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Abstract 

Comprising an estimated 60,000 hosts, the DARPA In- 
ternet is the largest existing internet. This paper traces 
the routing information protocols used by Internet gate- 
ways to build routing tables that define the paths data- 
grams traverse as they travel between end systems. We 
articulate the weaknesses and limitations of the most 
commonly used routing protocols, including RIP, GGP, 
and HELLO and examine how the protocols interact 
with each other and with EGP. Finally, we trace the 
evolution of routing as the Internet has grown from a 
single backbone (ARPANET) to its present inclusion 
of the ARPANET, Milnet, and NSFnet cross-country 
networks. 

1 Introduction 

Networking has revolutionized computing. Scientists 
use networks to exchange data, disseminate research 
results, and collaborate with others. Because no one 
technology satisfies the diverse needs of users, thou- 
sands of independent networks are scattered around 
the world. Through the technology known as inter- 
netvrorking [Pos80], multiple independent networks can 
be joined into a single virtual network called an inter- 
net. Internet technology abstracts away the details of 
the underlying physical connections and provides users 
with the illusion of connecting to a single, homogeneous 
network. 

In the largest internet, the connected TCP/IP Inter- 
net [HHS83,JLF*86], an estimated 60,000 hosts com- 
municate using the TCP/IP protocol suite [ComSS]. As 
the Internet has grown, so have the mechanisms it em- 
ploys in selecting the paths that carry datagrams from 
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their source to their destination. The process of path 
selection is known as routing. In the early 198Os, the 
size and topology of the Internet was sufficiently com- 
prehensible that route tables could be managed by such 
ad hoc, manual mechanisms as configuration tables. As 
the Internet grew, however, researchers invented proto- 
cols that automated the propagation of routing infor- 
mation and allowed new sites to join the Internet and 
communicate instantly with other sites. 

This paper focuses on the mechanisms used to route 
IP datagrams through the Internet’, articulating the 
protocols, interactions among protocols, and the scat- 
tered pieces of information needed to understand how 
the Internet routes datagrams between end systems. 
Section 2 reviews the Internet routing architecture and 
reviews the strengths and weaknesses of vector-distance 
and link-status based routing protocols. Section 3 re- 
views autonomous systems, the Exterior Gateway Pro 
tocol (EGP), and the Core system. Section 4 presents 
common routing protocols used within an autonomous 
system, including RIP, GGP, HELLO. In Section 5, we 
chronicle the evolution of routing within the Internet, 
covering the ARPANET, MILNET, and the first two 
phases of NSFnet. Section 7 presents conclusions, and 
the Appendix documents several events that lead to 
Internet-wide routing failures. 

2 Background 

The Internet architecture clearly distinguishes hosts 
from gateways. Hosts are computers that execute ap- 
plication programs on behalf of users. They may be 
time-sharing systems, batch systems, workstations, or 
personal computers. Although hosts may depend on 
network services, their primary function is user service. 
In contrast, gateways are the building blocks that con- 
nect networks into internets. A gateway connects to two 
or more networks. It receives datagrams from hosts and 

lThe term internet refers to any internet; we use Internet to 
refer specifically to the connected TCP/IP Internet. 
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Figure 1: Sample internet with hosts, networks, and 
gateways. 

gateways on one network and forwards them to hosts 
or gateways on another network. The proper function- 
ing of the internet depends on the correct operation of 
gateway hardware and software. 

Gateways process datagrams in a store-and-forward 
manner. When a datagram D arrives at a gateway G, 
G selects another gateway, N, that is (1) closer to the 
datagram’s destination and (2) directly reachable from 
G. G queues the datagram for transmission to N us- 
ing the appropriate network interface hardware. N is 
called the next hop for datagram D and the process of 
selecting a next-hop host or gateway is known as rout- 
a’ng. Figure 1 illustrates routing. The example internet 
consists of five networks interconnected by six gateways 
(Gi, 1 2 i 2 6) and three hosts (Hi, 1 5 i 5 3). Sup- 
pose that Hl wants to send a datagram to H2. Because 
it cannot reach H2 directly, Hl sends the datagram to 
gateway Gl. Although G2, G3, and G5 are candidate 
next hops, Gl forwards the datagram to G3 because of 
its proximity to H2. Gl sends the datagram directly 
to G3 across network N2, and G3 sends the datagram 
directly to H2 across network N4. 

To adjust dynamically to changes in topology, gate- 
ways run routing information protocols that disseminate 
topological information about the internet. Through 
routing protocols, gateways learn which networks are 
currently reachable, and the appropriate next-hop gate- 
way to use in reaching a given destination. 

2.1 Host Routing 

Although hosts send datagrams to gateways, they 
should not participate in the same routing informa- 
tion protocols used among gateways. First, the num- 
ber of hosts on a network typically exceeds the number 
of gateways by an order of magnitude or more, and 
the exchange of information needed by routing proto- 
cols consumes resources. Second, routing protocols con- 
tinue to evolve, and host software must be updated to 
take advantage of each new routing algorithm. Chang- 
ing software on a few gateways is easier than changing 

software on hundreds of hosts. Finally, some host com- 
puters, such as single-tasking personal computers, lack 
facilities needed to participate in gateway routing pro- 
tocols. Thus, mechanisms that propagate routing infor- 
mation from gateways to hosts should be independent 
from those used to propagate such information among 
gateways. 

To route datagrams, a host need only maintain a 
set of pointers to neighboring gateways and a cache 
of recently used routes. When sending a datagram, a 
host searches its cache for a next-hop gateway to use 
in reaching that datagram’s destination. If the cache 
lookup fails, the host creates a new entry, filling in the 
gateway field with one of the “default” gateways in its 
set. In Figure 1, a single gateway separates Hl from the 
rest of the world, and the need for a cache of routes is 
not obvious. Host H2, however, shares a network with 
two gateways. If it sends a datagram destined for H3 
to gateway G3, G3 might route it to G4, which H2 can 
reach directly. 

The Internet architecture includes a redirect mecha- 
nism that gateways use to notify hosts when they have 
chosen the “wrong” gateway. In our example, gateway 
G3 sends H2 an ICMP redirect [PO&~] telling it to for- 
ward traffic destined for H3 through G4. Upon receipt 
of a redirect, a host updates the gateway field of the 
corresponding cache entry for that destination. 

