
Internet Routing

Thomas Narten
Department of Computer Sciences

Purdue University
West Lafayette, Indiana 47907

narten@cs.purdue.edu

Abstract

Comprising an estimated 60,000 hosts, the DARPA In-
ternet is the largest existing internet. This paper traces
the routing information protocols used by Internet gate-
ways to build routing tables that define the paths data-
grams traverse as they travel between end systems. We
articulate the weaknesses and limitations of the most
commonly used routing protocols, including RIP, GGP,
and HELLO and examine how the protocols interact
with each other and with EGP. Finally, we trace the
evolution of routing as the Internet has grown from a
single backbone (ARPANET) to its present inclusion
of the ARPANET, Milnet, and NSFnet cross-country
networks.

1 Introduction

Networking has revolutionized computing. Scientists
use networks to exchange data, disseminate research
results, and collaborate with others. Because no one
technology satisfies the diverse needs of users, thou-
sands of independent networks are scattered around
the world. Through the technology known as inter-
netvrorking [Pos80], multiple independent networks can
be joined into a single virtual network called an inter-
net. Internet technology abstracts away the details of
the underlying physical connections and provides users
with the illusion of connecting to a single, homogeneous
network.

In the largest internet, the connected TCP/IP Inter-
net [HHS83,JLF*86], an estimated 60,000 hosts com-
municate using the TCP/IP protocol suite [ComSS]. As
the Internet has grown, so have the mechanisms it em-
ploys in selecting the paths that carry datagrams from

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-332-9/89/0009/0271 $1.50

their source to their destination. The process of path
selection is known as routing. In the early 198Os, the
size and topology of the Internet was sufficiently com-
prehensible that route tables could be managed by such
ad hoc, manual mechanisms as configuration tables. As
the Internet grew, however, researchers invented proto-
cols that automated the propagation of routing infor-
mation and allowed new sites to join the Internet and
communicate instantly with other sites.

This paper focuses on the mechanisms used to route
IP datagrams through the Internet’, articulating the
protocols, interactions among protocols, and the scat-
tered pieces of information needed to understand how
the Internet routes datagrams between end systems.
Section 2 reviews the Internet routing architecture and
reviews the strengths and weaknesses of vector-distance
and link-status based routing protocols. Section 3 re-
views autonomous systems, the Exterior Gateway Pro
tocol (EGP), and the Core system. Section 4 presents
common routing protocols used within an autonomous
system, including RIP, GGP, HELLO. In Section 5, we
chronicle the evolution of routing within the Internet,
covering the ARPANET, MILNET, and the first two
phases of NSFnet. Section 7 presents conclusions, and
the Appendix documents several events that lead to
Internet-wide routing failures.

2 Background

The Internet architecture clearly distinguishes hosts
from gateways. Hosts are computers that execute ap-
plication programs on behalf of users. They may be
time-sharing systems, batch systems, workstations, or
personal computers. Although hosts may depend on
network services, their primary function is user service.
In contrast, gateways are the building blocks that con-
nect networks into internets. A gateway connects to two
or more networks. It receives datagrams from hosts and

lThe term internet refers to any internet; we use Internet to
refer specifically to the connected TCP/IP Internet.

271

Figure 1: Sample internet with hosts, networks, and
gateways.

gateways on one network and forwards them to hosts
or gateways on another network. The proper function-
ing of the internet depends on the correct operation of
gateway hardware and software.

Gateways process datagrams in a store-and-forward
manner. When a datagram D arrives at a gateway G,
G selects another gateway, N, that is (1) closer to the
datagram’s destination and (2) directly reachable from
G. G queues the datagram for transmission to N us-
ing the appropriate network interface hardware. N is
called the next hop for datagram D and the process of
selecting a next-hop host or gateway is known as rout-
a’ng. Figure 1 illustrates routing. The example internet
consists of five networks interconnected by six gateways
(Gi, 1 2 i 2 6) and three hosts (Hi, 1 5 i 5 3). Sup-
pose that Hl wants to send a datagram to H2. Because
it cannot reach H2 directly, Hl sends the datagram to
gateway Gl. Although G2, G3, and G5 are candidate
next hops, Gl forwards the datagram to G3 because of
its proximity to H2. Gl sends the datagram directly
to G3 across network N2, and G3 sends the datagram
directly to H2 across network N4.

To adjust dynamically to changes in topology, gate-
ways run routing information protocols that disseminate
topological information about the internet. Through
routing protocols, gateways learn which networks are
currently reachable, and the appropriate next-hop gate-
way to use in reaching a given destination.

2.1 Host Routing

Although hosts send datagrams to gateways, they
should not participate in the same routing informa-
tion protocols used among gateways. First, the num-
ber of hosts on a network typically exceeds the number
of gateways by an order of magnitude or more, and
the exchange of information needed by routing proto-
cols consumes resources. Second, routing protocols con-
tinue to evolve, and host software must be updated to
take advantage of each new routing algorithm. Chang-
ing software on a few gateways is easier than changing

software on hundreds of hosts. Finally, some host com-
puters, such as single-tasking personal computers, lack
facilities needed to participate in gateway routing pro-
tocols. Thus, mechanisms that propagate routing infor-
mation from gateways to hosts should be independent
from those used to propagate such information among
gateways.

To route datagrams, a host need only maintain a
set of pointers to neighboring gateways and a cache
of recently used routes. When sending a datagram, a
host searches its cache for a next-hop gateway to use
in reaching that datagram’s destination. If the cache
lookup fails, the host creates a new entry, filling in the
gateway field with one of the “default” gateways in its
set. In Figure 1, a single gateway separates Hl from the
rest of the world, and the need for a cache of routes is
not obvious. Host H2, however, shares a network with
two gateways. If it sends a datagram destined for H3
to gateway G3, G3 might route it to G4, which H2 can
reach directly.

The Internet architecture includes a redirect mecha-
nism that gateways use to notify hosts when they have
chosen the “wrong” gateway. In our example, gateway
G3 sends H2 an ICMP redirect [PO&~] telling it to for-
ward traffic destined for H3 through G4. Upon receipt
of a redirect, a host updates the gateway field of the
corresponding cache entry for that destination.

