Energy Conservation Techniques for Array-Based Storage Servers

Eduardo Pinheiro & Ricardo Bianchini Rutgers University DarkLab

http://darklab.rutgers.edu

Vice-versa Meeting, Princeton Univ. 16/Apr/2004

Motivation

- ¹ Energy/power conservation important for mobile devices:
 - Power dissipation => casing, heat dissipation.
 - Energy => battery life.
- ⁻ Also important for servers
 - Power planning.
 - Electricity bill.
 - Heat dissipation in highly-packed machine rooms.
- ¹ In this work: focus on array of disk drives on storage servers.

Goal

- ¹ Energy-Aware File Server.
- Rank popular files and cluster them in subset of disks.
- ¹ Keep HOT disks at high throughput/high power consumption.
- ⁻ Send COLD disks to low throughput/low power consumption.
- ⁻ Save energy overall.
- ^{*} Periodic migration.

BUT

¹ Is there popularity in file server workloads? Zipf?

Key Observation

Key Observation

Popular Data Concentration

More popular

Less popular

Periodically, rank data and migrate

- Hot ones one way (higher power modes)
- Cold ones the other way (lower power modes)

Illustration

- ⁻ Assume two-speed disks.
- ¹ Low speed allows accesses at higher latency, lower power.
- ⁴ At low speed: 1 W

Illustration

Total Consumption: 25 W

Illustration

Total Consumption: 13 W

MQ Cache -Design

MQ - second-level cache [Y.Zhou et al, USENIX'01]

- ¹ LRU inside each queue
- ¹¹ Frequent accesses move entry up
- ¹ Prolonged inactivity moves entry down
- Re-use buffer for evicted entries

$$n-1$$
 1 0

Migration Algorithm

- Re-use MQ cache on file handlers.
- ⁴ Migrate "hotter" files to first disk, then second and so on.

Design

Nomad FS

- ¹ Implements Popular Data Concentration (PDC).
- ¹¹ Uses MQ Cache for its second-level cache.
- ¹ Implements other algorithms for comparison:
 - MAID Massive Array of Idle Disks [Colarelli et al. SC'02].
 - Naïve two-speed disks.

MAID

Total Consumption: 25 W

MAID

Total Consumption: 30 W

MAID

Total Consumption: 18 W

Implementation

Implementation

Description	Value						
Disk model	Seagate Cheetah ST39205LC						
Standard interface	SCSI						
Storage capacity	9.17 GBytes						
Number of platters	1						
Rotational speed	10000 rpm						
Avg. seek time	5.4 msecs						
Avg. rotation time	3 msecs						
Transfer rate	31 MBytes/sec						
Idle power	5.26 Watts						
Down power	1.86 Watts						
Active energy (8-KB read)	61 mJoules						
Spin up energy	65.91 Joules						
Spin down energy	28.25 Joules						
Spin up time	6.12 secs						
Spin down time	11.24 secs						
Idleness threshold	17.9 secs						

Table 1: Main characteristics and measured power, energy, and time statistics of our SCSI disk.

Preliminary Results

¹ System works with active and powerdown (sleep) modes.

HOWEVER,

- ¹ Not enough idle time to spindown disks on busy servers.
- So, how useful is that?

SOLUTION?

- " Use multi-speed disks.
- ¹ But not available yet.
- Then simulate multi-speed disks.
- ["] Carefully...

Validation

Description	Total energy consumed			Files moved		MBytes moved		Spin downs/ups		Delayed requests	
	Sim	Real	Error	Sim	Real	Sim	Real	Sim	Real	Sim	Real
PDC	152023.23	172842.68	12.0%	9715	10943	227	283	336	326	1.3%	1.2%
MAID	141349.20	156335.21	9.6%	8738	8716	204	204	300	304	1.1%	1.0%
FT	190374.14	200478.84	5.0%	n/a	n/a	n/a	n/a	10	13	0.2%	0.2%
EO	190345.68	200832.88	5.2%	n/a	n/a	n/a	n/a	n/a	n/a	0.0%	0.0%

Table 4: Summary of validation. Energy values are in Joules.

Parameter Space

Disk Drive Parameters: rotation speed, power consumption, conventional, two-speed disks.

File System Parameters: cache size, migration period, number of disks, cache replacement policy.

Workload Characteristics: coverage, popularity, request rate, % writes, temporal correlation.

Synthetic traces (default values):

" Req Rate: 750 r/s

["] File Size: 48kb

Disk params: 9.17 Gb, 10k/3k rpm

["] Alpha: 0.85

" Coverage: 40%

["] Read-only

" Cache: 1 Gb

Real traces:

- Hummingbird (Proxy cache)
 - Req Rate: 241 r/s
 - Avg File Size: 18kb
 - Disk params: 11 Gb, 10k/3k rpm
 - ^{*} Alpha: 0.70
 - Coverage: 93%
 - " Writes: 35%
 - " Cache: 1 Gb

- Pop Cache (filtered proxy cache)
 - Req Rate: 263 r/s
 - Avg File size: 20kb
 - Disk params: 6 Gb, 10k/3k rpm
 - ^a Alpha: 0.93
 - Coverage: 55%
 - Read-only
 - Cache: 64 Mb

Alpha X Energy Savings

Coverage X Energy Savings

Cache X Energy Savings

Temporal Correlation X Energy Savings

Real Traces

Pop Cache (energy gains) (% latency)

FT: 36% 7.8%

PDC : 42% 8.5%

" MAID-1+ : 33% 8.4%

" MAID-2+ : 29% 8.1

HummingBird (energy gains) (% latency)

FT: 23% 6.0%

* PDC : 26% 8.5%

MAID-1+ : 20% 14.3%

MAID-2+ : 15% 11.1%

Related Work

Inspired by Load Concentration [Pinheiro et al. COLP'01].

Energy conservation on storage servers:

- [Carrera et al. ICS'03] two speed emulation.
- [Gurumurthi et al. ISCA'03] multi-speed simulation.
- [Gurumurthi et al. ISPASS'03] RAID w/ multi-speed setting.
- ⁻ [Colarelli et al. SC'02] MAID
- [Zhu et al. HPCA'04] Cache repl. algo. for disk idleness.

Conclusions

- ¹ Introduced new energy-saving technique PDC.
- ¹ Implemented NomadFS.
 - PDC, MAID+, FT, Multi-speed disks.
- Tested and validated NomadFS simulator.
- ⁻ Substation energy savings are possible under light load.
- PDC able to get more energy gains beyond naïve two-speed.
- ¹ PDC more robust/adaptable than MAID.