
Programming OutdoorProgramming Outdoor
Distributed Embedded SystemsDistributed Embedded Systems

Cristian Cristian BorceaBorcea
DiscoLabDiscoLab –– Laboratory for Laboratory for
Network Centric ComputingNetwork Centric Computing

22

Indoor Distributed ComputingIndoor Distributed Computing

nn Computing is distributed for performance or faultComputing is distributed for performance or fault
tolerancetolerance

nn Nodes are computationally equivalentNodes are computationally equivalent
nn Configuration is stable (failures are exceptions)Configuration is stable (failures are exceptions)
nn Networking is robust and has acceptable delaysNetworking is robust and has acceptable delays
nn Relatively easy to programRelatively easy to program

–– Message passing or shared memoryMessage passing or shared memory
–– Names are easy to translate to network addressesNames are easy to translate to network addresses
–– Correct programs complete and return deterministicCorrect programs complete and return deterministic

resultsresults

33

Distributed object Distributed object
tracking over a largetracking over a large
geographical areageographical area

Cars collaborating Cars collaborating
for a safer and for a safer and
more more fluidfluid traffic traffic

Computers Go OutdoorsComputers Go Outdoors

44

Outdoor Distributed SystemsOutdoor Distributed Systems

nn Embedded in non-traditional computing systemsEmbedded in non-traditional computing systems

nn Functionally heterogeneousFunctionally heterogeneous

nn Distributed across the physical spaceDistributed across the physical space

nn NodeNode’’s role in computation often driven by locations role in computation often driven by location

nn Communicate through short-range wirelessCommunicate through short-range wireless

nn Create networks of embedded systemsCreate networks of embedded systems
–– Ad hoc topologiesAd hoc topologies

–– Volatile resourcesVolatile resources

55

How to Program Outdoor DistributedHow to Program Outdoor Distributed
Embedded Systems?Embedded Systems?

nn Recent research in networked embedded systemsRecent research in networked embedded systems
has focused onhas focused on

–– HardwareHardware

–– Operating SystemsOperating Systems

–– Network ProtocolsNetwork Protocols

–– Data collection/dissemination in sensor networksData collection/dissemination in sensor networks

nn Our research focuses on programmabilityOur research focuses on programmability

–– How to program distributed applications over networksHow to program distributed applications over networks
of embedded systems?of embedded systems?

66

Traditional Distributed ComputingTraditional Distributed Computing
Does Not WorkDoes Not Work

nn End-to-end data transfer may hardly completeEnd-to-end data transfer may hardly complete

nn Fixed address naming and routing (e.g., IP) areFixed address naming and routing (e.g., IP) are
too rigidtoo rigid

nn Difficult to deploy new applications in existingDifficult to deploy new applications in existing
networksnetworks

nn Outdoor distributed computing requires novelOutdoor distributed computing requires novel
programming models and system architecturesprogramming models and system architectures

77

ExampleExample

Mobile sprinkler Mobile sprinkler
with temperature with temperature
sensorsensor

Left HillLeft Hill Right HillRight Hill

Hot spotHot spot

nn ““Water the hottest spot on the Left HillWater the hottest spot on the Left Hill””
nn Number and location of mobile sprinklersNumber and location of mobile sprinklers

are unknownare unknown
nn Configuration is not stable over timeConfiguration is not stable over time

–– Sprinklers moveSprinklers move
–– Temperature changesTemperature changes

88

OutlineOutline

nn MotivationMotivation

nn Spatial Programming ModelSpatial Programming Model

nn Smart Messages System ArchitectureSmart Messages System Architecture

nn Implementation and EvaluationImplementation and Evaluation

nn ConclusionsConclusions

nn Future WorkFuture Work

99

Traditional Indoor ProgrammingTraditional Indoor Programming

nn Programs access data through variablesPrograms access data through variables
nn Variables mapped to physical memory locationsVariables mapped to physical memory locations
nn Page Table + OS guarantees reference consistencyPage Table + OS guarantees reference consistency
nn Access time has an (acceptable) upper boundAccess time has an (acceptable) upper bound

ProgramProgram

Virtual Address SpaceVirtual Address Space

Page Table + OSPage Table + OS

Physical Memory

Variable accessVariable access

1010

Outdoor ProgrammingOutdoor Programming

nn Application: Perform intrusion detection on Left Application: Perform intrusion detection on Left
 Hill Hill
nn Need a simple programming model Need a simple programming model

__ Hide the networking details Hide the networking details
__ Access to embedded systems as simple as access Access to embedded systems as simple as access

 to variables to variables

n A virtual address space for the physical space?A virtual address space for the physical space?