The redirect mechanism can only be used between
gateways and hosts, because it relies on a gateway’s
ability to determine which neighboring host or gate-
way forwarded the datagram to it. In particular, when
sent by a host, the network portion of the datagram’s
source address will match that of one of the gateway’s
connected networks. Whenever a gateway forwards a
datagram to a next-hop gateway on the same network
as datagram’s source, it knows that the host can reach
that gateway directly and sends the host a redirect.

2.2 Gateway Routing Protocols

Gateways run routing protocols to learn the topology
of the internet. Roughly speaking, existing routing pro-
tocols fall into two general classes. “Link-status pro-
tocols” propagate the status of the actual topology of
the internet. In contrast, gateways running “vector-
distance protocols” exchange routing tables with one
another. The following subsections review the two
classes of algorithms.

2.3 Vector-Distance Protocols

Vector-distance algorithms, also known as Bellman-
Ford algorithms [BG87], were first used in the origi-
nal ARPANET [MFR78]. Update messages consist of

272

(destination, metric) pairs. Conceptually, a gateway
generating update messages advertises routes for the
destinations it can reach, with a metric indicating the
cost of the path to the destination. From the received
updates, a gateway selects for each destination the next-
hop gateway advertising that destination at the lowest
metric. A special metric value of infinity denotes paths
that are no longer reachable and should not be used.

As an example, suppose that the gateways in Fig-
ure 1 run a vector-distance protocol whose update met-
ric corresponds to the number of gateways traversed in
reaching the destination2. Gateways G3 and G4 adver-
tise network N4 at metric zero. G2 and G6 advertise N4
at metric one, and G5 advertises the network at metric
one. Gateway Gl, receiving updates for N4 from G3,
G2, and G5 at metrics of zero, one, and one respectively,
selects G3 as its next hop for N4.

Details of individual vector-distance protocols de-
pend on their specific implementations. In some im-
plementations the sender returns updates only in re-
sponse to requests; in others, gateways send periodic,
unsolicited updates. Likewise, some implementations
assume fixed link costs, while others vary a link’s cost
to reflect load or delay. Finally, in some implementa-
tions, the sender measures the cost of the link and adds
it to the routing metrics prior to sending an update,
while in other implementations, such functions are del-
egated to the receiver.

The relative simplicity of vector-distance algorithms
contributes to their wide popularity. They use only lo-
cal information, and gateways only exchange informa-
tion with neighbor gateways. However, vector-distance
algorithms suffer from what is known as the “counting-
to-infinity” problem. If a link fails, or its cost in-
creases suddenly, routing loops can develop because
some gateways still send updates containing old infor-
mation. Moreover, loops can persist for a significant
amount of time.

For example, consider the four gateways in Figure
2. Initially, gateway Gl advertises a route for Nl at
zero hops, and G2 advertises the route for Nl to G3
at one hop. G3, in turn, advertises the route at metric
two. If Gl stops sending updates, G2 will conclude
that Nl has become unreachable through Gl and adopt
the path advertised by G3 at metric two, creating a
“ping-pang” routing loop between neighbors G2 and
G3. During the next update exchange, G3 will advertise
the route at metric three, and G2 continues using the
route. Each gateway’s metric increases with subsequent
updates, and the loop persists until the metric counts
up to infinity.

Ping-pong loops form between adjacent gateways be-

2This metric is known as a hop count.

Figure 2: A ping-pong loop for destinations on network
N4 forms between gateways Gl and G2 after gateway
G3 crashes.

cause neither is aware that they are both routing data-
grams for a common destination through each other.
Loops between adjacent gateways are one instance of
a more general problem with vector-distance protocols.
Specifically, loops form when gateway G receives an up-
date and switches the route for a given destination to a
new next-hop gateway unaware that the path that the
next-hop gateway uses to reach that destination actu-
ally travels through G. Stated more formally, suppose
that gateway Gl has a loop-free path to destination
DEST. In order for loops involving Gl and DEST to
form, the following conditions must be met:

Condition 1 Gateway Gl receives an update from one
of its neighbors G2 reporting a current metric for des-
tination DEST that is less than Gl’s current metric to
DEST.

Condition 2 Gl is included in Gt’s path to DEST.

Loop formation can be prevented by taking appro-
priate action when the two conditions are met. For
instance, if a gateway sending a routing update to a
neighbor identifies those destinations whose paths in-
clude the receiving gateway, the receiving gateway can
ignore information about such routes, preventing con-
dition 2. The technique popularly known as poisoned
updates does just that: when a gateway sends an up-
date to one of its neighbors, all routes through that
neighbor are given a metric of infinity, forcing the re-
ceiving gateway to ignore the information. Likewise,
in the related technique called split horizon, gateways
omit from routing updates entries for those destinations
it routes through the gateway targeted by the update.
With vector-distance protocols, however, the sending
gateway can only identify the first hop of a path to a
destination and the two techniques can only prevent
ping-pong loops; loops involving more than two gate-
ways can form. The problem stems from updates that
are based on old information. The following definition
clarifies the problem.

Definition 1 A routing update Ul is based on update
U2 with respect to destination DEST if the information
in Ul regarding DEST was derived from information
contained in U2.

273

Intuitively, loops can form when a gateway processes
an update based on an update it sent previously. For
example, ping-pong loops form when a gateway G re-
ceives an update from its neighbor that was based on
a previous update sent by G to that neighbor. With
vector-distance protocols, news travels approximately
one hop per update interval. Thus, in large networks,
a gateway might receive updates based on an update it
generated several update intervals ago, leading to the
following proposition:

Proposition 3 If a pair of gateways generate update
messages Ul and 172 at times Tul and TUZ respectively,
than there is some length of time T such that: if TV1 -
Tu2 2 T, then Ul is not based on 172.