The redirect mechanism can only be used between 
gateways and hosts, because it relies on a gateway’s 
ability to determine which neighboring host or gate- 
way forwarded the datagram to it. In particular, when 
sent by a host, the network portion of the datagram’s 
source address will match that of one of the gateway’s 
connected networks. Whenever a gateway forwards a 
datagram to a next-hop gateway on the same network 
as datagram’s source, it knows that the host can reach 
that gateway directly and sends the host a redirect. 

2.2 Gateway Routing Protocols 

Gateways run routing protocols to learn the topology 
of the internet. Roughly speaking, existing routing pro- 
tocols fall into two general classes. “Link-status pro- 
tocols” propagate the status of the actual topology of 
the internet. In contrast, gateways running “vector- 
distance protocols” exchange routing tables with one 
another. The following subsections review the two 
classes of algorithms. 

2.3 Vector-Distance Protocols 

Vector-distance algorithms, also known as Bellman- 
Ford algorithms [BG87], were first used in the origi- 
nal ARPANET [MFR78]. Update messages consist of 
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(destination, metric) pairs. Conceptually, a gateway 
generating update messages advertises routes for the 
destinations it can reach, with a metric indicating the 
cost of the path to the destination. From the received 
updates, a gateway selects for each destination the next- 
hop gateway advertising that destination at the lowest 
metric. A special metric value of infinity denotes paths 
that are no longer reachable and should not be used. 

As an example, suppose that the gateways in Fig- 
ure 1 run a vector-distance protocol whose update met- 
ric corresponds to the number of gateways traversed in 
reaching the destination2. Gateways G3 and G4 adver- 
tise network N4 at metric zero. G2 and G6 advertise N4 
at metric one, and G5 advertises the network at metric 
one. Gateway Gl, receiving updates for N4 from G3, 
G2, and G5 at metrics of zero, one, and one respectively, 
selects G3 as its next hop for N4. 

Details of individual vector-distance protocols de- 
pend on their specific implementations. In some im- 
plementations the sender returns updates only in re- 
sponse to requests; in others, gateways send periodic, 
unsolicited updates. Likewise, some implementations 
assume fixed link costs, while others vary a link’s cost 
to reflect load or delay. Finally, in some implementa- 
tions, the sender measures the cost of the link and adds 
it to the routing metrics prior to sending an update, 
while in other implementations, such functions are del- 
egated to the receiver. 

The relative simplicity of vector-distance algorithms 
contributes to their wide popularity. They use only lo- 
cal information, and gateways only exchange informa- 
tion with neighbor gateways. However, vector-distance 
algorithms suffer from what is known as the “counting- 
to-infinity” problem. If a link fails, or its cost in- 
creases suddenly, routing loops can develop because 
some gateways still send updates containing old infor- 
mation. Moreover, loops can persist for a significant 
amount of time. 

For example, consider the four gateways in Figure 
2. Initially, gateway Gl advertises a route for Nl at 
zero hops, and G2 advertises the route for Nl to G3 
at one hop. G3, in turn, advertises the route at metric 
two. If Gl stops sending updates, G2 will conclude 
that Nl has become unreachable through Gl and adopt 
the path advertised by G3 at metric two, creating a 
“ping-pang” routing loop between neighbors G2 and 
G3. During the next update exchange, G3 will advertise 
the route at metric three, and G2 continues using the 
route. Each gateway’s metric increases with subsequent 
updates, and the loop persists until the metric counts 
up to infinity. 

Ping-pong loops form between adjacent gateways be- 

2This metric is known as a hop count. 

Figure 2: A ping-pong loop for destinations on network 
N4 forms between gateways Gl and G2 after gateway 
G3 crashes. 

cause neither is aware that they are both routing data- 
grams for a common destination through each other. 
Loops between adjacent gateways are one instance of 
a more general problem with vector-distance protocols. 
Specifically, loops form when gateway G receives an up- 
date and switches the route for a given destination to a 
new next-hop gateway unaware that the path that the 
next-hop gateway uses to reach that destination actu- 
ally travels through G. Stated more formally, suppose 
that gateway Gl has a loop-free path to destination 
DEST. In order for loops involving Gl and DEST to 
form, the following conditions must be met: 

Condition 1 Gateway Gl receives an update from one 
of its neighbors G2 reporting a current metric for des- 
tination DEST that is less than Gl’s current metric to 
DEST. 

Condition 2 Gl is included in Gt’s path to DEST. 

Loop formation can be prevented by taking appro- 
priate action when the two conditions are met. For 
instance, if a gateway sending a routing update to a 
neighbor identifies those destinations whose paths in- 
clude the receiving gateway, the receiving gateway can 
ignore information about such routes, preventing con- 
dition 2. The technique popularly known as poisoned 
updates does just that: when a gateway sends an up- 
date to one of its neighbors, all routes through that 
neighbor are given a metric of infinity, forcing the re- 
ceiving gateway to ignore the information. Likewise, 
in the related technique called split horizon, gateways 
omit from routing updates entries for those destinations 
it routes through the gateway targeted by the update. 
With vector-distance protocols, however, the sending 
gateway can only identify the first hop of a path to a 
destination and the two techniques can only prevent 
ping-pong loops; loops involving more than two gate- 
ways can form. The problem stems from updates that 
are based on old information. The following definition 
clarifies the problem. 

Definition 1 A routing update Ul is based on update 
U2 with respect to destination DEST if the information 
in Ul regarding DEST was derived from information 
contained in U2. 
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Intuitively, loops can form when a gateway processes 
an update based on an update it sent previously. For 
example, ping-pong loops form when a gateway G re- 
ceives an update from its neighbor that was based on 
a previous update sent by G to that neighbor. With 
vector-distance protocols, news travels approximately 
one hop per update interval. Thus, in large networks, 
a gateway might receive updates based on an update it 
generated several update intervals ago, leading to the 
following proposition: 

Proposition 3 If a pair of gateways generate update 
messages Ul and 172 at times Tul and TUZ respectively, 
than there is some length of time T such that: if TV1 - 
Tu2 2 T, then Ul is not based on 172. 

Intuitively, the proposition states that information in 
an update remains in the network for a finite time less 
than some value T. Hold-down [MRR78] is a heuris- 
tic that takes advantage of the proposition. When- 
ever a gateway’s metric to a destination increases, it 
ignores further information about that destination for 
a time period of length T. Hold-down guarantees that 
any routing updates meeting Condition’s 1 and 2 will 
be ignored. 

