Queueing Systems

'One of life’s more disagreeable activities, namely, waiting in line, is the
delightful subject .of this book. One might reasonably ask, “What does it
profit a man to study such unpleasant phenomena?” The answer, of course,
is that through understanding we gain compassion, and it is exactly this
which we need since people will be waiting in longer and longer queues as
civilization progresses, and we must find ways to tolerate these unpleasant
situations. Think for a moment how much time is spent in one’s daily
activities waiting in some form of a queue: waiting for breakfast; stopped at a
traffic light; slowed down on the highways and freeways; delayed at the
entrance to one’s parking facility; queued for access to an elevator; standing
in line for the morning coffee; holding the telephone as it rings, and so on.
The list is endless, and too often also are the queues.

The orderliness of queues varies from place to place around the world.
For example, the English are terribly susceptible to formation of orderly
queves, whereas some of the Mediterranean peoples consider the idea
judicrous (have you ever tried clearing the embarkation procedure at the
Port of Brindisi?). A common slogan in the U.S. Army is, “Hurry up and
wait.” Such is the nature of the phenomena we wish to study.

11. SYSTEMS OF FLOW

L Queueing systems represent an example of a much broader class of
' interesting dynamic systems, which, for convenience, we refer to as “systems
=~ offlow.” A flow system is one in which some commodity flows, moves, or is
& (ransferred through one or more finite-capacity channels in order to go from
i one point to another. For example, consider the flow of automobile traffic
- through a road network, or the transfer of goods in a railway system, or the
| streaming of water through a dam, or the transmission of telephone or
. telegraph messages, or the passage of customers through a supermarket
E checkout counter, 0T the flow of computer programs through a time-sharing
b computer system. In these examples the commodities are the automobiles,
the goods, the water, the telephone or telegraph messages, the customers, and
E the programs, respectively; the channel or channels are the road network,
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4 QUEUEING SYSTEMS

the railway network, the dam, the telephone or telegraph network, the
supermarket checkout counter, and the computer processing system, re-
spectively. The “finite capacity” refers to the fact that the channel can satisfy
the demands (placed upon it by the commodity) at a finite rate only. It is
clear that the analyses of many of these systems require analytic tools drawn
from a variety of disciplines and, as we shall see, queueing theory is just one
such discipline.

When one analyzes systems of flow, they naturally break into two classes:
steady and unsteady flow. The first class consists of those systems in which the
flow proceeds in a predictable fashion. That is, the quantity of flow is
exactly known and is constant over the interval of interest; the time when that
flow appears at the channel, and how much of a demand that flow places upon
the channel is known and constant. These systems are trivial to analyze in the
case of a single channel. For example, consider a pineapple factory in which
empty tin cans are being transported along a conveyor belt to a point at
which they must be filled with pineapple slices and must then proceed further
down the conveyor belt for additional operations. In this case, assume that
the cans arrive at a constant rate of one can per second and that the pine-
apple-filling operation takes nine-tenths of one second per can. These numbers
are constant for all cans and all filling operations. Clearly this system will
function in a reliable and smooth fashion as long as the assumptions stated
above continue to exist. We may say that the arrival rate R is one can per
second and the maximum service rate (or capacity) C is 1/0.9 = 1.11111 - - -
filling operations per second. The example above is for the case R < C.
However, if we have the condition R > C, we all know what happens: cans
and/or pineapple slices begin to inundate and overflow in the factory! Thus
we see that the mean capacity of the system must exceed the average flow
requirements if chaotic congestion is to be avoided this is true for all systems
of flow. This simple observation tells most of the story. Such systems are of
little interest theoretically.

The more interesting case of steady flow is that of a nerwork of channels.
For stable flow, we obviously require that R < C on each channel in the
network. However we now run into some serious combinatorial problems.
For example, let us consider a railway network in the fictitious land of
Hatafla. See Figure 1.1. The scenario here is that figs grown in the city of
Abra must be transported to the destination city of Cadabra, making use
of the railway network shown. The numbers on each channel (section of
railway) in Figure 1.1 refer to the maximum number of bushels of figs which
that channel can handle per day. We are now confronted with the following
fig flow problem: How many bushels of figs per day can be sent from Abra to
Cadabra and in what fashion shall this flow of figs take place? The answer to
such questions of maximal “traffic” flow in a variety of networks is nicely
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Figure 1.1 Maximal flow problem.