Intuitively, the proposition states that information in
an update remains in the network for a finite time less
than some value T. Hold-down [MRR78] is a heuris-
tic that takes advantage of the proposition. When-
ever a gateway’s metric to a destination increases, it
ignores further information about that destination for
a time period of length T. Hold-down guarantees that
any routing updates meeting Condition’s 1 and 2 will
be ignored.

Although hold-down timers can prevent the forma-
tion of certain types of loops, they suffer from two de-
ficiencies. First, the hold-down time T is proportional
to the update propagation time across the network and
may be several minutes long. Second, networks using
hold-down are slow to adapt to topology changes, a self-
defeating property for an adaptive routing algorithm.
If the metric of a path currently in use increases or
reaches infinity, for instance, a gateway continues using
it even if a better path is available. Using hold-down
to prevent all loops, however, might be too ambitious.
Indeed, a short value for the hold-down timer can pre-
vent ping-ping loops, while longer timers prevents loops
of increasing path length. Hold-down timers and their
problems are described in detail in [MRR78].

2.4 Link Status Protocols

Link-status protocols propagate the status of the ac-
tual physical topology of the internet to each gateway.
Update messages consist of (link, metric) pairs, where
the link identifies a pair of adjacent gateways, and the
metric gives the cost of using that link. A metric’s
value might be fixed, or give a dynamic estimate of its
load, transmission delay, etc. Periodically, a gateway
controlling the link broadcasts update messages to all
participating internet gateways. From the database of
link costs, each gateway constructs a tree of shortest
paths leading to each destination.

Because update messages are broadcast to each gate-
way, each gateway builds its routing tables from the
same information, reducing the probability that rout-
ing loops will form. Thus, link-status protocols are less
vulnerable to loop formation than vector-distance algo-
rithms. In practice, link-status protocols are not en-
tirely loop free. In a large internet, for instance, broad-
cast update messages may propagate slowly, and vari-
ous gateways might receive an update at different times.
Thus two gateways might compute routing tables based
on a different set of updates. In addition, the cost of
sending updates is significant and does not scale well
to internets comprised of thousands of networks and
gateways. To insure that each gateway builds its tables
from the same information, update messages must be
carried in reliable broadcasts guaranteed to reach every
gateway, and consecutive updates from the same gate-
way must be processed serially. Link-status algorithms
were first used within the ARPANET [MRR~O].

3 EGP and the Core

When the Internet formed, Bolt, Beranek, and New-
man Inc. (BBN) administered and operated the
ARPANET backbone network. In an internet, how-
ever, no single organization could manage all the con-
stituent networks and gateways, and Internet archi-
tects created autonomous systems, administrative re-
gions within which sites manage routing themselves.
Within an autonomous system, sites use a private inte-
rior gateway protocol (IGP) to propagate information
about routes. To learn about networks in other au-
tonomous systems, gateways between autonomous sys-
tems run the Exterior Gateway Protocol (EGP) [Mi184].
Gateways use EGP to find out how to reach networks
located in other autonomous systems, and to adver-
tise the existence and reachability of networks located
within their autonomous systems. IGPs can be used
only within a single autonomous system and EGP is
the sole means by which route information from one
autonomous systems may flow into another.

Three aspects of the EGP reachability protocol
should be noted. First, EGP isolates sites from one
another. Gateways running the EGP protocol negoti-
ate the values of parameters specifying how frequently
reachability information can be exchanged, allowing a
gateway to control the frequency at which it will be
interrupted with updates from gateways in other au-
tonomous systems. Moreover, a site’s internally man-
aged routes do not depend on EGP or on sites located
in other autonomous systems.

Second, EGP is a vector-distance algorithm; gate-
ways associate a metric with each route. Unlike other

274

vector-distance algorithms, however, EGP update mes-
sages allow a sending gateway to specify a third gate-
way through which a destination is reachable. Intu-
itively, conventional distance-vector algorithms gener-
ate update messages of the form “I can reach network X
at metric K”, whereas EGP updates carry information
of the form “network X is reachable through gateway
Y at metric K”.

Finally, EGP is a reachability protocol rather than a
routing protocol because the EGP specification leaves
interpretation of the metric undefined. With the excep-
tion of an infinity metric, all metrics indicate that a des-
tination is reachable, and the comparison of metrics in
updates generated by gateways in distinct autonomous
systems is explicitly undefined. The absence of a uni-
versal metric interpretation is a fundamental aspect of
the Internet routing architecture.

In practice, the metric definition restricts the Internet
topology to being a tree. In a tree, only one path exists
between any two autonomous systems, and a gateway
is never forced to compare metrics advertised by gate-
ways in different autonomous systems. When such a
comparison is necessary, the metric definition specifies
that either gateway should work.

Because the ARPANET was the major cross-country
network in the Internet, it was natural to place it
and the other BBN-operated networks into a single
autonomous system. The BBN-operated autonomous
system was dubbed the Core Sys-lem. Gateways in
the Core System maintain complete routing knowledge
about all IP networks. Core gateways may not use de-
fault routes, and for any given destination must either
forward the datagram, or assert authoritatively that the
destination is unreachable. A second important char-
acteristic of the Core concerns propagation of EGP-
derived information. Core gateways are the only In-
ternet gateways authorized to advertise routes reach-
able through other autonomous systems. In contrast,
EGP’s so-called “third party rule” prohibits non-Core
gateways from advertising routes for networks not be-
longing to their autonomous systems. The third-party
rule effectively restricts the topology of the Internet to
a tree in which all autonomous systems connect directly
to the Core.

The following section reviews four common IGPs
used within autonomous systems.

4 Interior Gateway Protocols

4.1 Gateway-to-Gateway Protocol

The first Core gateways [HS82] ran on DEC LSI-11
hardware and connected to BBN-operated networks
such as the ARPANET [MW77] and SATNET [JBH78].

In addition, some Core gateways also connected to lo-
cal networks at the sites where they were housed. LSI-
11 gateways execute the Gateway-toGateway Protocol
(GGP) [HS82] to exchange information about the reach-
ability of IP networks. The following points highlight
GGP:

GGP is a vector-distance protocol. GGP metrics
specify the number of gateway hops on the path
to the destination, and the infinity value of 255
denotes destinations that are unreachable.