Although hold-down timers can prevent the forma- 
tion of certain types of loops, they suffer from two de- 
ficiencies. First, the hold-down time T is proportional 
to the update propagation time across the network and 
may be several minutes long. Second, networks using 
hold-down are slow to adapt to topology changes, a self- 
defeating property for an adaptive routing algorithm. 
If the metric of a path currently in use increases or 
reaches infinity, for instance, a gateway continues using 
it even if a better path is available. Using hold-down 
to prevent all loops, however, might be too ambitious. 
Indeed, a short value for the hold-down timer can pre- 
vent ping-ping loops, while longer timers prevents loops 
of increasing path length. Hold-down timers and their 
problems are described in detail in [MRR78]. 

2.4 Link Status Protocols 

Link-status protocols propagate the status of the ac- 
tual physical topology of the internet to each gateway. 
Update messages consist of (link, metric) pairs, where 
the link identifies a pair of adjacent gateways, and the 
metric gives the cost of using that link. A metric’s 
value might be fixed, or give a dynamic estimate of its 
load, transmission delay, etc. Periodically, a gateway 
controlling the link broadcasts update messages to all 
participating internet gateways. From the database of 
link costs, each gateway constructs a tree of shortest 
paths leading to each destination. 

Because update messages are broadcast to each gate- 
way, each gateway builds its routing tables from the 
same information, reducing the probability that rout- 
ing loops will form. Thus, link-status protocols are less 
vulnerable to loop formation than vector-distance algo- 
rithms. In practice, link-status protocols are not en- 
tirely loop free. In a large internet, for instance, broad- 
cast update messages may propagate slowly, and vari- 
ous gateways might receive an update at different times. 
Thus two gateways might compute routing tables based 
on a different set of updates. In addition, the cost of 
sending updates is significant and does not scale well 
to internets comprised of thousands of networks and 
gateways. To insure that each gateway builds its tables 
from the same information, update messages must be 
carried in reliable broadcasts guaranteed to reach every 
gateway, and consecutive updates from the same gate- 
way must be processed serially. Link-status algorithms 
were first used within the ARPANET [MRR~O]. 

3 EGP and the Core 

When the Internet formed, Bolt, Beranek, and New- 
man Inc. (BBN) administered and operated the 
ARPANET backbone network. In an internet, how- 
ever, no single organization could manage all the con- 
stituent networks and gateways, and Internet archi- 
tects created autonomous systems, administrative re- 
gions within which sites manage routing themselves. 
Within an autonomous system, sites use a private inte- 
rior gateway protocol (IGP) to propagate information 
about routes. To learn about networks in other au- 
tonomous systems, gateways between autonomous sys- 
tems run the Exterior Gateway Protocol (EGP) [Mi184]. 
Gateways use EGP to find out how to reach networks 
located in other autonomous systems, and to adver- 
tise the existence and reachability of networks located 
within their autonomous systems. IGPs can be used 
only within a single autonomous system and EGP is 
the sole means by which route information from one 
autonomous systems may flow into another. 

Three aspects of the EGP reachability protocol 
should be noted. First, EGP isolates sites from one 
another. Gateways running the EGP protocol negoti- 
ate the values of parameters specifying how frequently 
reachability information can be exchanged, allowing a 
gateway to control the frequency at which it will be 
interrupted with updates from gateways in other au- 
tonomous systems. Moreover, a site’s internally man- 
aged routes do not depend on EGP or on sites located 
in other autonomous systems. 

Second, EGP is a vector-distance algorithm; gate- 
ways associate a metric with each route. Unlike other 
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vector-distance algorithms, however, EGP update mes- 
sages allow a sending gateway to specify a third gate- 
way through which a destination is reachable. Intu- 
itively, conventional distance-vector algorithms gener- 
ate update messages of the form “I can reach network X 
at metric K”, whereas EGP updates carry information 
of the form “network X is reachable through gateway 
Y at metric K”. 

Finally, EGP is a reachability protocol rather than a 
routing protocol because the EGP specification leaves 
interpretation of the metric undefined. With the excep- 
tion of an infinity metric, all metrics indicate that a des- 
tination is reachable, and the comparison of metrics in 
updates generated by gateways in distinct autonomous 
systems is explicitly undefined. The absence of a uni- 
versal metric interpretation is a fundamental aspect of 
the Internet routing architecture. 

In practice, the metric definition restricts the Internet 
topology to being a tree. In a tree, only one path exists 
between any two autonomous systems, and a gateway 
is never forced to compare metrics advertised by gate- 
ways in different autonomous systems. When such a 
comparison is necessary, the metric definition specifies 
that either gateway should work. 

Because the ARPANET was the major cross-country 
network in the Internet, it was natural to place it 
and the other BBN-operated networks into a single 
autonomous system. The BBN-operated autonomous 
system was dubbed the Core Sys-lem. Gateways in 
the Core System maintain complete routing knowledge 
about all IP networks. Core gateways may not use de- 
fault routes, and for any given destination must either 
forward the datagram, or assert authoritatively that the 
destination is unreachable. A second important char- 
acteristic of the Core concerns propagation of EGP- 
derived information. Core gateways are the only In- 
ternet gateways authorized to advertise routes reach- 
able through other autonomous systems. In contrast, 
EGP’s so-called “third party rule” prohibits non-Core 
gateways from advertising routes for networks not be- 
longing to their autonomous systems. The third-party 
rule effectively restricts the topology of the Internet to 
a tree in which all autonomous systems connect directly 
to the Core. 

The following section reviews four common IGPs 
used within autonomous systems. 

4 Interior Gateway Protocols 

4.1 Gateway-to-Gateway Protocol 

The first Core gateways [HS82] ran on DEC LSI-11 
hardware and connected to BBN-operated networks 
such as the ARPANET [MW77] and SATNET [JBH78]. 

In addition, some Core gateways also connected to lo- 
cal networks at the sites where they were housed. LSI- 
11 gateways execute the Gateway-toGateway Protocol 
(GGP) [HS82] to exchange information about the reach- 
ability of IP networks. The following points highlight 
GGP: 

GGP is a vector-distance protocol. GGP metrics 
specify the number of gateway hops on the path 
to the destination, and the infinity value of 255 
denotes destinations that are unreachable. 