Left HillLeft Hill Right HillRight Hill

Mobile robot
with camera

Motion Sensor

1111

From Indoor to Outdoor ComputingFrom Indoor to Outdoor Computing

Virtual Address SpaceVirtual Address Space Space RegionSpace Region

VariablesVariables Spatial ReferencesSpatial References

Variables mapped to Variables mapped to
physical memoryphysical memory

Spatial references mappedSpatial references mapped
to systems embedded in to systems embedded in
the physical spacethe physical space

Reference consistencyReference consistency

Bounded access timeBounded access time

??

??

1212

Spatial Programming (SP) at a GlanceSpatial Programming (SP) at a Glance

nn Program outdoor distributed applications usingProgram outdoor distributed applications using

spatial referencesspatial references

nn Shields programmers from networking details byShields programmers from networking details by

providing a virtual address space over networks ofproviding a virtual address space over networks of

embedded systemsembedded systems

nn Embedded systems/nodes named by theirEmbedded systems/nodes named by their

expected locations and propertiesexpected locations and properties

1313

radiusradius

Hill = new Space({lat, long}, radius);Hill = new Space({lat, long}, radius);

{lat,long}{lat,long}

Space RegionsSpace Regions

nn Virtual representation of a physical space Virtual representation of a physical space
nn Similar to a virtual address space in a conventional Similar to a virtual address space in a conventional
 computer system computer system

1414

Spatial ReferencesSpatial References

nn Defined as Defined as {space:property}{space:property} pairs pairs
nn Virtual names for nodes in the network Virtual names for nodes in the network
nn Similar to variables in conventional programming Similar to variables in conventional programming

–– Have meaning only within the application that defined themHave meaning only within the application that defined them

nn Indexes used to distinguish among similar systems Indexes used to distinguish among similar systems
 in the same space region in the same space region

{Hill:robot[0]}{Hill:robot[0]}

{Hill:robot[1]}{Hill:robot[1]}

{Hill:motion[0]}{Hill:motion[0]}

HillHill

1515

Reference ConsistencyReference Consistency

nn At first access, a spatial reference is mapped to anAt first access, a spatial reference is mapped to an
embedded system located in the specified spaceembedded system located in the specified space

nn Mappings maintained in per-application MappingMappings maintained in per-application Mapping
Table (MT)Table (MT)

nn Subsequent accesses to the same spatial referenceSubsequent accesses to the same spatial reference
must access the same system as long as it ismust access the same system as long as it is
located in the same space region (located using MT)located in the same space region (located using MT)

{space, property, index}{space, property, index} {network_address, location}{network_address, location}

1616

Reference Consistency ExampleReference Consistency Example

Left HillLeft Hill Right HillRight Hill

{Left_Hill:robot[0]}.move = ON;{Left_Hill:robot[0]}.move = ON;

Left HillLeft Hill Right HillRight Hill

{Left_Hill:robot[0]}.move = OFF;{Left_Hill:robot[0]}.move = OFF;
Time

1717

Space CastingSpace Casting

{Left_Hill:robot[0]}{Left_Hill:robot[0]}

Left HillLeft Hill Right HillRight Hill

Time

Left HillLeft Hill Right HillRight Hill

{Right_Hill:(Left_Hill:robot[0])}{Right_Hill:(Left_Hill:robot[0])}

1818

Bounding the Access TimeBounding the Access Time

nn How to bound the time to access a spatialHow to bound the time to access a spatial
reference?reference?
–– Discover an unmapped system for a new spatialDiscover an unmapped system for a new spatial

referencereference
–– Mapped systems may move, go out of space, or disappearMapped systems may move, go out of space, or disappear

nn Solution: associate an explicit timeout with theSolution: associate an explicit timeout with the
spatial reference accessspatial reference accesstry{try{