GGP uses echo request and reply messages to mon-
itor neighbor reachability. Gateways use a K out
of N algorithm to declare neighbor gateways UP
or DOWN. In the earlier Core gateways, gateways
generated echo messages every 15 seconds, and
gateways in the DOWN state were declared UP
upon receipt of 2 responses out of the preceding 4
echo requests; gateways in the UP state were de-
clared DOWN if 3 of preceding 4 messages remain
unanswered.

Instead of sending periodic updates, gateways gen-
erate GGP update messages in response to the fol-
lowing events:

- A change in the status of a directly connected
network.

- A change in the reachability status of a neigh-
boring gateway.

- A change in its routing tables resulting from
a received GGP message.

A restarting gateway can request updates from
neighboring gateways.

GGP does not age routes. A route previously
reachable through a next-hop gateway becomes un-
reachable when the next-hop gateway sends an up-
date message that omits the route.

Because GGP does not age routes, gateways use
sequence numbers and retransmissions to exchange
routing updates reliably.

Gateways send GGP messages as unicast data-
grams. Core gateways do not send multicast or
broadcast routing messages.

On startup, a gateway consults a configuration
database to obtain a list of peers, gateways with
which it exchanges GGP messages. In addition,
a gateway adds new neighbors to its list of peers
when it receives GGP messages from gateways not
already on its list.

275

rl Gl

Figure 3: The GGP extra-hop problem arises when Figure 3: The GGP extra-hop problem arises when
gateways Gl and G3 do not run GGP with each other. gateways Gl and G3 do not run GGP with each other.
Datagrams destined for hosts on network N2 travel Datagrams destined for hosts on network N2 travel
along the path Gl-G2-G3. along the path Gl-G2-G3.

The nature of GGP updates can lead to the phe-
nomenon known as the extra-hop problem. Consider the
configuration in Figure 3, where three gateways connect
to common network Nl. Gateway G2 runs GGP with
both Gl and G3, but Gl and G3 are non-peering gate-
ways. If G3 advertises a path for network N2 to G2, and
G2 advertises the path to GI, the update messages sent
by G2 to Gl contain only enough information for Gl to
conclude that G2 has a path to N2, and the packets it
sends to hosts on network N2 travel along the path Gl-
G2-G3 rather than from Gl to G3 directly. The piece
of information missing from GGP updates is that G2’s
best path is through G3, which Gl can reach directly.

The extra-hop problem can be eliminated if every
gateway on a network runs GGP with every other
gateway on the same network. However, because the
ARPANET does not support the broadcasting or multi-
casting of IP datagrams, such a solution does not scale
well with an increasing number of gateways. By late
1988, the Core system included approximately 45 LSI-
11 gateways and those gateways ran GGP with all other
Core gateways on a common network.

4.2 Routing Information Protocol

As part of the Berkeley Standard Distribution (BSD) of
UNIX3 [QSP85], researchers at the University of Cali-
fornia at Berkeley developed the Routing Information
Protocol (RIP). The basic outline of the protocol was
derived from the Gateway Information Protocol used in
the PUP protocol suite [BSTM80]. Berkeley distributed
RIP in the UNIX daemon routed, and the (undocu-
mented) protocol became a de facto standard. Only
recently has the protocol been formally documented
[Hed88]. Th e o f 11 owing points highlight the protocol:

3UNIX is a Trademark of AT&T Bell Laboratories

RIP is a vector-distance algorithm. RIP metrics
denote hop counts and the infinity metric of 16
indicates unreachable destinations.

RIP sends unsolicited update messages every thirty
seconds. When supported, RIP uses the broadcast
capability of the underlying physical network.

RIP ages routes; gateways delete those routes not
appearing in any received update over a six-update
(180 second) time interval.

RIP messages allow booting gateways to request
updates from neighboring gateways. In normal op-
eration, gateways listen for periodic update mes-
sages.

To propagate changes quickly, RIP gateways gen-
erate “triggered” or “flash” updates when they
receive an update containing information that
changes their routing tables. Flash updates can
spawn a flurry of routing updates, especially when
metrics rise because of the counting-to-infinity phe-
nomenon.

RIP was designed for use in a LAN environment.
To limit the effects of the “counting to infinity” prob-
lem, its metric was kept deliberately small. Moreover,
although routing loops can form, the combination of
flash updates, highly reliable delivery, and high band-
width associated with LANs reduces the duration and
resource cost of such loops. In addition, in a LAN en-
vironment, the link cost between any two machines is
essentially constant, justifying hop counts as a metric.
Its authors make no claims as to its suitability for use
in non-LAN environments.

Finally, UNIX systems define the all-zeroes destina-
tion to be a wildcard route, a path for datagrams for
which no explicit route exists. Wildcard routes are par-
ticularly useful within an autonomous system, where
updates might contain explicit routes for local networks
and a wildcard route leading to a gateway running EGP
with the Core.

4.3 HELLO

The HELLO protocol [Mi183] was developed as part
of the PDP-11 based Fuzzball gateway [MB87], and
Fuzzballs were used in the first NSFnet backbone. The
following points highlight the protocol:

l HELLO is a vector-distance protocol and metrics
denote the time delay datagrams encounter as they
travel along the path to a destination. An infinity

‘In UNIX terminology, wildcard routes are called default

routes.

276

metric of thirty seconds denotes unreachable des-
tinations.

The protocol can be used over point-topoint or
broadcast networks.

Gateways generate periodic, unsolicited update
messages. The delay between successive updates
depends on the link capacity and ranges from a
minimum of eight to a maximum of thirty seconds.

Gateways use a hold-down timer of two minutes.

4.4 Butterfly Gateways

As a replacement for the LSI-11 Core gateways, BBN
developed a multiprocessor-based gateway called the
Butterfly. Butterfly gateways use a link-status IGP
to propagate routing information about networks that
connect directly to Butterfly gateways and send update
messages to all other Butterfly gateways in a multicast-
like fashion. Update messages consist of two parts:
a list of attached network interfaces in an UP state,
and a list of neighboring gateways together with the
cost of reaching that neighbor. Although link costs
are fixed, each link can be assigned a separate cost.
Typically, network administrators assign low costs to
high-bandwidth, low-delay links such as Ethernets, and
higher costs to paths crossing ARPANET or satellite
links.