GGP uses echo request and reply messages to mon- 
itor neighbor reachability. Gateways use a K out 
of N algorithm to declare neighbor gateways UP 
or DOWN. In the earlier Core gateways, gateways 
generated echo messages every 15 seconds, and 
gateways in the DOWN state were declared UP 
upon receipt of 2 responses out of the preceding 4 
echo requests; gateways in the UP state were de- 
clared DOWN if 3 of preceding 4 messages remain 
unanswered. 

Instead of sending periodic updates, gateways gen- 
erate GGP update messages in response to the fol- 
lowing events: 

- A change in the status of a directly connected 
network. 

- A change in the reachability status of a neigh- 
boring gateway. 

- A change in its routing tables resulting from 
a received GGP message. 

A restarting gateway can request updates from 
neighboring gateways. 

GGP does not age routes. A route previously 
reachable through a next-hop gateway becomes un- 
reachable when the next-hop gateway sends an up- 
date message that omits the route. 

Because GGP does not age routes, gateways use 
sequence numbers and retransmissions to exchange 
routing updates reliably. 

Gateways send GGP messages as unicast data- 
grams. Core gateways do not send multicast or 
broadcast routing messages. 

On startup, a gateway consults a configuration 
database to obtain a list of peers, gateways with 
which it exchanges GGP messages. In addition, 
a gateway adds new neighbors to its list of peers 
when it receives GGP messages from gateways not 
already on its list. 
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The nature of GGP updates can lead to the phe- 
nomenon known as the extra-hop problem. Consider the 
configuration in Figure 3, where three gateways connect 
to common network Nl. Gateway G2 runs GGP with 
both Gl and G3, but Gl and G3 are non-peering gate- 
ways. If G3 advertises a path for network N2 to G2, and 
G2 advertises the path to GI, the update messages sent 
by G2 to Gl contain only enough information for Gl to 
conclude that G2 has a path to N2, and the packets it 
sends to hosts on network N2 travel along the path Gl- 
G2-G3 rather than from Gl to G3 directly. The piece 
of information missing from GGP updates is that G2’s 
best path is through G3, which Gl can reach directly. 

The extra-hop problem can be eliminated if every 
gateway on a network runs GGP with every other 
gateway on the same network. However, because the 
ARPANET does not support the broadcasting or multi- 
casting of IP datagrams, such a solution does not scale 
well with an increasing number of gateways. By late 
1988, the Core system included approximately 45 LSI- 
11 gateways and those gateways ran GGP with all other 
Core gateways on a common network. 

4.2 Routing Information Protocol 

As part of the Berkeley Standard Distribution (BSD) of 
UNIX3 [QSP85], researchers at the University of Cali- 
fornia at Berkeley developed the Routing Information 
Protocol (RIP). The basic outline of the protocol was 
derived from the Gateway Information Protocol used in 
the PUP protocol suite [BSTM80]. Berkeley distributed 
RIP in the UNIX daemon routed, and the (undocu- 
mented) protocol became a de facto standard. Only 
recently has the protocol been formally documented 
[Hed88]. Th e o f 11 owing points highlight the protocol: 

3UNIX is a Trademark of AT&T Bell Laboratories 

RIP is a vector-distance algorithm. RIP metrics 
denote hop counts and the infinity metric of 16 
indicates unreachable destinations. 

RIP sends unsolicited update messages every thirty 
seconds. When supported, RIP uses the broadcast 
capability of the underlying physical network. 

RIP ages routes; gateways delete those routes not 
appearing in any received update over a six-update 
(180 second) time interval. 

RIP messages allow booting gateways to request 
updates from neighboring gateways. In normal op- 
eration, gateways listen for periodic update mes- 
sages. 

To propagate changes quickly, RIP gateways gen- 
erate “triggered” or “flash” updates when they 
receive an update containing information that 
changes their routing tables. Flash updates can 
spawn a flurry of routing updates, especially when 
metrics rise because of the counting-to-infinity phe- 
nomenon. 

RIP was designed for use in a LAN environment. 
To limit the effects of the “counting to infinity” prob- 
lem, its metric was kept deliberately small. Moreover, 
although routing loops can form, the combination of 
flash updates, highly reliable delivery, and high band- 
width associated with LANs reduces the duration and 
resource cost of such loops. In addition, in a LAN en- 
vironment, the link cost between any two machines is 
essentially constant, justifying hop counts as a metric. 
Its authors make no claims as to its suitability for use 
in non-LAN environments. 

Finally, UNIX systems define the all-zeroes destina- 
tion to be a wildcard route, a path for datagrams for 
which no explicit route exists. Wildcard routes are par- 
ticularly useful within an autonomous system, where 
updates might contain explicit routes for local networks 
and a wildcard route leading to a gateway running EGP 
with the Core. 

4.3 HELLO 

The HELLO protocol [Mi183] was developed as part 
of the PDP-11 based Fuzzball gateway [MB87], and 
Fuzzballs were used in the first NSFnet backbone. The 
following points highlight the protocol: 

l HELLO is a vector-distance protocol and metrics 
denote the time delay datagrams encounter as they 
travel along the path to a destination. An infinity 

‘In UNIX terminology, wildcard routes are called default 

routes. 

276 



metric of thirty seconds denotes unreachable des- 
tinations. 

The protocol can be used over point-topoint or 
broadcast networks. 

Gateways generate periodic, unsolicited update 
messages. The delay between successive updates 
depends on the link capacity and ranges from a 
minimum of eight to a maximum of thirty seconds. 

Gateways use a hold-down timer of two minutes. 

4.4 Butterfly Gateways 

As a replacement for the LSI-11 Core gateways, BBN 
developed a multiprocessor-based gateway called the 
Butterfly. Butterfly gateways use a link-status IGP 
to propagate routing information about networks that 
connect directly to Butterfly gateways and send update 
messages to all other Butterfly gateways in a multicast- 
like fashion. Update messages consist of two parts: 
a list of attached network interfaces in an UP state, 
and a list of neighboring gateways together with the 
cost of reaching that neighbor. Although link costs 
are fixed, each link can be assigned a separate cost. 
Typically, network administrators assign low costs to 
high-bandwidth, low-delay links such as Ethernets, and 
higher costs to paths crossing ARPANET or satellite 
links. 