 {Hill:robot[0], timeout}.{Hill:robot[0], timeout}.camera = ON;camera = ON;

}}catch(TimeoutExceptioncatch(TimeoutException e){ e){

 // the programmer decides the next action // the programmer decides the next action

}}

1919

 for(ifor(i=0; i<1000; i++)=0; i<1000; i++)
 try{ try{

if (if ({Left_Hill:Hot[i], timeout}.{Left_Hill:Hot[i], timeout}.temp > Max_temp)temp > Max_temp)
Max_temp = Max_temp = {{Left_Hill:Hot[iLeft_Hill:Hot[i], timeout}], timeout}.temp;.temp;
Max_id = i;Max_id = i;

 } }catch(TimeoutExceptioncatch(TimeoutException e) e)
 break; break;
 {{Left_Hill:Hot[Max_idLeft_Hill:Hot[Max_id],], timeout}timeout}.water.water = ON; = ON;

Spatial Programming ExampleSpatial Programming Example

Application: Water the hottest spot on the Left HillApplication: Water the hottest spot on the Left Hill

Mobile sprinkler Mobile sprinkler
with temperature with temperature
sensorsensor

Left HillLeft Hill Right HillRight Hill

Hot spotHot spot

2020

OutlineOutline

nn MotivationMotivation

nn Spatial Programming ModelSpatial Programming Model

nn Smart Messages System ArchitectureSmart Messages System Architecture

nn Implementation and EvaluationImplementation and Evaluation

nn ConclusionsConclusions

nn Future WorkFuture Work

2121

Smart Messages at a GlanceSmart Messages at a Glance
nn Smart Message (SM)Smart Message (SM)

–– User-defined distributed applicationUser-defined distributed application
–– Composed of code bricks, data bricks, and executionComposed of code bricks, data bricks, and execution

control statecontrol state
–– Executes on nodes of interest named by propertiesExecutes on nodes of interest named by properties
–– Self-routes between nodes of interestSelf-routes between nodes of interest

nn Self-RoutingSelf-Routing
–– Application-level routing executed at every nodeApplication-level routing executed at every node
–– Applications can change routing during executionApplications can change routing during execution

nn Cooperative NodesCooperative Nodes
–– Execution environment (Virtual Machine)Execution environment (Virtual Machine)
–– Memory addressable by names (Tag Space)Memory addressable by names (Tag Space)
–– Code cacheCode cache

2222

““DumbDumb”” vs. Smart Messages vs. Smart Messages

Data migrationData migration

 Lunch: Lunch:

AppetizerAppetizer
EntreeEntree
DessertDessert

Execution migrationExecution migration

2323

Application ExampleApplication Example

n=0n=0
while (n<while (n<NumTaxisNumTaxis))
 migrate(Taxi); migrate(Taxi);
 if (if (readTag(AvailablereadTag(Available))))
 writeTag(AvailablewriteTag(Available, false);, false);
 writeTag(LocationwriteTag(Location, , myLocationmyLocation););
 n++; n++;

n=0n=0

TaxiTaxi TaxiTaxi

n=0n=0 n=0n=0 n=1n=1 n=1n=1 n=2n=2

needneed
2 taxis2 taxis

data brickdata brick

application application
code brickcode brick
routing routing
code brickcode brick