5 Internet Routing

Internet routing has evolved through roughly five time
periods. The first period, in which the ARPANET was
the sole backbone Internet network, covered the late
1970s through 1983. The second period began in Oc-
tober, 1983, when the ARPANET was split into two
networks, the ARPANET and MILNET. The third pe-
riod began in 1986, when the first phase of the NSFnet
project became operational. In NSFnet’s first phase, 56
kbps links connected “Fuzzball” gateways at six super-
computer sites across the country. The fourth period
began in June 1988, when Merit assumed operation of
the NSFnet backbone. Finally, the LSI-11 mailbridges
separating the ARPANET and MILNET were replaced
with Butterfly gateways in December, 1988.

5.1 ARPANET Core

In the early 1980s the ARPANET was the Core Sys-
tem’s backbone network. Core gateways exchange rout-
ing information via GGP, and they maintain routes to
every other network in the Internet. Figure 4 illus-
trates how routing information propagates from one

Figure 4: Gateway Gl uses EGP to advertise a route
for network Nl to Core gateway G2. G2 uses GGP to
propagate the route to G3. Finally, G3 uses EGP to
advertise a route for Nl to G4.

autonomous system to another. Non-Core gateways
Gl and G4 connect to the ARPANET and to a LAN
in their respective autonomous systems. Gateway Gl
runs EGP with G2, informing G2 that network Nl is
reachable through Gl. Within the Core, GGP prop-
agates information about Nl to other Core gateways,
including G3. Finally, through EGP, Core gateway G3
informs gateway G4 of Nl’s reachability and learns of
N2’s reachability. Routing information about network
N2 propagates back to Gl in an analogous fashion.

The above example illustrates the mechanism by
which gateways obtain routes to all other Internet sites.
Unfortunately, the path datagrams travel in reaching
those destinations can be suboptimal. In our exam-
ple, datagrams traveling from host Hl to H2 follow
path Gl-G3-G4 rather than traveling from Gl to G4
directly; likewise, datagrams traveling from H2 to Hl
travel along path G4-G2-Gl. The problem lies with
GGP, which is only able to convey information of the
form: “I can reach network X”. Thus, when G2 adver-
tises routes to G3 via GGP, G3 is unaware that it can
reach G2’s next-hop gateways directly. In our exam-
ple, both G2 and G3 are on the ARPANET, and both
can send traffic directly to Gl. This phenomenon is
commonly referred to as the GGP extra-hop problem.

To eliminate the extra-hop problem, BBN designated
three Core gateways to be EGP servers, and sites were
directed to peer with the EGP servers, rather than arbi-
trary Core gateways. Moreover, each site was required
to simultaneously peer with more than half of the EGP
servers, assuring that any two ARPANET sites would
peer with at least one common EGP server. Because
the common server directly exchanges EGP messages
with both sites, it has the information identifying the
correct gateway to use when reaching those sites.

5.2 ARPANET/Milnet Split

In October 1983, DARPA split the ARPANET into
two physical networks, one for experimental research,

277

and the other for production service. The new net-
work, called MILNET, carried traffic between military
installations needing reliable network service, while re-
searchers continued using the ARPANET as an exper-
imental network. Although the networks were physi-
cally distinct, both networks used the same hardware
and software technology, and BBN operated them both.
Both networks remained part of the same autonomous
system, and seven special LSI-II gateways called mail-
bridges forwarded traffic between the two networks.

The existence of multiple gateways between the two
cross-country networks presented a new problem. Be-
cause IP knows only about networks, an ARPANET
gateway on the east coast could not determine whether
a destination on Milnet resided on the east or west
coast. Clearly, an ARPANET gateway on the east coast
would not want to forward traffic destined to an east
coast MILNET site through a mailbridge located in Cal-
ifornia.

The Core system supported load-balancing of traf-
fic between hosts on the two networks. BBN engineers
performed extensive traffic analyses to determine how
traffic should be divided among mailbridges and placed
configuration tables in each Core gateway that identi-
fied which mailbridge should carry traffic between given
source-destination pairs. The load-balancing mecha-
nism worked only for datagrams carrying source and
destination addresses on the ARPANET and Milnet
networks. If an ARPANET host, for instance, for-
warded a datagram destined for a host on Milnet to the
“wrong” gateway, the gateway would send a redirect to
the host identifying the correct mailbridge.

Because the load-balancing mechanism depended on
a gateway’s ability to determine which ARPANET or
MILNET machine sent a datagram, it was ineffective at
balancing traffic flows between sites not directly con-
nected to the two networks. Indeed, as the Internet
grew, the two networks carried an increasing amount of
transit traffic between sites connected only indirectly to
the networks. Instead, hosts connected to LANs which
connected to a gateway on the ARPANET or Milnet.

After the split, ARPANET sites continued to run
EGP with EGP servers connected to the ARPANET
and similar servers were placed on MILNET. With the
two networks, however, the extra-hop problem reap-
peared. In particular, mailbridges used GGP to ob-
tain routing information, but did not understand EGP.
Figure 5 illustrates the problem. Gateway Gl in-
forms EGP server El of the networks within its au-
tonomous system, and El advises Gl of the networks
behind the mailbridges. The EGP servers, however,
use GGP to propagate the information to the mail-
bridges. Although Gl forwards traffic for sites be-
hind the ARPANET to the mailbridges directly, the

Figure 5: With the ARPANET/Milnet split, the extra-
hop problem reappeared. Datagrams travelling from
G2 to Gl follow the path GP-MB-El-Gl, needlessly vis-
iting EGP server El.

mailbridges forward traffic destined for sites behind Gl
through the EGP servers. The extra-hop problem be-
tween the two networks remained until January, 1989,
when the LSI-11 mailbridges were replaced with But-
terfly gateways.

