_|,

Programming Outdoor

Distributed Embedded Systems

Cristian Borcea

DiscoLab - Laboratory for
Network Centric Computing

Indoor Distributed Computing

e S

m Computing is distributed for performance or fault
tolerance

m Nodes are computationally equivalent
m Configuration is stable (failures are exceptions)
m Networking is robust and has acceptable delays

m Relatively easy to program
- Message passing or shared memory

- Names are easy to translate to network addresses

Computers Go Outdoors

Distributed object
tracking over a large
geographical area

Cars collaborating
for a safer and
more fluid traffic

Outdoor Distributed Systems

m Embedded in non-traditional computing systems

m Functionally heterogeneous

m Distributed across the physical space

m Node's role in computation often driven by location
m Communicate through short-range wireless

m Create networks of embedded systems

- Ad hoc topologies

How to Program Outdoor Distributed
Embedded Systems?

m Recent research in networked embedded systems
has focused on
Hardware
Operating Systems
Network Protocols

Data collection/dissemination in sensor hetworks

Traditional Distributed Computing
Does Not Work

m End-to-end data transfer may hardly complete

m Fixed address naming and routing (e.g., IP) are
too rigid

m Difficult to deploy new applications in existing

hetworks

Example

Right Hill Mobile sprinkler
= e ® with temperature
sensor

Hot spot

Number and location of mobile sprinklers
are unknown
Configuration is not stable over time

- Sprinklers move
- Temperature changes

Outline

m Motivation
m Spatial Programming Model

m Smart Messages System Architecture

s Implementation and Evaluation

m Conclusions

m Future Work

Traditional Indoor Programming

Program

Virtual Address Space _

Page Table + OS

Physical Memory

m Programs access data through variables
m Variables mapped to physical memory locations
m Page Table + OS guarantees reference consistency

Outdoor Programming

@ Motion Sensor

@ Mobile robot
| with camera

Application: Perform intrusion detection on Left
Hill

Need a simple programming model

_ Hide the networking details

_ Access to embedded systems as simple as access

to variables

From Indoor to Outdoor Computing

Variables Spatial References

Spatial references mapped
to systems embedded in
the physical space

Variables mapped to
physical memory

Reference consistency ?

Bounded access time ?

Spatial Programming (SP) at a Glance

m Program outdoor distributed applications using

spatial references

m Shields programmers from networking details by
providing a virtual address space over networks of

embedded systems

m Embedded systems/nodes named by their

expected locations and properties

Space Regions

m Virtual representation of a physical space
m Similar to a virtual address space in a conventional

computer system ,

Spahal References

- .y

m Defined as
m Virtual names for nodes in the network

m Similar to variables in conventional programming

- Have meaning only within the application that defined them

m Indexes used to dns‘nngunsh among similar systems
1 14

Reference Consistency

m At first access, a spatial reference is mapped to an
embedded system located in the specified space

m Mappings maintained in per-application Mapping
Table (MT)

—

m Subsequent accesses to the same spatial reference
must access the same system as long as it is

located in the same space region (located using MT)
15

Reference Consistency Example

- ~

Space Casting

Bounding the Access Time

m How to bound the time to access a spatial
reference?

- Discover an unmapped system for a new spatial
reference

- Mapped systems may move, go out of space, or disappear

m Solution: associate an explicit tfimeout with the
spatial fperence access

camera = ON:
tcatch(TimeoutException e)q
/| the programmer decides the next action

}

Spatial Programming Example

Left Hill ill Mobile sprinkler
- e Lo 2\ ® with temperature

sensor

- e = ==

Hot spot

Application: Water the hottest spot on the Left Hi

for(i=0; i<1000; i++)
try{
it (temp > Max_temp)
Max_temp = temp;
Max_id =1;
fcatch(TimeoutException e)
break:

.water = ON;