5 Internet Routing 

Internet routing has evolved through roughly five time 
periods. The first period, in which the ARPANET was 
the sole backbone Internet network, covered the late 
1970s through 1983. The second period began in Oc- 
tober, 1983, when the ARPANET was split into two 
networks, the ARPANET and MILNET. The third pe- 
riod began in 1986, when the first phase of the NSFnet 
project became operational. In NSFnet’s first phase, 56 
kbps links connected “Fuzzball” gateways at six super- 
computer sites across the country. The fourth period 
began in June 1988, when Merit assumed operation of 
the NSFnet backbone. Finally, the LSI-11 mailbridges 
separating the ARPANET and MILNET were replaced 
with Butterfly gateways in December, 1988. 

5.1 ARPANET Core 

In the early 1980s the ARPANET was the Core Sys- 
tem’s backbone network. Core gateways exchange rout- 
ing information via GGP, and they maintain routes to 
every other network in the Internet. Figure 4 illus- 
trates how routing information propagates from one 

Figure 4: Gateway Gl uses EGP to advertise a route 
for network Nl to Core gateway G2. G2 uses GGP to 
propagate the route to G3. Finally, G3 uses EGP to 
advertise a route for Nl to G4. 

autonomous system to another. Non-Core gateways 
Gl and G4 connect to the ARPANET and to a LAN 
in their respective autonomous systems. Gateway Gl 
runs EGP with G2, informing G2 that network Nl is 
reachable through Gl. Within the Core, GGP prop- 
agates information about Nl to other Core gateways, 
including G3. Finally, through EGP, Core gateway G3 
informs gateway G4 of Nl’s reachability and learns of 
N2’s reachability. Routing information about network 
N2 propagates back to Gl in an analogous fashion. 

The above example illustrates the mechanism by 
which gateways obtain routes to all other Internet sites. 
Unfortunately, the path datagrams travel in reaching 
those destinations can be suboptimal. In our exam- 
ple, datagrams traveling from host Hl to H2 follow 
path Gl-G3-G4 rather than traveling from Gl to G4 
directly; likewise, datagrams traveling from H2 to Hl 
travel along path G4-G2-Gl. The problem lies with 
GGP, which is only able to convey information of the 
form: “I can reach network X”. Thus, when G2 adver- 
tises routes to G3 via GGP, G3 is unaware that it can 
reach G2’s next-hop gateways directly. In our exam- 
ple, both G2 and G3 are on the ARPANET, and both 
can send traffic directly to Gl. This phenomenon is 
commonly referred to as the GGP extra-hop problem. 

To eliminate the extra-hop problem, BBN designated 
three Core gateways to be EGP servers, and sites were 
directed to peer with the EGP servers, rather than arbi- 
trary Core gateways. Moreover, each site was required 
to simultaneously peer with more than half of the EGP 
servers, assuring that any two ARPANET sites would 
peer with at least one common EGP server. Because 
the common server directly exchanges EGP messages 
with both sites, it has the information identifying the 
correct gateway to use when reaching those sites. 

5.2 ARPANET/Milnet Split 

In October 1983, DARPA split the ARPANET into 
two physical networks, one for experimental research, 
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and the other for production service. The new net- 
work, called MILNET, carried traffic between military 
installations needing reliable network service, while re- 
searchers continued using the ARPANET as an exper- 
imental network. Although the networks were physi- 
cally distinct, both networks used the same hardware 
and software technology, and BBN operated them both. 
Both networks remained part of the same autonomous 
system, and seven special LSI-II gateways called mail- 
bridges forwarded traffic between the two networks. 

The existence of multiple gateways between the two 
cross-country networks presented a new problem. Be- 
cause IP knows only about networks, an ARPANET 
gateway on the east coast could not determine whether 
a destination on Milnet resided on the east or west 
coast. Clearly, an ARPANET gateway on the east coast 
would not want to forward traffic destined to an east 
coast MILNET site through a mailbridge located in Cal- 
ifornia. 

The Core system supported load-balancing of traf- 
fic between hosts on the two networks. BBN engineers 
performed extensive traffic analyses to determine how 
traffic should be divided among mailbridges and placed 
configuration tables in each Core gateway that identi- 
fied which mailbridge should carry traffic between given 
source-destination pairs. The load-balancing mecha- 
nism worked only for datagrams carrying source and 
destination addresses on the ARPANET and Milnet 
networks. If an ARPANET host, for instance, for- 
warded a datagram destined for a host on Milnet to the 
“wrong” gateway, the gateway would send a redirect to 
the host identifying the correct mailbridge. 

Because the load-balancing mechanism depended on 
a gateway’s ability to determine which ARPANET or 
MILNET machine sent a datagram, it was ineffective at 
balancing traffic flows between sites not directly con- 
nected to the two networks. Indeed, as the Internet 
grew, the two networks carried an increasing amount of 
transit traffic between sites connected only indirectly to 
the networks. Instead, hosts connected to LANs which 
connected to a gateway on the ARPANET or Milnet. 

After the split, ARPANET sites continued to run 
EGP with EGP servers connected to the ARPANET 
and similar servers were placed on MILNET. With the 
two networks, however, the extra-hop problem reap- 
peared. In particular, mailbridges used GGP to ob- 
tain routing information, but did not understand EGP. 
Figure 5 illustrates the problem. Gateway Gl in- 
forms EGP server El of the networks within its au- 
tonomous system, and El advises Gl of the networks 
behind the mailbridges. The EGP servers, however, 
use GGP to propagate the information to the mail- 
bridges. Although Gl forwards traffic for sites be- 
hind the ARPANET to the mailbridges directly, the 

Figure 5: With the ARPANET/Milnet split, the extra- 
hop problem reappeared. Datagrams travelling from 
G2 to Gl follow the path GP-MB-El-Gl, needlessly vis- 
iting EGP server El. 

mailbridges forward traffic destined for sites behind Gl 
through the EGP servers. The extra-hop problem be- 
tween the two networks remained until January, 1989, 
when the LSI-11 mailbridges were replaced with But- 
terfly gateways. 