settled by a well-known result in network flow theory referred to as the
max-flow-min-cut theorem. To state this theorem, we first define a cuf as a
set of channels which, once removed from the network, will separate all
possible flow from the origin (Abra) to the destination (Cadabra). We define
the capacity of such a cut to be the total fig flow that can travel across that cut
in the direction from origin to destination. For example, one cut consists of
the branches from Abra to Zeus, Sucsamad to Zeus, and Sucsamad to Oriac;
the capacity of this cut is clearly 23 bushels of figs per day. The max-flow—
min-cut theorem states that the maximum flow that can pass between an
origin and a destination is the minimum capacity of all cuts. In our example
it can be seen that the maximum flow is therefore 21 bushels of figs per day
(work it out). In general, one must consider all cuts that separate a given
origin and destination. This computation can be enormously time consuming.
Fortunately, there exists an extremely powerful method for finding not only
what is the maximum flow, but also which flow pattern achieves this maxi-
mum flow. This procedure is known as the labeling algorithm (due to Ford
and Fulkerson [FORD 62]) and is efficient in that the computational require-
ment grows as a small power of the number of nodes; we present the algorithm
in Volume II, Chapter 5.

In addition to maximal flow problems, one can pose numerous other
interesting and worthwhile questions regarding flow in such networks. For
example, one might inquire into the minimal cost network which will support
a given flow if we assign costs to each of the channels. Also, one might ask
the same questions in networks when more than one origin and destination
exist. Complicating matters further, we might insist that a given network
support flow of various kinds, for example, bushels of figs, cartons of
cartridges and barrels of oil. This multicommodity flow problem is an
extremely difficult one, and its solution typically requires considerable
computational effort. These and numerous other significant problems in
network flow theory are addressed in the comprehensive text by Frank and
Frisch [FRAN 71] and we shall see them again in Volume II, Chapter 5. Net-
work flow theory itself requires methods from graph theory, combinatorial
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mathematics, optimization theory, mathematical programming, and heuristic
programming.

The second class into which systems of flow may be divided is the class of
random or stochastic flow problems. By this we mean that the times at which
demands for service (use of the channel) arrive are uncertain or unpredict-
able, and also that the size of the demands themselves that are placed upon
the channel are unpredictable. The randomness, unpredictability, or unsteady
nature of this flow lends considerable complexity to the solution and under-
standing of such problems. Furthermore, it is clear that most real-world
systems fall into this category. Again, the simplest case is that of random flow
through a single channel; whereas in the case of deterministic or steady flow
discussed earlier in which the single-channel problems were trivial, we have
now a case where these single-channel problems are extremely challenging
and, in fact, techniques for solution to the single-channel or single-server
problem comprise much of modern queueing theory.

For example, consider the case of a computer center in which computation
requests are served making use of a batch service system. In such a system,
requests for computation arrive at unpredictable times, and when they do
arrive, they may well find the computer busy servicing other demands. If, in
fact, the computer is idle, then typically a new demand will begin service
and will be run until it is completed. On the other hand, if the system is busy,
then this job will wait on a queue until it is selected for service from among
those that are waiting. Until that job is carried to completion, it is usually the
case that neither the computation center nor the individual who has submitted
the program knows the extent of the demand in terms of computational effort
that this program will place upon the system; in this sense the service require-
ment is indeed unpredictable. :

A variety of natural questions present themselves to which we would like
intelligent and complete answers. How long, for example, may a job expect to
wait on queue before entering service ? How many jobs will be serviced before
the one just submitted? For what fraction of the day will the computation
center be busy? How long will the intervals of continual busy work extend ?
Such questions require answers regarding the probability of certain periods
and numbers or perhaps merely the average values for these quantities.
Additional considerations, such as machine breakdown (a not uncommon
condition), complicate the issue further; in this case it is clear that some pre-
emptive event prevents the completion of the job currently in service. Other
interesting effects can take place where jobs are not serviced according to their
order of arrival. Time-shared computer systems, for example, employ rather
complex scheduling and servicing algorithms, which, in fact, we explore in.
Volume II, Chapter 4.

The tools necessary for solving single-channel random-flow problems are
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contained and described within queueing theory, to which much of this text
devotes itself. This requires a background in probability theory as well as an
understanding of complex variables and some of the usual transform-
calculus methods; this material is reviewed in Appendices I and 1I.