Outline

m Motivation
m Spatial Programming Model

m Smart Messages System Architecture

s Implementation and Evaluation

m Conclusions

m Future Work

Smart Messages at a Glance

User-defined distributed application

Composed of code bricks, data bricks, and execution
control state

Executes on nodes of interest named by properties
Self-routes between nodes of interest

Application-level routing executed at every node
Applications can change routing during execution

- Execution environment (Virtual Machine)
- Memory addressable by names (Tag Space)

"Dumb” vs. Smart Messages

Harlem Randalls Harkm Randall's

Islang Islang

Ward's g Ward's
\ CENTRAL tzland CENTRAL lsland
Upper Upper
Wesl Wesl
Side Side

METROFOLITAN METROFOLITAN

Muscus or MUSEUM OF ART ° MusEUuM or MUSEUM OF ART
NATLII'!ALI Upper ° NATLII'!ALI

Hizromy e — U Upper
PARK East

PARK East

S7TTH STREET S7TTH STREET,

Appetizer @ P e,

EmPiRE Erl-j—"r)gz CENTER i) g.'_mpun:

ATH
BING
ETATION

Dessert @ o

Roosevel Island
Roosevel Island

TIMES
CiRGLE SOUARE

LEHE

. AZMD =R

AniTE \ ‘T HSTR

CENTER

Mm_FiF|TH AVEMUE

mEooR £
STREET T
SEAFODRT HAIBGET

BATTERY BATTERY
PARK PARK

Data migration Execution migration

22

Application Example

while (n<NumTaxis) Bl databrick

application

f (readTag(Available)) . pZ' A .')

write Tag(Available, false); coge DE(C
write Tag(Location, myLocation); routing

n++; code brick

Cooperative Node Architecture

Virtual
' Machine

Platiiorm

Operating System & I/0

Admission

m Ensures progress for all SMs in the network

m Prevents SMs from migrating fo nodes where they
cannot achieve anything

m SMs specify lower bounds for resource
requirements (e.g., memory, bandwidth)

m SMs accepted if the node can satisfy these
requirements

- SMs transfer only the missing code bricks

m More resources can be granted according to
admission policy

Execution at a Node

m Non-preemptive, but time bounded

m Ends with a migration, or terminates

m During execution, SMs can
- Spawn new SMs
- Create new SMs out of their code and data bricks
- Access the tag space

- Block on a tag to be updated

Tag Space

m Application tags: "persistent” memory for a
limited duration across SM executions

m I/0 tags: uniform interface for interaction with
operating system and I/O subsystem

m Tags are used for
Content-based naming
Inter-SM communication
Synchronization

I/0 access

m 5 protection domains for access control

Migration

- implements routing algorithm
- migrates application to next node of interest
- names nodes in terms of arbitrary conditions
on tag names and tag values
m sys_migrate()
- one hop migration

Routing Example

RouteToTaxi = 2

else
create_SM(DiscoverySM, Taxi);
createTag(RouteToTaxi, lifetime, null);
block_SM(RouteToTaxi, timeout);

Self-Routing

m SMs carry the routing and execute it at each node

m SMs control their routing

m Multiple library implementations

m Implement a hew one

m Adverse network conditions

m Application’s requirements

Example of Dynamic Change of Routing

SM starts with routing
for dense networks

Dense network = | Sparse network

Timeouts
SM continues with routing for sparse networks

Self-Routing Simulation Results
On-Demand Routing versus Geographic + On-Demand Routing

m 3 nodes of interest located in the corners
have to be visited in clockwise order
m vary the radius from 100m to 700m

® starting node ® node of interest ® other node

‘+ On-Demand Routing -+ Geographic+On-Demand Routing ‘ ‘l On-Demand Routing & Geographic+On-Demand Routing
4500

g

3]

|
w b
a o
© o
S o

Completion Time (sec)
- [3,) N

Nt
3

o

Bytes Sent in the Network (KBytes)

300 400 500 600 700

o

400 500 600 700 800

Region Radius (meters) Region Radius (meters)