2424

Cooperative Node ArchitectureCooperative Node Architecture

NetworkNetwork

SMSM
PlatformPlatform

Admission
Manager
AdmissionAdmission
ManagerManager

NetworkNetworkSMSM SMSM

Operating System & I/OOperating System & I/O

Code
Cache
CodeCode
CacheCache

Virtual
Machine

VirtualVirtual
MachineMachine

Tag
Space

Tag Tag
SpaceSpace

SM ReadySM Ready
QueueQueue

2525

AdmissionAdmission

nn Ensures progress for all Ensures progress for all SMsSMs in the network in the network

nn Prevents Prevents SMsSMs from migrating to nodes where they from migrating to nodes where they
cannot achieve anythingcannot achieve anything

nn SMsSMs specify lower bounds for resource specify lower bounds for resource
requirements (e.g., memory, bandwidth)requirements (e.g., memory, bandwidth)

nn SMsSMs accepted if the node can satisfy these accepted if the node can satisfy these
requirementsrequirements
–– SMsSMs transfer only the missing code bricks transfer only the missing code bricks

nn More resources can be granted according toMore resources can be granted according to
admission policyadmission policy
–– If not granted, If not granted, SMsSMs are allowed to migrate are allowed to migrate

2626

Execution at a NodeExecution at a Node

nn Non-preemptive, but time boundedNon-preemptive, but time bounded

nn Ends with a migration, or terminatesEnds with a migration, or terminates

nn During execution, During execution, SMsSMs can can

–– Spawn new Spawn new SMsSMs

–– Create new Create new SMsSMs out of their code and data bricks out of their code and data bricks

–– Access the tag spaceAccess the tag space

–– Block on a tag to be updatedBlock on a tag to be updated

2727

Tag SpaceTag Space

nn Application tags: Application tags: ““persistentpersistent”” memory for a memory for a
limited duration across SM executionslimited duration across SM executions

nn I/O tags: uniform interface for interaction withI/O tags: uniform interface for interaction with
operating system and I/O subsystemoperating system and I/O subsystem

nn Tags are used forTags are used for
–– Content-based naming Content-based naming migrate(tagmigrate(tag, timeout), timeout)

–– Inter-SM communication Inter-SM communication write(tagwrite(tag, data), , data), read(tagread(tag))

–– Synchronization Synchronization block(tagblock(tag, timeout), timeout)

–– I/O access I/O access read(temperatureread(temperature))

nn 5 protection domains for access control5 protection domains for access control
–– read and write permissions for each domainread and write permissions for each domain

2828

nn migrate() migrate()
– implements routing algorithm
– migrates application to next node of interest
– names nodes in terms of arbitrary conditions
 on tag names and tag values

nn sys_migratesys_migrate()()
– one hop migration
– used by migrate to implement routing

MigrationMigration

migrate(Taxi)migrate(Taxi)

sys_migrate(2)sys_migrate(2) sys_migrate(3)sys_migrate(3) sys_migrate(4)sys_migrate(4)

TaxiTaxiTaxiTaxi

11 22 33 44

2929

NetworkNetwork

migrate(Taxi){

 while(!readTag(Taxi))

 if (readTag(RouteToTaxi))

 sys_migrate(readTag(RouteToTaxi));

 else

 create_SM(DiscoverySM, Taxi);

 createTag(RouteToTaxi, lifetime, null);

 block_SM(RouteToTaxi, timeout);

}

migrate(Taxi){

 while(!readTag(Taxi))

 if (readTag(RouteToTaxi))

 sys_migrate(readTag(RouteToTaxi));

 else

 create_SM(DiscoverySM, Taxi);

 createTag(RouteToTaxi, lifetime, null);

 block_SM(RouteToTaxi, timeout);

}

Routing ExampleRouting Example
1 2 i

RouteToTaxi = 2 TaxiRouteToTaxi = ?

migrate(Taxi){

 while(!readTag(Taxi))

 if (readTag(RouteToTaxi))

 sys_migrate(readTag(RouteToTaxi));

 else

 create_SM(DiscoverySM, Taxi);

 createTag(RouteToTaxi, lifetime, null);

 block_SM(RouteToTaxi, timeout);

}

RouteToTaxi = j

3030

Self-RoutingSelf-Routing

nn SMsSMs carry the routing and execute it at each node carry the routing and execute it at each node

nn SMsSMs control their routing control their routing

–– Select routing algorithm (migrate primitive)Select routing algorithm (migrate primitive)

nn Multiple library implementationsMultiple library implementations

nn Implement a new oneImplement a new one

–– Change routing algorithm during execution in response toChange routing algorithm during execution in response to

nn Adverse network conditionsAdverse network conditions

nn ApplicationApplication’’s requirementss requirements

3131

Example of Dynamic Change of RoutingExample of Dynamic Change of Routing

SM starts with routingSM starts with routing
for dense networksfor dense networks

migrate(Taximigrate(Taxi, timeout1), timeout1)