As in the case of deterministic flow, we may enlarge our scope of problems
to that of networks of channels in which random flow is encountered. An
example of such a system would be that of a computer network. Such a
system consists of computers connected together by a set of communication
lines where the capacity of these lines for carrying information is finite. Let us
return to the fictitious land of Hatafla and assume that the railway network
considered earlier is now in fact a computer network. Assume that users
located at Abra require computational effort on the facility at Cadabra. The
particular times at which these requests are made are themselves unpredict-
able, and the commands or instructions that describe these requests are also
of unpredictable length. It is these commands which must be transmitted to
Cadabra over our communication net as messages. When a message is
inserted into the network at Abra, and after an appropriate decision rule
(referred to as a routing procedure) is accessed, then the message proceeds
through the network along some path. If a portion of this path is busy, and
it may well be, then the message must queue up in front of the busy channel
and wait for it to become free. Constant decisions must be made regarding
the flow of messages and routing procedures. Hopefully, the message will
eventually emerge at Cadabra, the computation will be performed, and the
results will then be inserted into the network for delivery back at Abra.

Itis clear that the problems exemplified by our computer network involve a
vatiety of extremely complex queueing problems, as well as network flow
and decision problems. In an earlier work [KLEI 64] the author addressed
himself to certain aspects of these questions. We develop the analysis of these
systems later in Volume II, Chapter 5.

Having thus classified * systems of flow, we hope that the reader understands
where in the general scheme of things the field of queueing theory may be
placed. The methods from this theory are central to analyzing most stochastic
flow problems, and it is clear from an examination of the current literature
that the field and in particular its applications are growing in a viable and
purposeful fashion.

* The classification described above places queueing systems within the class of systems of
flow. This approach identifies and emphasizes the fields of application for queueing theory.
An alternative approach would have been to place queueing theory as belonging to the
field of applied stochastic processes; this classification would have emphasized the mathe-
matical structure of queueing theory rather than its applications. The point of view taken
in this two-volume book is the former one, namely, with application of the theory as its
major goal rather than extension of the mathematical formalism and results.
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1.2. THE SPECIFICATION AND MEASURE
OF QUEUEING SYSTEMS

In order to completely specify a queueing system, one must identify the
stochastic processes that describe the arriving stream as well as the structure
and discipline of the service facility. Generally, the arrival process is described
in terms of the probability distribution of the interarrival times of customers
and is denoted A(r), where*

A(t) = P[time between arrivals < #] (LD

The assumption in most of queueing theory is that these interarrival times are
independent, identically distributed random variables (and, therefore, the
stream of arrivals forms a stationary renewal process; see Chapter 2). Thus,
only the distribution A(#), which describes the time between arrivals, is usually
of significance. The second statistical quantity that must be described is the
amount of demand these arrivals place upon the channel; this is usually
referred to as the service time whose probability distribution is denoted by
B(x), that is,

B(x) = PJservice time < ] (1.2)

Here service time refers to the length of time that a customer spends in the
service facility.

Now regarding the structure and discipline of the service facility, one must
specify a variety of additional quantities. One of these is the extent of
storage capacity available to hold waiting customers and typically this quan-
tity is described in terms of the variable K; often K is taken to be infinite. An
additional specification involves the number of service stations available, and
if more than one is available, then perhaps the distribution of service time
will differ for each, in which case the distribution B(z) will include a subscript
to indicate that fact. On the other hand, it is sometimes the case that the
arriving stream consists of more than one identifiable class of customers; in
such a case the interarrival distribution A4 () as well as the service distribution
B(x) may each be characteristic of each class and will be identified again by
use of a subscript on these distributions. Another important structural
description of a queueing system is that of the queueing discipline; this
describes the order in which customers are taken from the queue and allowed
into service. For example, some standard queueing disciplines are first-come—
first-serve (FCFS), last-come-first-serve (LCFS), and random order of
service. When the arriving customers are distinguishable according to groups,
then we encounter the case of priority queueing disciplines in which priority

* The notation P{4] denotes, as usual, the “‘probability of the event A.”
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among groups may be established. A further statement regarding the avail-
ability of the service facility is also necessary in case the service facility is
occasionally required to pay attention to other tasks (as, for example, its
own breakdown). Beyond this, queueing systems may enjoy customer
behavior in the form of defections from the queue, jockeying among the many
queues, balking before entering a queue, bribing for queue position, cheating
for queue position, and a variety of other interesting and not-unexpected
humanlike characteristics. We will encounter these as we move through the
text in an orderly fashion (first-comefirst-serve according to page number).

Now that we have indicated how one must specify a queueing system, it is
appropriate that we identify the measures of performance and effectiveness
that we shall obtain by analysis. Basically, we are interested in the waiting time
for a customer, the number of customers in the system, the length of a busy
period (the continuous interval during which the server is busy), the length of
an idle period, and the current work backlog expressed in units of time. All
these quantities are random variables and thus we seek their complete
probabilistic description (i.e., their probability distribution function).
Usually, however, to give the distribution function is to give more than
one can easily make use of. Consequently, we often settle for the first few
moments (mean, variance, etc.).