Prototype Implementation

m Modified version of Sun's Java K Virtual Machine
- Small memory footprint (160KB)

m SM and tag space primitives implemented inside
virtual machine as native methods (efficiency)

m Implemented I/0 tags: GPS location, neighbor
discovery, image capture, ligh

Tat
° Srg?o‘rype Node with GPS

receiver and video camera

Lightweight Migration

m Traditional process migration difficult
- Strong coupling between execution entity and host

- Needs to take care of operating system state (e.g.,
open sockets, file descriptors)

m Tag space decouples the SM execution state
from the operating system state

m SM migration transfers only
- Data bricks explicitly specified by programmer

- Minimal execution control state required to resume
the SM at the next instruction (e.g., instruction

Experimental Results for Simple
Routing Algorithms

HP iPAQs running Linux and using
TEEE 802.11 for wireless communication

AR ”\ ® user node
° node of interest
" / ® intermediate node

Routing algorithm|Code not cached (ms)| Code cached (ms)

Geographic 415.6 126.6

On-demand 506 6 314.7

Completion Time

Spatial Programming Implementation
Using Smart Messages

Embedded system properties: Tags

SM self-routing (content-based and geographical
routing)
m Reference consistency

_ Unique tag created when a spatial reference is mapped

to a node

_ Name of the unique tag and the location of the node

Spatial Reference Access| Max_temp =
l Mapping —>

Table .
ret = , timeout);
if ret == LocationUnreachable

Smart Message< Code ret = , timeout);

Brick |If (ret == OK) && (location == Left_Hill)
return (temp);

else

SP Application: Intrusion Detection
10 HP iPAQs with 802.11 cards and GPS devices

user node
light sensor

space camera hode
regular node

monitored

Stack and Data Auxiliary Binding Table
2% Application Classes 10%
Code 15%
1%

Content Based
Routing

SM Wrapper 33%
27%

Library Code Geographical
87% Total size = 18.5KB Routing
15%

Total Size = 15.9KB

Code Size breakdown for SM Code Size breakdown for
Application + SP Librar SP librar #

Execution Time Breakdown

Time (ms)
2500 -

[0 Migrate back to user

l Migrate to camera

[Discover camera

[1 Migrate to light sensor
Wl Discover light sensor
[0 Reach space

Code uncached Code cached

Conclusions

m Spatial Programming makes outdoor distributed

applications simple o program

m Volatility, mobility, configuration dynamics, ad-

hoc networking are hidden from programmer

m Implementation on top of a Smart Messages

- Easy to deploy new applications in the network

- Quick adaptation to highly dynamic network

configurations

Future Work: Real Applications

Tﬁﬁ TCP;‘IP.___W-V-

Iﬁl Bluetooth

‘? Bluetooth .

\ L—
Bluetooth-Enabled “=\ GPRS _
Embedded Systems | Blugtsiath, \ ‘—“ Inte met .

|
EIZ;H-.._ Smart Phone
o

. A scalable traffic monitoring system
: SmartPhones for interacting with local

Thank youl

http://discolab.rutgers.edu

Professor Liviu Iftode
Graduate Students: Cristian Borcea, Porlin Kang,
Nishkam Ravi, Peng Zhou

Collaboration with Professor Ulrich Kremer and

L)
- o Al AMAAL A1 N ONVWIVU(

Protection Domains for Tag Space

Oeiglny ®

Code Others

m Owner: SM that creates the tag

m Family: all SMs having a common ancestor with the
SM that owns the tag

m Origin: all SMs created on the same node as the
family originator of the tag owner

m Code: all SMs carrying a specific code brick

m UJThers:. a % V)

Access Control Example
(Code-based protection domain)

SM3

SM1 SM1 s\ B
cilcr g Nodel sy Node2

Code
Bricks

c2lcr

SM2

Cr Same routing used by SM1 and SM2
<> Access permission granted for SM2
Access permission denied for SM3