5.3 Phase 1 NSFnet (Fuzzballs)

In 1984, the National Science Foundation (NSF) em-
barked on a program to provide scientists with high-
speed access to supercomputers. Although the primary
goal focused on supercomputer access, NSF recognized
that it could achieve the primary goal and at the same
time provide the basis for a nationwide academic re-
search network [JLF*86]. Rather than build a single
new physical network, a key recommendation of the
NSFnet program was to adopt Internet technology and
build a collection of networks.

The first phase of the NSFnet program, started in
June 1986, used 56 kbps lines to link Fuzzball gateways
at six supercomputer centers. Additional networks, in
the form of campus and regional networks, connected
to the backbone at supercomputer centers. Despite its
growth to over 200 networks, the NSFnet backbone,
regional, and campus networks were administrated as
a single autonomous system, and NSFnet’s constituent
networks exchanged routing information with an IGP
rather than EGP.

In the backbone, Fuzzball gateways used the HELLO
protocols to exchange routing information [MB87]. Be-
cause the HELLO protocol was not widely imple-
mented, regional and campus networks were unable
to use the protocol. Moreover, the diverse software
and hardware technologies employed by campus and re-

278

Figure 6: Gated translates HELLO metrics into the
smallest RIP metric such that if the RIP metric is trans-
lated back to a HELLO metric, the translated HELLO
metric is no smaller than the original.

Figure 7: If gateway Gl readvertises routes learned
from G4 at lower metrics than advertised by G4, loops
can form when the information filters back to itself over
the path through G2 and G3.

gional networks called for a widely available, standard
protocol. RIP was the only available candidate.

5.3.1 Exceeding RIP’s Notion of Infinity

Regional networks used Ethernets to connect to the
backbone at supercomputer sites, and the regional gate-
ways used the HELLO protocol to exchange routing
information with the backbone Fuzzballs. A special
routing daemon residing on the regional gateway, gated
[Fed88], translated the HELLO-derived routes into RIP
updates that it forwarded to gateways on the regional
network. Gated translated the HELLO metrics of routes
received from the Fuzzball into metrics usable within
the context of RIP and translated RIP metrics to
HELLO metrics in updates sent to the Fuzzballs.

Translating metrics proved to be difficult because
HELLO metrics denote delays, while RIP metrics de-
note hop counts. Gated mapped RIP metrics into
HELLO delays and vice versa using the rules given in
Figure 6 [FH88].

NSFnet grew rapidly after its birth. Within two
years, more networks were reachable through NSFnet
than through the Core itself. As NSFnet grew, so
did the number of interconnections between networks
within NSFnet. For instance, some regional networks
connected to the backbone at multiple points, and
“back door” links connected some regional networks to
others. Often, several paths existed between a given
pair of hosts. Growth led to two problems. First, the
distance between some networks exceeded RIPS notion

The sheer size of NSFnet exposed a significant problem:
the combined diameter of the backbone, regional and
campus networks exceeded sixteen network hops, RIP’s
definition of infinity. Although the value of the met-
ric denoting infinity could have been raised, the idea
was rejected for fear of exacerbating the counting-to-
infinity problem. Instead, gated software was modified
to selectively change the value of RIP metrics received
in routing updates. A gateway receiving an update ad-
vertising a route at a metric of fourteen, for example,
could readvertise the route at a metric of seven.

Allowing gateways to remap metrics in received rout-
ing updates presented NSFnet with a significant man-
agement problem because remapping metrics can intro-
duce routing loops. The difficulty arises when a gate-
way advertising a network at the correct metric receives
an update from a gateway advertising the network at
a lower, remapped metric. The path advertised at the
lower metric may, in fact, traverse the gateway receiving
the update.

The simple topology in Figure 7 illustrates the prob-
lem. Gateway G4 advertises a path for some network N
at metric 12, and gateway Gl, changes the metric to 4
in the update it sends to G2. G2 advertises the route to
G3 at metric 5, and Gl changes its routing table to use
the path advertised by G3 at metric 5. Unfortunately,
a routing loop has now developed between G3 and Gl.

of infinity. Second, the rich set of interconnections be- In the complex topology of NSFnet, choosing metrics
tween constituent networks produced routing instabil- and regulating which gateways could safely propagate
ities commonly associated with vector-distance proto- updates about individual networks entailed significant
~01s. The following subsections articulate the difficul- administrative management. The task could not be au-
ties. tomated and required tedious human oversight.

279

5.3.2 RIP Extensions 5.4 Phase 2 NSFnet (Merit)

Phase two of the NSFnet project became operational
in June 1988, when all traffic on the Fuzzball-based
NSFnet was diverted to a new backbone operated by
Merit. The new backbone used Tl speed5 links to in-
terconnect packet switches called Nodal Switching Sub-
systems (NSS).

Based on the routing experiences of its predeces-
sor, the new backbone adopted a significantly improved
routing architecture [Bra88]. First, the backbone and
each regional network operate as distinct autonomous
systems, and they use EGP to exchange routing infor-
mation with each other. Second, the backbone itself
uses an SPF-based link-status IGP [Rek88a]. Finally,
NSS nodes filter all EGP updates through a configura-
tion database [Rek88b]. Information contained in up-
dates, but not consistent with the database, is ignored
and brought to the attention of a network manager.

Filtering updates through a configuration database
introduced an administrative aspect to the backbone
not present before. Specifically, the database describes
the expected and permitted interconnections among
networks. New networks that join the Internet must be
added to the database before the backbone will prop-
agate reachability information about them. Carefully
controlling the propagation and use of route informa-
tion, however, decreases the probability that loops will
form.

As NSFnet increased in size, routing instabilities be-
came common. Sites complained that they could not
reach some sites at all, while other sites would oscil-
late between being reachable and unreachable. Efforts
aimed at stabilizing routing, met with only marginal
success. Efforts included adding a hold-down timer to
RIP software, adding split horizons, and finally split
horizon with poison updates. Additional experiments
investigated the effects of changing the mappings be-
tween RIP and HELLO metrics. Although some sites
noted some improvements, the overwhelming evidence
pointed to the need for a replacement routing technol-
ogy. In short, the problems outlined in [MFR78] were
rediscovered.