Happily, we shall begin with simple considerations and develop the tools
in a straightforward fashion, paying attention to the essential details of
analysis. In the following pages we will encounter a variety of simple queueing
problems, simple at least in the sense of description and wusually rather
sophisticated in terms of solution. However, in order to do this properly, we
first devote our efforts in the following chapter to describing some of the
important random processes that make up the arrival and service processes
in our queueing systems.
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Some Important Random Processes®

We assume that the reader is familiar with the basic elementary notions,
terminology, and concepts of probability theory. The particular aspects of
that theory which we require are presented in summary fashion in Appendix
I to serve as a review for those readers desiring a quick refresher and
reminder; it is recommended that the material therein be reviewed, especially
Section 11.4 on transforms, generating functions, and characteristic functions.

Included in Appendix 11 are the following important definitions, concepts,

and results:

« Sample space, events, and probability.

« Conditional probability, statistical independence, the law of total

probability, and Bayes’ theorem.

. A real random variable, its probability distribution function (PDF),

its probability density function (pdf), and their simple properties.

. Events related to random variables and their probabilities.

. Joint distribution functions. ,

« Functions of random variable and their density functions.

. Expectation.

o Laplace transforms, generating functions, and characteristic functions
and their relationships and properties.T

. Inequalities and limit theorems.

e Definition of a stochastic process.

2.1. NOTATION AND STRUCTURE FOR BASIC
QUEUEING SYSTEMS

Before we plunge headlong into 2 step-by-step develof)ment of queueing
theory from its elementary notions to its intermediate and then finally to
some advanced material, it is important first that we understand the basic

* Sections 2.2, 2.3, and 2.4 may be skipped on a first reading.
t Appendix I is a transform theory refresher. This material is also essential to the propet
understanding of this text.
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2.1. NOTATION AND STRUCTURE FOR BASIC QUEUEING SYSTEMS 11

structure of queues. Also, we wish to provide the reader a glimpse as to
where we are heading in this journey.

It is our purpose in this section to define some notation, both symbolic
and graphic, and then to introduce one of the basic stochastic processes that
we find in queueing systems. Further, we will derive a simple but significant
result, which relates some first moments of importance in these systems. In
so doing, we will be in a position to define the quantities and processes that
we will spend many pages studying later in the text.

The system we consider is the very general queueing system G/G/m; recall
(from the Preface) that this is a system whose interarrival time distribution
A(f) is completely arbitrary and whose service time distribution B(x) is also
completely arbitrary (all interarrival times and service times are assumed to
be independent of each other). The system has m servers and order of service
is also quite arbitrary (in particular, it need not be first-come-first-serve).
We focus attention on the flow of customers as they arrive, pass through, and
eventually leave this system; as such, we choose to number the customers with
the subscript 7 and define C,, as follows:

C, denotes the nth customer to enter the system (2.1)

Thus, we may portray our system as in Figure 2.1 in which the box represents
the queueing system and the flow of customers both in and out of the system
is shown. One can immediately define some random processes of interest.
For example, we are interested in N(¢) where*

N(t) A number of customers in the system at time ¢ 2.2)

Another stochastic process of interest is the unfinished work U(r) that exists
in the system at time f, that is,

U(t) A the unfinished work in the system at time
. . . y
A the remaining time required to empty the system of all
customers present at time ¢ (2.3)

Whenever U(r) > 0, then the system is said to be busy, and only when
U(t) = 0is the system said to be idle. The duration and location of these busy
and idle periods are also quantities of interest.

el
Queueing e ttT
system
Cxm O - Cs Ciy

Figure 2.1 A general queueing system.

* The notation 2 is to be read as *‘equals by definition.”
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The details of these stochastic processes may be observed first by defining.

the following variables and then by displaying these variables on an appro-:
riate time diagram to be discussed below. We begin with the definitions !
Recalling that the nth customer is denoted by C,, we define his arrival tim|

to the queueing system as
r, & arrival time for C, (24

and further define the interarrival time between C,,and C, as

7, & interarrival time between C,_y and Cy

@9

are drawn from the dis- ',

= Ty — Tn-1

Since we have assumed that all interarrival times
tribution A(¢), we have that ;
Plt, < 1] = A(®) @28):
which is independent of n. Similarly, we define the service time for C,, as
@)

i

w, 2 service time for C,

and from our assumptions we have |
Plz, < 7] = B@ @3
13

i

The sequences {t,} and {z,} may be thought of as input yariables for our
queueing system; the way in which the system handles these customers gives

