Related Work

- DEC WRL Titan system [Mogul '86]
- Recovery Box [Baker '93]
- Rio reliable file cache [Chen '96]
- Online OS reconfiguration [Soules '03]
- Virtual machines [Bressoud '95, Dunlap '02]
- Automatic repair of data structures [Demski '03]

Conclusions

- Backdoor: system architecture for nonintrusive remote healing
 - monitoring without using processor cycles
 - repair, recovery even when remote processor is not available
- BD prototype for transparent recovery of active service sessions in cluster-based Internet services

Current and Future Work

- Remote repair of OS state
- OS support and API for healing-conscious applications
 - programmer performs application-specific monitoring, repair and recovery
- Securing the BD
 - low-level access control through BD Guard entities implemented in firmware
- Remote control of I/O devices

The People Behind Backdoors

- Aniruddha Bohra
- Stephen Smaldone
- Yufei Pan
- Iulian Neamtiu (Maryland)
- Pascal Gallard (IRISA/INRIA)
- Liviu Iftode

Thank you!

http://discolab.rutgers.edu/bda