5.3 Phase 1 NSFnet (Fuzzballs) 

In 1984, the National Science Foundation (NSF) em- 
barked on a program to provide scientists with high- 
speed access to supercomputers. Although the primary 
goal focused on supercomputer access, NSF recognized 
that it could achieve the primary goal and at the same 
time provide the basis for a nationwide academic re- 
search network [JLF*86]. Rather than build a single 
new physical network, a key recommendation of the 
NSFnet program was to adopt Internet technology and 
build a collection of networks. 

The first phase of the NSFnet program, started in 
June 1986, used 56 kbps lines to link Fuzzball gateways 
at six supercomputer centers. Additional networks, in 
the form of campus and regional networks, connected 
to the backbone at supercomputer centers. Despite its 
growth to over 200 networks, the NSFnet backbone, 
regional, and campus networks were administrated as 
a single autonomous system, and NSFnet’s constituent 
networks exchanged routing information with an IGP 
rather than EGP. 

In the backbone, Fuzzball gateways used the HELLO 
protocols to exchange routing information [MB87]. Be- 
cause the HELLO protocol was not widely imple- 
mented, regional and campus networks were unable 
to use the protocol. Moreover, the diverse software 
and hardware technologies employed by campus and re- 
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Figure 6: Gated translates HELLO metrics into the 
smallest RIP metric such that if the RIP metric is trans- 
lated back to a HELLO metric, the translated HELLO 
metric is no smaller than the original. 

Figure 7: If gateway Gl readvertises routes learned 
from G4 at lower metrics than advertised by G4, loops 
can form when the information filters back to itself over 
the path through G2 and G3. 

gional networks called for a widely available, standard 
protocol. RIP was the only available candidate. 

5.3.1 Exceeding RIP’s Notion of Infinity 

Regional networks used Ethernets to connect to the 
backbone at supercomputer sites, and the regional gate- 
ways used the HELLO protocol to exchange routing 
information with the backbone Fuzzballs. A special 
routing daemon residing on the regional gateway, gated 
[Fed88], translated the HELLO-derived routes into RIP 
updates that it forwarded to gateways on the regional 
network. Gated translated the HELLO metrics of routes 
received from the Fuzzball into metrics usable within 
the context of RIP and translated RIP metrics to 
HELLO metrics in updates sent to the Fuzzballs. 

Translating metrics proved to be difficult because 
HELLO metrics denote delays, while RIP metrics de- 
note hop counts. Gated mapped RIP metrics into 
HELLO delays and vice versa using the rules given in 
Figure 6 [FH88]. 

NSFnet grew rapidly after its birth. Within two 
years, more networks were reachable through NSFnet 
than through the Core itself. As NSFnet grew, so 
did the number of interconnections between networks 
within NSFnet. For instance, some regional networks 
connected to the backbone at multiple points, and 
“back door” links connected some regional networks to 
others. Often, several paths existed between a given 
pair of hosts. Growth led to two problems. First, the 
distance between some networks exceeded RIPS notion 

The sheer size of NSFnet exposed a significant problem: 
the combined diameter of the backbone, regional and 
campus networks exceeded sixteen network hops, RIP’s 
definition of infinity. Although the value of the met- 
ric denoting infinity could have been raised, the idea 
was rejected for fear of exacerbating the counting-to- 
infinity problem. Instead, gated software was modified 
to selectively change the value of RIP metrics received 
in routing updates. A gateway receiving an update ad- 
vertising a route at a metric of fourteen, for example, 
could readvertise the route at a metric of seven. 

Allowing gateways to remap metrics in received rout- 
ing updates presented NSFnet with a significant man- 
agement problem because remapping metrics can intro- 
duce routing loops. The difficulty arises when a gate- 
way advertising a network at the correct metric receives 
an update from a gateway advertising the network at 
a lower, remapped metric. The path advertised at the 
lower metric may, in fact, traverse the gateway receiving 
the update. 

The simple topology in Figure 7 illustrates the prob- 
lem. Gateway G4 advertises a path for some network N 
at metric 12, and gateway Gl, changes the metric to 4 
in the update it sends to G2. G2 advertises the route to 
G3 at metric 5, and Gl changes its routing table to use 
the path advertised by G3 at metric 5. Unfortunately, 
a routing loop has now developed between G3 and Gl. 

of infinity. Second, the rich set of interconnections be- In the complex topology of NSFnet, choosing metrics 
tween constituent networks produced routing instabil- and regulating which gateways could safely propagate 
ities commonly associated with vector-distance proto- updates about individual networks entailed significant 
~01s. The following subsections articulate the difficul- administrative management. The task could not be au- 
ties. tomated and required tedious human oversight. 
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5.3.2 RIP Extensions 5.4 Phase 2 NSFnet (Merit) 

Phase two of the NSFnet project became operational 
in June 1988, when all traffic on the Fuzzball-based 
NSFnet was diverted to a new backbone operated by 
Merit. The new backbone used Tl speed5 links to in- 
terconnect packet switches called Nodal Switching Sub- 
systems (NSS). 

Based on the routing experiences of its predeces- 
sor, the new backbone adopted a significantly improved 
routing architecture [Bra88]. First, the backbone and 
each regional network operate as distinct autonomous 
systems, and they use EGP to exchange routing infor- 
mation with each other. Second, the backbone itself 
uses an SPF-based link-status IGP [Rek88a]. Finally, 
NSS nodes filter all EGP updates through a configura- 
tion database [Rek88b]. Information contained in up- 
dates, but not consistent with the database, is ignored 
and brought to the attention of a network manager. 

Filtering updates through a configuration database 
introduced an administrative aspect to the backbone 
not present before. Specifically, the database describes 
the expected and permitted interconnections among 
networks. New networks that join the Internet must be 
added to the database before the backbone will prop- 
agate reachability information about them. Carefully 
controlling the propagation and use of route informa- 
tion, however, decreases the probability that loops will 
form. 

As NSFnet increased in size, routing instabilities be- 
came common. Sites complained that they could not 
reach some sites at all, while other sites would oscil- 
late between being reachable and unreachable. Efforts 
aimed at stabilizing routing, met with only marginal 
success. Efforts included adding a hold-down timer to 
RIP software, adding split horizons, and finally split 
horizon with poison updates. Additional experiments 
investigated the effects of changing the mappings be- 
tween RIP and HELLO metrics. Although some sites 
noted some improvements, the overwhelming evidence 
pointed to the need for a replacement routing technol- 
ogy. In short, the problems outlined in [MFR78] were 
rediscovered. 