rise to queues and waiting times that we must
waiting time (time spent in the queue)* as

w, & waiting time (in queue) for Cy,

The total time spent i

service time, which we denote by
5, 2 system time (queue plus service) for Cy

= w, T %,

now define. Thus, we define the}

9}

n the system by Cy is the sum of his waiting time and}

Q.10

Thus we have defined for the nth customer his arrival t
time, his service time,

% The terms ‘‘waiting time” and “‘queueing time’
ueing-theory literature. The former sometimes refers to the total time spent it

body of que
system, and the latter then refers to the total time spent on queue; however, these tw

definitions are occasionally reversed. We attempt

ime, “his” interarrivall
his waiting time, and his system time. We find it}

> have conflicting definitions within the

to remove that confusion by defini
namely, the time spent waiting on; '

waiting and queueing time to be the same quantity,

queue (but not being serve
The total time spent in the system will be referred to as

as ““flow time”). )
|

d); a more appropriate term perhaps would be ““wasted time}
““system time” (occasionally know,

o

-
K
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expedient at this point to elaborate somewhat further on notation. Let us
consider the interarrival time ¢, once again. We will have occasion to refer
to the limiting random variable 7 defined by

72 lim1, (2.11)
which we denote by ¢, — 7. (We have already required that the interarrival
times ¢, have a distribution independent of », but this will not necessarily be
the case with many other random variables of interest.) The typical notation
for the probability distribution function (PDF) will be

Plt, < 1] = A4,(1) (2.12)
and for the limiting PDF
Pli < ] = A(1) (2.13)

This we denote by 4,,(f) = A(¢); of course, for the interarrival time we have
assumed that A,(r) = A(z), which gives rise to Eq. (2.6). Similarly, the
probability density function (pdf) for ¢, and # will be a,(f) and a(?), respec-
tively, and will be denoted as a,(r) — a(f). Finally, the Laplace transform
(see Appendix II) of these pdf’s will be denoted by A,*(s) and A*(s),
respectively, with the obvious notation 4,*(s) — A*(s). The use of the letter
4 (and a) is meant as a cue to remind the reader that they refer to the
interarrival time. Of course, the moments of the interarrival time are of
interest and they will be denoted as follows*:

Elt,) &4, (2.14)

According to our usual notation, the mean interarrival time for the limiting
random variable will be givent by 7 in the sense that 7, — 7. As it turns out
f, which is the average interarrival time between customers, is used so
frequently in our equations that a special notation has been adopted as
follows::

P2 (2.15)

o f=

Thus A represents the average arrival rate of customers to our queueing
system. Higher moments of the interarrival time are also of interest and so
we define the kth moment by

E[f*|At*2a, k=0,1,2,... (2.16)

*The notation E[ ] denotes the expectation of the quantity within square brackets. As
shown, we also adopt the overbar notation to denote expectation.

T Actually, we should use the notation ¢ with a tilde and a bar, but this is excessive and will
be simplified to 7. The same simplification will be applied to many of our other random
variables.
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In this last equation we have introduced the definition @, to be the kth
moment of the interarrival time #; this is fairly standard notation and we |
note immediately from the above that

i=-=a 2a 2.17)

i

That is, three special notations exist for the mean interarrival time; in partic-
ular, the use of the symbol a is very common and various of these forms
will be used throughout the text as appropriate. Summarizing the information ;
with regard to the interarrival time we have the following shorthand glossary:

t,, = interarrival time between C, and C,_;
ta—>1 A )~ A1), a,(O)—>a(t), A,%(s)—>A%Gs)
. 1 = ==

f,—f= I=m=a t,f—t* = q, 2.18)
In a similar manner we identify the notation associated with z,, w,, and s,
as follows:
x, = service time for C,

@, >, B,(*) > B(2), b,(«)—>b(z), B,*(s)—>B*(s)

Z —>ZT =

1 =b =b, x> =Db, 2.19)]

TV =

w, = waiting time for C,,
Wo =W, Wy () = W(y), wiy) —>wy), W,(s)—> W*s)

w,>Ww=W, wrF->wt (2.20)

1

s, = system time for C,

Sp 5 S,(y) > S®), su.(y) > 5(y), S,¥(s) > §%(s)