Dense networkDense network Sparse networkSparse network

migrate timeouts
SM continues with routing for sparse networks

migrate(Taxi, timeout2)

3232

Self-Routing Simulation ResultsSelf-Routing Simulation Results

starting nodestarting node node of interest other nodeother node

n 3 nodes of interest located in the corners
 have to be visited in clockwise order
n vary the radius from 100m to 700m

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600 700 800

Region Radius (meters)

C
o

m
p

le
ti

o
n

 T
im

e
 (

s
e
c
)

On-Demand Routing Geographic+On-Demand Routing

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 100 200 300 400 500 600 700 800

Region Radius (meters)

B
yt

es
 S

en
t

in
 t

h
e

N
et

w
o

rk
 (

K
B

yt
es

)

On-Demand Routing Geographic+On-Demand Routing

On-Demand Routing versus Geographic + On-Demand Routing

3333

Prototype ImplementationPrototype Implementation

nn Modified version of SunModified version of Sun’’s Java K Virtual Machines Java K Virtual Machine

–– Small memory footprint (160KB)Small memory footprint (160KB)

nn SM and tag space primitives implemented insideSM and tag space primitives implemented inside
virtual machine as native methods (efficiency)virtual machine as native methods (efficiency)

nn Implemented I/O tags: GPS location, neighborImplemented I/O tags: GPS location, neighbor
discovery, image capture, light sensor, systemdiscovery, image capture, light sensor, system
statusstatus

Prototype Node with GPS
receiver and video camera

3434

Lightweight MigrationLightweight Migration
nn Traditional process migration difficultTraditional process migration difficult

–– Strong coupling between execution entity and hostStrong coupling between execution entity and host

–– Needs to take care of operating system state (e.g.,Needs to take care of operating system state (e.g.,
open sockets, file descriptors)open sockets, file descriptors)

nn Tag space decouples the SM execution stateTag space decouples the SM execution state
from the operating system statefrom the operating system state

nn SM migration transfers onlySM migration transfers only

–– Data bricks explicitly specified by programmerData bricks explicitly specified by programmer

–– Minimal execution control state required to resumeMinimal execution control state required to resume
the SM at the next instruction (e.g., instructionthe SM at the next instruction (e.g., instruction
pointer, operand stack pointer)pointer, operand stack pointer)

3535

Experimental Results for SimpleExperimental Results for Simple
Routing AlgorithmsRouting Algorithms

Completion Time

Routing algorithm Code not cached (ms) Code cached (ms)

Geographic

On-demand

415.6 126.6

506.6 314.7

user node
node of interest
intermediate node

HP HP iPAQsiPAQs running Linux and using running Linux and using
IEEE 802.11 for wireless communicationIEEE 802.11 for wireless communication

3636

Spatial Programming ImplementationSpatial Programming Implementation
Using Smart MessagesUsing Smart Messages

nn SP application translates into an SMSP application translates into an SM
nn Spatial reference access translates into an SMSpatial reference access translates into an SM

migration to the mapped nodemigration to the mapped node
nn Embedded system properties: TagsEmbedded system properties: Tags
nn SM self-routing (content-based and geographicalSM self-routing (content-based and geographical

routing)routing)
nn Reference consistencyReference consistency

__ Unique tag created when a spatial reference is mappedUnique tag created when a spatial reference is mapped
 to a node to a node
__ Name of the unique tag and the location of the nodeName of the unique tag and the location of the node

stored in Mapping Table (MT)stored in Mapping Table (MT)
__ MT carried by the SM that implements the SP applicationMT carried by the SM that implements the SP application

3737

 Max_temp = Max_temp = {Left_Hill:Hot[1], timeout}{Left_Hill:Hot[1], timeout}.temp;.temp;