5.3.3 NSFnet and the Core 

Before NSFnet, most sites connected to the ARPANET 
Core at a single point. The NSFnet backbone, however, 
connected to the ARPANET Core at several points. 
As with connections to regional networks, backbone 
Fuzzballs did not connect directly to the ARPANET; 
instead, they shared a common Ethernet with gateways 
running gated on the ARPANET. In order to distribute 
the traffic load among the ARPANET/NSFnet connec- 
tions, NSFnet employed fallback routing [MB87]. Un- 
der normal circumstances, traffic travelled through pri- 
mary gateways. If the primary gateway failed, however, 
traffic would be diverted to secondary, backup gate- 
ways. When the the primary gateway resumed proper 
functioning, traffic flows would revert to the primary 
gateway. 

Each of NSFnet’s constituent networks was assigned 
a primary gateway, and the others were dubbed sec- 
ondary gateways. The primary gateway for a network 
advertised the network to the Core at an EGP metric 
of zero, while the secondary gateways advertised a net- 
work at a metric of three. Because gateways preferred 
paths advertised at a lower metric, traffic originating 
from the core would travel through a destination’s pri- 
mary gateway when it was available. Should the pri- 
mary gateway fail, traffic would revert to the secondary 
gateways. 

Although the backbone ran EGP with the Core, none 
of the routes learned from the Core were propagated to 
the Fuzzball backbone or its regional networks. Instead, 
NSFnet gateways running EGP with the ARPANET 
EGP servers advertised a wildcard route. Through the 
HELLO protocol, the Fuzzball backbone propagated 
the wildcard route to the regional networks. In turn, 
the regional networks propagated the wildcard route via 
RIP to end-user sites. 

5.5 Butterfly Mailbridges 

In December of 1988, BBN replaced the aging LSI-11 
mailbridges with six Butterfly gateways. In addition 
to routing traffic between the ARPANET and MIL- 
NET, the mailbridges assumed the roles of the EGP 
servers, eliminating the extra-hop problem between the 
ARPANET and MILNET. 

Butterfly gateways use a link-status algorithm to dis- 
tribute routing information about internal networks, 
those networks connected to Butterfly gateways. How- 
ever, the link-status algorithm does not propagate 
routes for EGP-learned networks. To propagate EGP- 
learned routes to other Butterfly mailbridges, Butterfly 
gateways implement an ad hoc protocol called Spread 
[Atl89]. Spread is a modified implementation of EGP, 
in which gateways generate periodic, unsolicited update 
messages every sixty seconds. Moreover, Spread omits 
echo request and reply messages, and update messages 
include an autonomous system identifier of the gateway 
advertising the path. 

5T1 speed links have a carrying capacity of 1.544 Mbps. At 
present, the NSFnet backbone links operate at l/3 TI capacity. 
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The Butterfly mailbridges also support a load- 
balancing mechanism effective for all IP-level traffic. 
While the load-balancing mechanism of the LSI-11 Core 
gateways relied on ICMP redirects, the Butterfly mail- 
bridges use EGP to specify which mailbridges a partic- 
ular gateway should use. When generating an update, 
the mailbridge examines the IP address of the EGP 
neighbor targeted by the update and uses the address to 
determine which mailbridge the target gateway should 
use to reach sites on or behind the other network. For 
example, if a non-Core gateway on the east coast peered 
with an ARPANET mailbridge on the west coast, the 
EGP updates generated by the west coast mailbridge 
would identify an east-coast mailbridge as the correct 
gateway to use when sending traffic to sites on or be- 
hind Milnet. 

6 Conclusions 

Explosive growth is taxing current Internet routing 
mechanisms. New sites continue to join the Internet 
on a daily basis, and sites add new links to destinations 
with which they desire better connectivity. In some 
sense, the Internet is a victim of its own success; many 
routing protocols are being used in environments for 
which they had not been designed. For instance, the 
EGP model disallows the existence of multiple paths 
between sites in different autonomous systems, forcing 
sites to use ad hoc techniques such as running IGPs 
between sites in different autonomous systems. More- 
over, the Core model along with the absence of a univer- 
sal EGP metric definition prevents autonomous systems 
from interconnecting in convenient ways, restricting the 
visible topology of the Internet to a tree. To keep rout- 
ing stable, the new NSFnet backbone has resorted to 
the use of a centralized routing database that restricts 
the allowable Internet topology. There is a critical need 
to explore alternative models such as [Mi186] that loosen 
the topological restrictions on Internet interconnections 
to reflect the extent and manner in which sites actually 
connect to one another. 

References 

[At1891 Steve Atlas. Bolt, Beranek, and Newman Inc., 
Private communication, February 1989. 

[BG87] Dimitri Bertsekas and Robert Gallager. Data 
Neturorks. Prentice Hall, 1987. 

[Bra881 Hans-Werner Braun. The NSFNET Rout- 
ing Architecture. DARPA Networking Information 
Center, RFC 1093, May 1988. 

[BSTM80] David R. Boggs, John F. Schoch, Edward A. 
Taft, and Robert M. Metcalfe. Pup: an Internet- 

work Architecture. IEEE Tmnsactions on Comput- 
ers, COM-28(4):612-623, April 1980. 

[Corn881 Douglas E. Comer. Internetworking With 
TCP/IP: P pl rznci es, Protocols, Architecture. Pren- 
tice Hall, 1988. 

[Fed881 Mark S. Fedor. GATED: A Multi-Routing Pro- 
tocol Daemon for UNIX. In Proceedings of the 1988 
Summer USENIX Conference, pages 20-24, Winter 
1988. 

[FH88] Mark Fedor and Jefrey C. Honig. Man page for 
gated. Cornell Theory Center, Cornell University, 
Ithaca NY 14853-5201, May 1988. 

[Hed88] Charles Hedrick. Routing Information Proto- 
col. DARPA Networking Information Center, RFC 
1058, June 1988. 

[HHS83] Robert Hinden, Jack Haverty, and Alan 
Sheltzer. The DARPA Internet: interconnecting 
heterogeneous computer networks with gateways. 
Computer, 16(9):38-48, September 2983. 

[KS821 Robert Hinden and Alan Sheltzer. DARPA In- 
ternet Gateway. DARPA Networking Information 
Center, RFC 823, September 1982. 