5,>5=T, s,5~—>5* (2201

All this notation is self-evident except perhaps for the occasional special;
symbols used for the first moment and occasionally the higher moments of§
the random variables involved (that is, the use of the symbols 4, a, u, b, W,
and 7). The reader is, at this point, directed to the Glossary for a complete:
set of notation used in this book. ]
With the above notation we now suggest a time-diagram notation for!
queues, which permits a graphical view of the dynamics of our queueing]
system and also provides the details of the underlying stochastic processes, S
This diagram is shown in Figure 2.2. This particular figure is shown for 2 i
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Cpia v
r(‘xn#z: %
Servicer \
Cr+2 Time ——=
Queue T2

y |
1y 4q ] tnia N‘
Cn Ca Criz

Figure 2.2 Time-diagram notation for queues.

first-come-first-serve order of service, but it is easy to see how the figure
may also be made to Tepresent any order of service. In this time diagram the
lower horizontal time line represents the queue and the upper horizontal time
line represents the service facility; moreover, the diagram shown is for the
case of a single server, although this too is casily generalized. An arrow
approaching the queue (or service) line from below indicates that an arrival

line indicate the departure of a customer from the queue (or service facility).
In this figure we see that customer C, ,; arrives before customer C, enters
service; only when C,, departs from service may C,,, enter service and, of
course, these two events occur simultaneously. Notice that when C,.» enters
the system he finds it empty and so immediately proceeds through an empty
queue directly into the service facility. In this diagram we have also shown the
waiting time and the system time for C, (note that Wauie = 0). Thus, as time
proceeds we can identify the number of customers in the system N(f), the
unfinished work U(t), and also the idle and busy periods. We will find much
use for this time-diagram notation in what follows.

In a general queueing system one expects that when the number of
customers is large then so is the walting time. One manifestation of this isa
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-
N

— .
0 O L

Number of customers

O 2 N Wb oo g

Time 't

Figure 2.3 Arrivals and departures.

Alternatively, we may position ourselves at the output of the queueing system
and count the number of departures that leave; this we denote by

8(r) & number of departures in (0, 1) (2.23)

Sample functions for these two stochastic processes are shown in Figure 2.3,
Clearly N(z), the number in the system at time ¢, must be given by

N() = at) — 6(0)

On the other hand, the total area between these two curves up to some point,
say 7, represents the total time all customers have spent in the system (meas- |
ured in units of customer-seconds) during the interval (0, 7); let us denote this
cumulative area by y(t). Moreover, let 4, be defined as the average arrival
rate (customers per second) during the interval (0, ¢); that is,

A«

2l
t 3

Ay
We may define T, as the system time per customer averaged over all customers
in the interval (0, £); since y(¢) represents the accumulated customer-seconds
up to time ¢, we may divide by the number of arrivals up to that point to
obtain

SN0
aft)
Lastly, let us define N, as the average number of customers in the queueing f

system during the interval (0, ); this may be obtained by dividing the
accumulated number of customer-seconds by the total interval length ¢ §

4
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thusly
- t
0
t
From these last three equations we see
N ¢+ = AT,

Let us now assume that our queueing system is such that the following limits
exist as £ — co:

A =lim 4,
t= 0

T =1lim T,
t—=w

Note that we are using our former definitions for 4 and T representing the
average customer arrival rate and the average system time, respectively. If
these last two limits exist, then so will the limit for N,, which we denote by N
now representing the average number of customers in the system; that is,

N=aT - (2.25)

This last is the result we were seeking and is known as Little’s result. It states
that the average number of customers in a queueing system is equal to the
average arrival rate of customers to that system, times the average time spent
in that system.* The above proof does not depend upon any specific assump-
tions regarding the arrival distribution A4(¢) or the service time distribution
B(z); nor does it depend upon the number of servers in the system or upon the
particular queueing discipline within the system. This result existed as a
“folk theorem’ for many years; the first to establish its validity in a formal
way was J. D. C. Little [LITT 61] with some later simplifications by W. S.
Jewell [JEWE 67] and S. Eilon [EILO 69]. It is important to note that we
have not precisely defined the boundary around our queueing system. For
example, the box in Figure 2.1 could apply to the entire system composed of
queue and server, in which case N and T as defined refer to quantities for the
entire system; on the other hand, we could have considered the boundary of
the queueing system to contain only the queue itself, in which case the
relationship would have been

N, =W = (2.26)

where N, represents the average number of customers in the queue and, as
defined earlier, W refers to the average time spent waiting in the queue. As a
third possible alternative the queueing system defined could have surrounded

* An intuitive proof of Little’s result depends on the observation that an arriving cus-
tomer should find the same average number, N, in the system as he leaves behind upon
his departure. This latter quantity is simply the arrival rate A times his average time in
system, 7.
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only the server (or servers) itself; in this case our equation would have reduced
to

N,= 1z (2.27)
where N, refers to the average number of customers in the service facility
(or facilities) and Z, of course, refers to the average time spent in the service
box. Note that it is always true that

T=z+ W - (2.28)
The queueing system could refer to a specific class of customers, perhaps
based on priority or some other attribute of this class, in which case the same
relationship would apply. In other words, the average arrival rate of customers
to a “queueing system” times the average time spent by customers in that
“system” is equal to the average number of customers in the “system,”
regardless of how we define that “system.”

