
Testing of Java Web Services for
Robustness

Chen Fu, Ana Milanova,

 David Wonnacott, Barbara Ryder

2

Availability of Internet Services

n Internet Service: New Kid in 24x7 domain
v Public Telephone System: 99.999%

v Internet Services: 99% ~ 99.9%

n Why?
v Hardware:

n Heterogeneous Cluster-based, complex system

v Software
n Short lifecycle caused by market pressure.

n Components from various vendors.

v Faults are unavoidable (Disk/Network/OS)

3

Fault Injection

n Motivation:
v Redundant components are used to mask individual

faults.
n But would the software be able to take advantage of that?

v Testing program reaction to hardware/software problems
n Disk Crash, Network congestion, OS resources depletion, OS bug

…

v Waiting for real fault to see the reaction of the system?
n Actual Problems happen in rare basis

n Solution
v Special software components to simulate “faulty

conditions”.

4

Fault Injection – Current Approach

n Stochastic process
v Distribution – data

from real system:

n Fault Coverage:
v Probability that a

fault will be
handled correctly

Application

Java Runtime

OS

Device

s.read()
Socket
Exception

Fault Injection
 Engine

5

Fault Injection – White box test?

n Program
Coverage
v Fraction of the

code have been
explored?

Application

Java Runtime

OS

Device

s.read()
Socket
Exception

Fault Injection
 Engine

try{
 …

 process(…)
 …

} catch (IOException e){
 // recovery code
}

6

Exception-Catch Links
try {
 …
} catch (IOException e){
 …
}

try {
 …
} catch (IOException e){
 …
}

try {
 …
} catch (IOException e){
 …
}

try {
 …
} catch (IOException e){
 …
}

read()/receive():

Diskwrite:

7

Dynamic

Static

Coverage Metric

n Exception Def-Catch Coverage is:

v F – Set of possible e-c links (starting from a set of fault-
sensitive operations)

v E – Set of e-c links that are actually experienced
in a set of test runs (E Õ F)

F

E

8

Framework
Tester provided

Fault set

Tester provided
Fault set

Fault Injector-
Mendosus

Fault Injector-
Mendosus

Java
Application

Java
Application

Instrumented
Java Program

Instrumented
Java Program

Exception-Catch
Link Analysis

Exception-Catch
Link Analysis

Measured
Exception
Def-Catch
Coverage

Measured
Exception
Def-Catch
Coverage

Compile time

Run time

Possible
E-C links

Possible
E-C links

Observed
E-C links

Observed
E-C links

9

Analysis: Finding e-c links

Exception-Flow Analysis

DataReach Filter

possible e-c links

possible e-c links

AST
Call Graph

Point-to Graph
Call Graph

10

Exception-flow Analysis

void foo() throws Exception{
...
 try{
 bar();
 }catch (IOException ioe){…}
}

Set of throws that can reach bar()
without being handled?

Finding e-c links

Set of throws can
be handled here?

ReachingThrown

11

Exception-flow Analysis

U UU
CScs csmTt

cstrynestkillmRTttrynestkilltgenjRT
Œ ŒŒ

-»-=
)target(

)))(()(()))(()(()(

void foo() throws Exception{
...
 try{
 bar();
 }catch (IOException ioe){…}
}

void bar() throws Exception{
. . .
 throw new SocketException();
. . .
 throw new OtherException();
. . .
}

