Internet Services

Conclusion to Internet Services
Richard Martin
Rutgers University
Department of Computer Science
May. 2003

Course Structure

• Critique Papers: ↔
 • Examples of good and poor research
• Student Presentations: 🤧
 • Practice presenting ideas
• Position Papers 🤧
 • Practice writing and reviewing
• Project ?
 • Practice experimentation and evaluation

Themes in the Course

• Availability & Reliability
• Network Performance
• End System Performance
• Location Based Services
• Not Covered:
 • Content distribution
 • Security
 • User access
 • Architectures (hardware and software)

Availability

• Hard to model at right level of accuracy
 • Stochastic reasoning appropriate?
 • Probabilistic reasoning appropriate?
• Little empirical data to supporting work
 • Beginning to understand these tradeoffs
• 10 years on, software and operators still major sources of outages
 • still at 399s?
• "Time heals all wounds?"
Human Impact

- Hard to quantify availability
 - Analytic models of operator actions
 - State machines
 - Fault trees
 - Action grammars
 - Likelihoods of errors & impact
- Restricting actions?
 - How to do this in a computer system?
 - E.g. Complexity of user interface for shell vs. car
 - Is this possible?

Software Availability

- 30 years of software engineering
 - People still use print to debug
 - Software still horrible
 - Mythical man-month still relevant
 - Xtreme programming good, but doesn't attack essence

Quantify Intuition

- High availability software exists
 - What is being programmed?
 - How is it created?
 - What is its architecture?
 - What is not done?
- Can these processes be
 - Described?
 - Checked?
 - Automated?
Internet Tomography

- Measuring the real internet
- Creating realistic models
- Understanding current situation
- Implications for services?
 - How can you use this information?
 - # of access points?
 - Distribution of access points?
 - Likelihood of failure?
 - 5 nines not such a big deal? (4 is OK?)

End Performance

- Is performance a solved problem?
 - Under normal operating conditions?
- When do other problems demand more attention?
 - Security, availability, billing Ø
- Performance under overload not well understood

Overload and QoS

- Over-engineering the worst case by safety factor
 - traditional engineering approach
- Computer systems have other options
 - Denial of service
 - Admissions control
 - Drop
 - Degradation of service
 - lower QoS over load
- How to easily implement?

Location based Services

- All talk, poor motivation
 - Still no killer app
 - Compelling reason to care about user's location
- Most likely will come from something
 - stupid
 - geocaching
 - graffiti
- Will drive a lot of infrastructure
 - Change the way people perceive location
not covered:
WAN content distribution

- Is this theme played out?
 - Akamai, Fast-forward, Inktomi
 - Squid
- What happened to VoD?
 - One student paper on multi-cast
 - Bandwidth savings vs. other stuff

Not Covered: Security

- Hard to do justice in this class
- Huge problem or red-herring?
 - Headache for everyone
 - Permeates all levels and systems (language, net, OS)
- Quantify how secure a given system is?
- A global methodology for securing systems

Not Covered: Architectures

- SMP/MPP/Cluster debate is over?
- Software architectures ossified
 - 2-3 Tiers
 - Historical Accident?
 - What if we had a clean slate?

New Themes

- Personal Search and Retrieval
 - I have too much stuff
- What environments or systems make services more programmable?
 - Can your grandmother set-up a web page?
 - Run a service?
 - Create a web-store (eBay?)
- Web Services
 - Offer client/server over the web in a standardized way.
Summary

Good luck on the projects!

Due Sunday May 11th