We now discuss a basic parameter p, which is commonly referred to as the
utilization factor. The utilization factor is in a fundamental sense really the
ratio R/C, which we introduced in Chapter 1. It is the ratio of the rate at
which “work’” enters the system to the maximum rate (capacity) at which the
system can perform this work; the work an arriving customer brings into the |
system equals the number of seconds of service he requires. So, in the case of |
a single-server system, the definition for p becomes :

p A (average arrival rate of customers) X (average service time) ;

= 17 -(2.29) |

This last is true since a single-server system has a maximum capacity for ¢
doing work, which equals 1 sec/sec and each arriving customer brings an
amount of work equal to Z sec; since, on the average, A customers arrive per
second, then A% sec of work are brought in by customers each second that
passes, on the average. In the case of multiple servers (say, m servers) the
definition remains the same when one considers the ratio R/C, where now the
work capacity of the system is m sec/sec; expressed in terms of system param-
eters we then have

,a -(2.30) |
m

Equations (2.29) and (2.30) apply in the case when the maximum service
rate is independent of the system state; if this is not the ‘case, then a more
careful definition must be provided. The rate at which work enters the
system is sometimes referred to as the traffic intensity of the system and is |
usually expressed in Erlangs; in single-server systems, the utilization factor is £
equal to the traffic intensity whereas for (m) multiple servers, the traffic §
intensity equals mp. So long as 0 < p < 1, then p may be interpreted as

p = E[fraction of busy servers] (2.31) :
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[In the case of an infinite number of servers, the utilization factor p plays no
important part, and instead we are interested in the number of busy servers
(and its expectation).]

Indeed, for the system G/G/1 to be stable, it must be that R < C, that s,
0 < p < 1. Occasionally, we permit the case p = 1 within the range of
stability (in particular for the system D/D/1). Stability here once again refers
to the fact that limiting distributions for all random variables of interest
exist, and that all customers are eventually served. In such a case we may
carry out the following simple calculation. We let 7 be an arbitrarily long
time interval; during this interval we expect (by the law of large numbers)
with probability 1 that the number of arrivals will be very nearly equal to Ar.
Moreover, let us define p, as the probability that the server is idle at some
randomly selected time. We may, therefore, say that during the interval =,
the server is busy for = — 7p, sec, and so with probability 1, the number of
customers served during the interval 7 is very nearly (v — 7p,)fZ. We may
now equate the number of arrivals to the number served during this interval,
which gives, for large ,

s (7 — 7po)
T T
€

Thus, as 7— oo we have 4Z = 1 — p,; using Definition (2.29) we finally
have the important conclusion for G/G/1

p=1-p, 232)

The interpretation here is that p is merely the fraction of time the server is

busy; this supports the conclusion in Eq. (2.27) in which AZ = p was shown

equal to the average number of customers in the service facility.

This, then, is a rapid look at an overall queueing system in which we have
exposed some of the basic stochastic processes, as well as some of the
important definitions and notation we will encounter. Moreover, we have
established Little’s result, which permits us to calculate the average number
in the system once we have calculated the average time in the system (or vice

" versa). Now let us move on to a more careful study of the important stochastic
.processes in our queueing systems.

2.2*, DEFINITION AND CLASSIFICATION
OF STOCHASTIC PROCESSES

At the end of Appendix II a definition is given for a stochastic process,
which in essence states that it is a family of random variables X(¢) where the
* The reader may choose to skip Sections 2.2, 2.3, and 2.4 at this point and move directly

to Section 2.5. He may then refer to this material only as he feels he needs to in the balance
of the text.
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random variables are “indexed”” by the time parameter ¢. For example, the

number of people sitting in a movie theater as a function of time is a |
stochastic process, as is also the atmospheric pressure in that movie theater -

as a function of time (at least those functions may be modeled as stochastic

processes). Often we refer to a stochastic process as a random process. A |
random process may be thought of as describing the motion of a particle in
some space. The classification of a random process depends upon three |
quantities: the state space; the index (time) parameter; and the statistical |
dependencies among the random variables X (¢) for different values of the |
index parameter 7. Let us discuss each of these in order to provide the general |

framework for random processes.