ReachingThrow(bar)
 SocketException thrown in bar
 OtherException thrown in bar

ReachingThrow(foo)
 OtherException thrown in bar

12

Exception-flow Analysis

n Dataflow Problem
defined on call graph
(backward)

n Varies call graph
algorithm can be used:
v CHA, RTA, Points-To

(context insensitive,
context sensitive)

j

m1 mk mn

)(jRT

)(nmRT)(kmRT

SocketException thrown in bar

catch (IOException ioe) in foo

Call Chain

13

Data-Reach ___ Motivation
void readFile(String s){
 byte[] buffer = new byte[256];
 try{
 InputStream f =new FileInputStream(s);
 InputStream source=new
BufferedInputStream(f);
 for (...)
 c = source.read(buffer);
 }catch (IOException e){ ...}
}
void readNet(Socket s){
 byte[] buffer = new byte[256];
 try{
 InputStream n =s.getInputStream();
 InputStream source=new
BufferedInputStream(n);
 for (...)
 c = source.read(buffer);
 }catch (IOException e){ ...}
}

14

Data-Reach ___ Motivation
readFile readNet

FilterInputStream.read(byte[])

BufferedInputStream.read(byte[],int,int)

BufferedInputStream.read1(byte[],int,int)

BufferedInputStream.fill()

FileInputStream.read(...) SocketInputStream.read(...)

15

Feasibility of a call chain

FileInputStream.read(…)

s.read(b)

SocketInputStream.read(…)

t.read(…)

readFile

Reachable Methods

1. Through s and b
field loads in “reachable methods”

2. Through global variables accessed in
“reachable methods”

field loads in “reachable methods”
3. Created in “reachable methods”

Solution
Collect these objects using Points-to Graph
If none of them has appropriate type
Ë infeasible

Objects Reaching t:

16

Instrumentation

Application

Java Runtime

OS

Device

s.read()
Socket
Exception

Fault Injection
 Engine

try{
 …

 process(…)
 …

} catch (IOException e){
 // recovery code
}

try{
 …

 process(…)
 …

} catch (IOException e){
 record_current_fault();
 // recovery code
}

inject_fault();

cancel_fault();

17

Benchmarks

18

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

FTPD JNFS Haboob Muffin

 CHA

 RTA

 PTA

 InPTA

 PTA-DR

 InPTA-DR

Configurations

Exception-Flow Analysis

DataReach Filter

possible e-c links

possible e-c links

AST

Call Graph

Point-to Graph

19

Coverage

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

FTPD JNFS Haboob Muffin

 CHA RTA PTA
 InPTA PTA-DR InPTA-DR

20

Time Cost

1

10

100

1,000

10,000

Benchmarks

S
ec

o
n

d
 (

lo
g

)

Inline PTA Exception-Flow DataReach Total

Inline 3.9 4.2 4.2 6.7

PTA 56.7 53.7 67.7 62.2 659.4 453.1 304.5 307.2

Exception-Flow 15.4 12.1 16.8 12.5 20.9 17.5 25.1 19.2

DataReach 144.6 155.8 71.7 97.2 2,419.2 3,490.4 2,618.0 4,581.3

Total 220.6 221.6 160.4 171.9 3,103.7 3,961.0 2,954.3 4,907.7

InPTA-DR PTA-DR InPTA-DR PTA-DR InPTA-DR PTA-DR InPTA-DR PTA-DR

FTPD Haboob JNFS Muffin

Thanks!

22

Configurations -- CHA

Exception-Flow Analysis

possible e-c links

AST

Call GraphCHA

23

Configurations -- RTA

Exception-Flow Analysis

possible e-c links

AST

Call GraphRTA

24

Configurations -- PTA

Exception-Flow Analysis

possible e-c links

AST

Call Graph

Context Insensitive
Points-to Analysis

25

Configurations -- PTA-DR

Exception-Flow Analysis

DataReach Filter

possible e-c links

possible e-c links

AST

Call Graph

Point-to Graph

Context Insensitive
Points-to Analysis

26

Configurations -- InPTA

Exception-Flow Analysis

possible e-c links

AST

Call Graph

Context Insensitive
Points-to Analysis

Constructor Inlining

27

Configurations -- InPTA-DR

Exception-Flow Analysis

DataReach Filter

possible e-c links

possible e-c links

AST

Call Graph

Point-to Graph

Context Insensitive
Points-to Analysis

Constructor Inlining