SP Library Using SP Library Using SMsSMs: Example: Example

Left HillLeft Hill Right HillRight Hill

Spatial Reference AccessSpatial Reference Access

Smart MessageSmart Message

ret = ret = migrate_geo(locationmigrate_geo(location, timeout);, timeout);
if ret == if ret == LocationUnreachableLocationUnreachable
 ret = ret = migrate_tag(yU78GH5migrate_tag(yU78GH5, timeout);, timeout);
if (ret == OK) && (location == Left_Hill)if (ret == OK) && (location == Left_Hill)
 return return readTagreadTag(temp(temp););
else else throw throw TimeoutExceptionTimeoutException

{Left_Hill,Hot,1}{Left_Hill,Hot,1} {yU78GH5,location}{yU78GH5,location}MappingMapping
TableTable

CodeCode
BrickBrick

3838

SP Application: Intrusion DetectionSP Application: Intrusion Detection

Code Size breakdown for SM Code Size breakdown for SM
(Application + SP Library)(Application + SP Library)

Code Size breakdown for Code Size breakdown for
SP librarySP library

10 HP 10 HP iPAQsiPAQs with 802.11 cards and GPS devices with 802.11 cards and GPS devices
user nodeuser node
light sensorlight sensor
camera nodecamera node
regular noderegular node

monitoredmonitored
spacespace

3939

Execution Time BreakdownExecution Time Breakdown

4040

ConclusionsConclusions

nn Spatial Programming makes outdoor distributedSpatial Programming makes outdoor distributed

applications simple to programapplications simple to program

nn Volatility, mobility, configuration dynamics, ad-Volatility, mobility, configuration dynamics, ad-

hoc networking are hidden from programmerhoc networking are hidden from programmer

nn Implementation on top of a Smart MessagesImplementation on top of a Smart Messages

–– Easy to deploy new applications in the networkEasy to deploy new applications in the network

–– Quick adaptation to highly dynamic networkQuick adaptation to highly dynamic network

configurationsconfigurations

4141

Future Work: Real ApplicationsFuture Work: Real Applications

nn EZCabEZCab: An automatic systems for booking cabs in: An automatic systems for booking cabs in
citiescities

nn TrafficViewTrafficView: A scalable traffic monitoring system: A scalable traffic monitoring system
nn SmilesSmiles: : SmartPhonesSmartPhones for interacting with local for interacting with local

embedded systemsembedded systems

4242

Thank you!Thank you!

http://discolab.rutgers.eduhttp://discolab.rutgers.edu

Outdoor Distributed Computing Project People:Outdoor Distributed Computing Project People:

Professor Professor LiviuLiviu IftodeIftode

Graduate Students: Cristian Graduate Students: Cristian BorceaBorcea, , PorlinPorlin Kang, Kang,

NishkamNishkam RaviRavi, , PengPeng Zhou Zhou

Collaboration with Professor Ulrich Kremer andCollaboration with Professor Ulrich Kremer and

Professor Professor ChalermekChalermek IntanagonwiwatIntanagonwiwat

4343

Protection Domains for Tag SpaceProtection Domains for Tag Space

nn Owner: SM that creates the tagOwner: SM that creates the tag
nn Family: all Family: all SMsSMs having a common ancestor with the having a common ancestor with the

SM that owns the tagSM that owns the tag
nn Origin: all Origin: all SMsSMs created on the same node as the created on the same node as the

family originator of the tag ownerfamily originator of the tag owner
nn Code: all Code: all SMsSMs carrying a specific code brick carrying a specific code brick
nn Others: all the other Others: all the other SMsSMs

FamilyFamily
CodeCode

OriginOrigin
Others

OwnerOwner

4444

Access Control ExampleAccess Control Example
(Code-based protection domain)(Code-based protection domain)

Node5

Node3 Node4
SM2SM2

SM2
C2 Cr

Node1 Node2
Code
Bricks

Tag

Owner = SM1
[Hash(Cr), RW]

SM1
C1 Cr

SM1 SM1
SM3

C3 C4

Access permission granted for SM2
Access permission denied for SM3

Cr Same routing used by SM1 and SM2