5.3.3 NSFnet and the Core

Before NSFnet, most sites connected to the ARPANET
Core at a single point. The NSFnet backbone, however,
connected to the ARPANET Core at several points.
As with connections to regional networks, backbone
Fuzzballs did not connect directly to the ARPANET;
instead, they shared a common Ethernet with gateways
running gated on the ARPANET. In order to distribute
the traffic load among the ARPANET/NSFnet connec-
tions, NSFnet employed fallback routing [MB87]. Un-
der normal circumstances, traffic travelled through pri-
mary gateways. If the primary gateway failed, however,
traffic would be diverted to secondary, backup gate-
ways. When the the primary gateway resumed proper
functioning, traffic flows would revert to the primary
gateway.

Each of NSFnet’s constituent networks was assigned
a primary gateway, and the others were dubbed sec-
ondary gateways. The primary gateway for a network
advertised the network to the Core at an EGP metric
of zero, while the secondary gateways advertised a net-
work at a metric of three. Because gateways preferred
paths advertised at a lower metric, traffic originating
from the core would travel through a destination’s pri-
mary gateway when it was available. Should the pri-
mary gateway fail, traffic would revert to the secondary
gateways.

Although the backbone ran EGP with the Core, none
of the routes learned from the Core were propagated to
the Fuzzball backbone or its regional networks. Instead,
NSFnet gateways running EGP with the ARPANET
EGP servers advertised a wildcard route. Through the
HELLO protocol, the Fuzzball backbone propagated
the wildcard route to the regional networks. In turn,
the regional networks propagated the wildcard route via
RIP to end-user sites.

5.5 Butterfly Mailbridges

In December of 1988, BBN replaced the aging LSI-11
mailbridges with six Butterfly gateways. In addition
to routing traffic between the ARPANET and MIL-
NET, the mailbridges assumed the roles of the EGP
servers, eliminating the extra-hop problem between the
ARPANET and MILNET.

Butterfly gateways use a link-status algorithm to dis-
tribute routing information about internal networks,
those networks connected to Butterfly gateways. How-
ever, the link-status algorithm does not propagate
routes for EGP-learned networks. To propagate EGP-
learned routes to other Butterfly mailbridges, Butterfly
gateways implement an ad hoc protocol called Spread
[Atl89]. Spread is a modified implementation of EGP,
in which gateways generate periodic, unsolicited update
messages every sixty seconds. Moreover, Spread omits
echo request and reply messages, and update messages
include an autonomous system identifier of the gateway
advertising the path.

5T1 speed links have a carrying capacity of 1.544 Mbps. At
present, the NSFnet backbone links operate at l/3 TI capacity.

280

The Butterfly mailbridges also support a load-
balancing mechanism effective for all IP-level traffic.
While the load-balancing mechanism of the LSI-11 Core
gateways relied on ICMP redirects, the Butterfly mail-
bridges use EGP to specify which mailbridges a partic-
ular gateway should use. When generating an update,
the mailbridge examines the IP address of the EGP
neighbor targeted by the update and uses the address to
determine which mailbridge the target gateway should
use to reach sites on or behind the other network. For
example, if a non-Core gateway on the east coast peered
with an ARPANET mailbridge on the west coast, the
EGP updates generated by the west coast mailbridge
would identify an east-coast mailbridge as the correct
gateway to use when sending traffic to sites on or be-
hind Milnet.

6 Conclusions

Explosive growth is taxing current Internet routing
mechanisms. New sites continue to join the Internet
on a daily basis, and sites add new links to destinations
with which they desire better connectivity. In some
sense, the Internet is a victim of its own success; many
routing protocols are being used in environments for
which they had not been designed. For instance, the
EGP model disallows the existence of multiple paths
between sites in different autonomous systems, forcing
sites to use ad hoc techniques such as running IGPs
between sites in different autonomous systems. More-
over, the Core model along with the absence of a univer-
sal EGP metric definition prevents autonomous systems
from interconnecting in convenient ways, restricting the
visible topology of the Internet to a tree. To keep rout-
ing stable, the new NSFnet backbone has resorted to
the use of a centralized routing database that restricts
the allowable Internet topology. There is a critical need
to explore alternative models such as [Mi186] that loosen
the topological restrictions on Internet interconnections
to reflect the extent and manner in which sites actually
connect to one another.

References

[At1891 Steve Atlas. Bolt, Beranek, and Newman Inc.,
Private communication, February 1989.

[BG87] Dimitri Bertsekas and Robert Gallager. Data
Neturorks. Prentice Hall, 1987.

[Bra881 Hans-Werner Braun. The NSFNET Rout-
ing Architecture. DARPA Networking Information
Center, RFC 1093, May 1988.

[BSTM80] David R. Boggs, John F. Schoch, Edward A.
Taft, and Robert M. Metcalfe. Pup: an Internet-

work Architecture. IEEE Tmnsactions on Comput-
ers, COM-28(4):612-623, April 1980.

[Corn881 Douglas E. Comer. Internetworking With
TCP/IP: P pl rznci es, Protocols, Architecture. Pren-
tice Hall, 1988.

[Fed881 Mark S. Fedor. GATED: A Multi-Routing Pro-
tocol Daemon for UNIX. In Proceedings of the 1988
Summer USENIX Conference, pages 20-24, Winter
1988.

[FH88] Mark Fedor and Jefrey C. Honig. Man page for
gated. Cornell Theory Center, Cornell University,
Ithaca NY 14853-5201, May 1988.

[Hed88] Charles Hedrick. Routing Information Proto-
col. DARPA Networking Information Center, RFC
1058, June 1988.

[HHS83] Robert Hinden, Jack Haverty, and Alan
Sheltzer. The DARPA Internet: interconnecting
heterogeneous computer networks with gateways.
Computer, 16(9):38-48, September 2983.

[KS821 Robert Hinden and Alan Sheltzer. DARPA In-
ternet Gateway. DARPA Networking Information
Center, RFC 823, September 1982.