[JBH78] Irwin Mark Jacobs, Richard Binder, and Es- 
til V. Hoversten. General Purpose Packet Satellite 
Networks. Proceedings of the IEEE, 66(11):1448- 
1467, November 1978. 

[JLF*86] Dennis M Jennings, Lawrence H. Landweber, 
Ira H. Fuchs, David J. Farber, and W, Richards 
Adrion. Computer Networking for Scientists. Sci- 
ence; 231:943-950, February 1986. 

[Kir84] Paul Kirton. EGP Gateway under Berkeley 
UNIX 4.2. DARPA Networking Information Cen- 
ter, RFC 911, August 1984. 

[MB871 David L. Mills and Hans-Werner Braun. The 
NSFNET Backbone Network. In Proceedings of 
the ACM SIGCOMM ‘87 Workshop, pages 191-196, 
August 1987. 

[MFR78] John M. McQuillan, Gilbert Falk, and Ira 
Richer. A Review of the Development and Perfor- 
mance of the ARPANET Routing Algorithm. IEEE 
Tmnsactions on Computers, COM-26(12):1082- 
1811, December 1978. 

[Mi1$3] David L. Mills. DCN local-network protocols. 
DARPA Networking Information Center, RFC 891, 
December 1983. 

[Mi184 
i 

David L. Mills. Exterior Gateway Protocol For- 
ma Specification. DARPA Networking Information 
Center, RFC 904, April 1984. 

[Mi186] David L. Mills. Autonomous Conferations. 
DARPA Networking Information Center, RFC 975, 
February 1986. 

[MRR78] John M. McQuillan, Ira Richer, and Eric C. 
Rosen. ARPANET Routing Algorithm Improve- 
ments First Semiannual Technical Report. Techni- 
cal Report 3803, Bolt Beranek and Newman Inc., 
April 1978. 

281 



[MRII%)h John M. McQuillan,-Ira Richer, and Eric C. 
. The New Routmg Algorithm for the 

ARPANET. IEEE Transactions on Computers, 
COM-28(5):711-719, May 1980. 

[MW77] John M. McQuillen and D. C. Walden. The 
ARPANET Design Decisions. Computer Networks, 
l(5), September 1977. 

[Pos80] Jonathon Postel. Internetwork Protocol Ap- 
proaches. IEEE Transactions on Computers, COM- 
28(4):605-611, April 1980. 

[Pos81] Jonathon B. Postel. Internet Control Message 
Protocol. DARPA Networking Information Center, 
RFC 792, September 1981. 

[QSP85] John S. Quarterman, Abraham Silberschatz, 
and James L. Peterson. 4.2BSD and 4.3BSD as Ex- 
amples of the UNIX Operating System. ACM Com- 
puting Surveys, 17(4):379-418, December 1985. 

[Rek88a] J Rekhter. EGP and Policy Based Routing in 
the New NSFNET Backbone. DARPA Networking 
Information Center, RFC 1092, March 1988. 

[Rek88b] J Rekhter. The NSFNET Backbone SPF 
based Interior Gateway Protocol. DARPA Net- 
working Information Center, RFC 1058, June 1988. 

A Problems with Growth 

This section chronicles significant events that lead to 
a break down of routing on an Internet-wide basis. 
As might be expected, many of the problems related 
to growth and occurred during the rapid growth of 
NSFnet. 

Feb 1986 EGP servers began generating EGP updates 
exceeding 576 bytes in size. Many implementations 
of EGP, (e.g. K’ t ir on’s implementation for UNIX 
systems [Kir84]) allocated a static buffer of 576 
bytes to hold incoming update messages. When 
an update exceeding 576 bytes in size was recieved, 
network software would truncate the message be- 
fore handing it to the application, and EGP soft- 
ware would record a checksum error as it performed 
its integrity check. Assuming that the message was 
corrupted rather than truncated, EGP software 
discarded the entire update. Because the size of 
routing updates varied frequently from one update 
to another, a site would typically lose some up- 
dates, while correctly processing others. Internet 
routing became unstable with paths to destination 
oscillating between being reachable and unreach- 
able. The problem of underestimating the size of 
EGP messages reappeared numerous times; by De- 
cember, 1989, servers generated update messages 
exceeding 2048 bytes. 

July, 1986 The number of networks in the Core ex- 
ceeded 120 for the first time, overflowing the LSI- 
11 Core gateway routing tables. If a site’s gateway 
crashed, EGP servers would free the table slots al- 
located to the crashed gateway, allowing them to 
be assigned to other gateways. Following a crash 
it might take days for a site’s networks to reen- 
ter tables in every Core gateway. Not surprisingly, 
the problem reoccurred several times. By January, 
1989, the Core contained routes to over 630 IP net- 
works. 

Likewise, the EGP servers could support only a 
limited number of EGP neighbors. Once a server 
reached its EGP neighbor limit, it would reject fur- 
ther peer requests from other gateways. If a site’s 
gateway rebooted, it might lose its neighbor slot 
and find that no server would peer with it. Until 
a site was able to find a server that it could peer 
with, it was effectively cut off from the Internet. 

Fall 1987 As the size of EGP updates and the number 
of gateways peering with EGP servers increased, 
the servers consumed more and more of their pro- 
cessing capacity handling routing updates. By 
the early fall of 1987, server CPUs were running 
at close to 100 percent capacity, and could no 
longer process updates promptly. Delays became 
so large that gateways would declare their EGP 
peers down. Internet routing essentially collapsed. 

At an October 1987 meeting of the Internet Engi- 
neering Task Force (IETF) it was suggested that 
additional processing power could be realized by 
upgrading the LSI-11 Core servers to LSI-11/73 
processors. The IETF promoted an “Adopt-a- 
Mailbridge Foster Parent Program” to search for 
spare 11/73 processors that could be temporarily 
loaned to the Core. One month later, all EGP 
servers and mailbridges had been upgraded, and 
Internet routing recovered, 

September 1987 The size of EGP updates began ex- 
ceeding 1012 bytes, the maximum size datagram 
carried by the ARPANET and Milnet. Moreover, 
the Core gateways did not fragment or reassemble 
IP datagrams, truncating large messages instead. 
Users encountered routing difficulties with symp- 
toms analogous to the those that occurred when 
the EGP servers overflowed their internal route ta- 
bles. Six weeks elapsed before EGP server software 
began fragmenting and reassembling large updates. 
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