[JBH78] Irwin Mark Jacobs, Richard Binder, and Es-
til V. Hoversten. General Purpose Packet Satellite
Networks. Proceedings of the IEEE, 66(11):1448-
1467, November 1978.

[JLF*86] Dennis M Jennings, Lawrence H. Landweber,
Ira H. Fuchs, David J. Farber, and W, Richards
Adrion. Computer Networking for Scientists. Sci-
ence; 231:943-950, February 1986.

[Kir84] Paul Kirton. EGP Gateway under Berkeley
UNIX 4.2. DARPA Networking Information Cen-
ter, RFC 911, August 1984.

[MB871 David L. Mills and Hans-Werner Braun. The
NSFNET Backbone Network. In Proceedings of
the ACM SIGCOMM ‘87 Workshop, pages 191-196,
August 1987.

[MFR78] John M. McQuillan, Gilbert Falk, and Ira
Richer. A Review of the Development and Perfor-
mance of the ARPANET Routing Algorithm. IEEE
Tmnsactions on Computers, COM-26(12):1082-
1811, December 1978.

[Mi1$3] David L. Mills. DCN local-network protocols.
DARPA Networking Information Center, RFC 891,
December 1983.

[Mi184
i

David L. Mills. Exterior Gateway Protocol For-
ma Specification. DARPA Networking Information
Center, RFC 904, April 1984.

[Mi186] David L. Mills. Autonomous Conferations.
DARPA Networking Information Center, RFC 975,
February 1986.

[MRR78] John M. McQuillan, Ira Richer, and Eric C.
Rosen. ARPANET Routing Algorithm Improve-
ments First Semiannual Technical Report. Techni-
cal Report 3803, Bolt Beranek and Newman Inc.,
April 1978.

281

[MRII%)h John M. McQuillan,-Ira Richer, and Eric C.
. The New Routmg Algorithm for the

ARPANET. IEEE Transactions on Computers,
COM-28(5):711-719, May 1980.

[MW77] John M. McQuillen and D. C. Walden. The
ARPANET Design Decisions. Computer Networks,
l(5), September 1977.

[Pos80] Jonathon Postel. Internetwork Protocol Ap-
proaches. IEEE Transactions on Computers, COM-
28(4):605-611, April 1980.

[Pos81] Jonathon B. Postel. Internet Control Message
Protocol. DARPA Networking Information Center,
RFC 792, September 1981.

[QSP85] John S. Quarterman, Abraham Silberschatz,
and James L. Peterson. 4.2BSD and 4.3BSD as Ex-
amples of the UNIX Operating System. ACM Com-
puting Surveys, 17(4):379-418, December 1985.

[Rek88a] J Rekhter. EGP and Policy Based Routing in
the New NSFNET Backbone. DARPA Networking
Information Center, RFC 1092, March 1988.

[Rek88b] J Rekhter. The NSFNET Backbone SPF
based Interior Gateway Protocol. DARPA Net-
working Information Center, RFC 1058, June 1988.

A Problems with Growth

This section chronicles significant events that lead to
a break down of routing on an Internet-wide basis.
As might be expected, many of the problems related
to growth and occurred during the rapid growth of
NSFnet.

Feb 1986 EGP servers began generating EGP updates
exceeding 576 bytes in size. Many implementations
of EGP, (e.g. K’ t ir on’s implementation for UNIX
systems [Kir84]) allocated a static buffer of 576
bytes to hold incoming update messages. When
an update exceeding 576 bytes in size was recieved,
network software would truncate the message be-
fore handing it to the application, and EGP soft-
ware would record a checksum error as it performed
its integrity check. Assuming that the message was
corrupted rather than truncated, EGP software
discarded the entire update. Because the size of
routing updates varied frequently from one update
to another, a site would typically lose some up-
dates, while correctly processing others. Internet
routing became unstable with paths to destination
oscillating between being reachable and unreach-
able. The problem of underestimating the size of
EGP messages reappeared numerous times; by De-
cember, 1989, servers generated update messages
exceeding 2048 bytes.

July, 1986 The number of networks in the Core ex-
ceeded 120 for the first time, overflowing the LSI-
11 Core gateway routing tables. If a site’s gateway
crashed, EGP servers would free the table slots al-
located to the crashed gateway, allowing them to
be assigned to other gateways. Following a crash
it might take days for a site’s networks to reen-
ter tables in every Core gateway. Not surprisingly,
the problem reoccurred several times. By January,
1989, the Core contained routes to over 630 IP net-
works.

Likewise, the EGP servers could support only a
limited number of EGP neighbors. Once a server
reached its EGP neighbor limit, it would reject fur-
ther peer requests from other gateways. If a site’s
gateway rebooted, it might lose its neighbor slot
and find that no server would peer with it. Until
a site was able to find a server that it could peer
with, it was effectively cut off from the Internet.

Fall 1987 As the size of EGP updates and the number
of gateways peering with EGP servers increased,
the servers consumed more and more of their pro-
cessing capacity handling routing updates. By
the early fall of 1987, server CPUs were running
at close to 100 percent capacity, and could no
longer process updates promptly. Delays became
so large that gateways would declare their EGP
peers down. Internet routing essentially collapsed.

At an October 1987 meeting of the Internet Engi-
neering Task Force (IETF) it was suggested that
additional processing power could be realized by
upgrading the LSI-11 Core servers to LSI-11/73
processors. The IETF promoted an “Adopt-a-
Mailbridge Foster Parent Program” to search for
spare 11/73 processors that could be temporarily
loaned to the Core. One month later, all EGP
servers and mailbridges had been upgraded, and
Internet routing recovered,

September 1987 The size of EGP updates began ex-
ceeding 1012 bytes, the maximum size datagram
carried by the ARPANET and Milnet. Moreover,
the Core gateways did not fragment or reassemble
IP datagrams, truncating large messages instead.
Users encountered routing difficulties with symp-
toms analogous to the those that occurred when
the EGP servers overflowed their internal route ta-
bles. Six weeks elapsed before EGP server software
began fragmenting and reassembling large updates.

282