First we consider the state space. The set of possible values (or states) that
X(f) may take on is called its state space. Referring to our analogy with regard |
to the motion of a particle, if the positions that particle may occupy are
finite or countable, then we say we have a discrete-state process, often |

referred to as a chain. The state space for a chain is usually the set of integers
{0,1,2,...}. On the other hand, if the permitted positions of the particle
are over a finite or infinite continuous interval (or set of such intervals), then
we say that we have a continuous-state Process.

Now for the index (time) parameter. If the permitted times at which changes |
in position may take place are finite or countable, then we say we have a }
discrete-(time) parameter process; if these changes in position may oceur |
anywhere within (a set of) finite or infinite intervals on the time axis, then we |

say we have a continuous-parameter process. In the former case we often write

X, rather than X(¢). X, is often referred to as a random or stochastic sequence

whereas X(¢) is often referred to as a random or stochastic process.

The truly distinguishing feature of a stochastic process is the relationship ¢
of the random variables X(¢) or X, to other members of the same family. As
defined in Appendix IT, one must specify the complete joint distribution |
function among the random variables (which we may think of as vectors

denoted by the use of boldface) X = [X (), X(1,), . . .], namely,

Fx(x; ) 2 PIX(6) < 2, - - X(t,) < 2] el

for all X = (2, @y, . . . , %), t = (1, ta, . . - » L)), and n. As mentioned there, 1
this is a formidable task; fortunately, many interesting stochastic processes
permit a simpler description. In any case, it is the function Fx(x; t) that really §
describes the dependencies among the random variables of the stochastic

process. Below we describe some of the usual types of stochastic processe

that are characterized by different kinds of dependency relations among their g
random variables. We provide this classification in order to give the readerd g
global view of this field so that he may better understand in which particular g

TR,
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regions he is operating as we proceed with our study of queueing theory and
its related stochastic processes. '

(a) Stationary Processes. As we discuss at the very end of Appendix II,
a stochastic process X(¢) is said to be stationary if Fx(x; t) is invariant to
shifts in time for all values of its arguments; that is, given any constant =
the following must hold:

Fx(x;t + 7) = Fx(x; 1) (2.34)

where the notation t + 7is defined as the vector (t; + 7, t5 + 7, .. . , 1, + 7).

An associated notion, that of wide-sense stationarity, is identified with the
random process X(¢) if merely both the first and second moments are inde-
pendent of the location on the time axis, that is, if E[X ()] is independent of ¢
and if E[X()X(¢ + )] depends only upon 7 and not upon . Observe that all
stationary processes are wide-sense stationary, but not conversely. The
theory of stationary random processes is, as one might expect, simpler than
that for nonstationary processes.

(b) Independent Processes. The simplest and most trivial stochastic
process to consider is the random sequence in which {X,} forms a set of
independent random variables, that is, the joint pdf defined for our stochastic
process in Appendix II must factor into the product, thusly

XG0 2 fx, . x,E s Tai e Bn)
= fx,@; 1) fx, @} 1) (2.35)

In this case we are stretching things somewhat by calling such a sequence a
random process since there is no structure or dependence among the random
variables. In the case of a continuous random process, such an independent
process may be defined, and it is commonly referred to as “white noise”
(an example is the time derivative of Brownian motion).

(¢) Markov Processes. In 1907 A. A. Markov published a paper [MARK
07] in which he defined and investigated the properties of what are now
known as Markov processes. In fact, what he created was a simple and
highly useful form of dependency among the random variables forming a
stochastic process, which we now describe.

A Markov process with a discrete state space is referred to as a Markov
chain. The discrete-time Markov chain is the easiest to conceptualize and
understand. A set of random variables {X,} forms a Markov chain if the
probability that the next value (state) is X, ., depends. only upon the current
value (state) X, and not upon any previous values. Thus we have a random
* sequence in which the dependency extends backwards one unit in time. That
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is, the way in which the entire past history affects the future of the process is
completely summarized in the current value of the process.
1n the case of a discrete-time Markov chain the instants when state changes
may occur are preordained to be at the integers 0,1,2,...,7,.... In the
case of the continuous-time Markov chain, however, the transitions between
states may take place at any instant in time. Thus we are led to consider the
random variable that describes how long the procéss remains in its current
_ (discrete) state before making a transition to some other state. Because the

Markov property insists that the past history be completely summarized in
the specification of the current state, then we are not free to require that a
specification also be given as to how long the process has been in its current
state! This imposes a heavy constraint on the distribution of time that the
process may remain in a given state. In fact, as we shall see in Eq. (2.85),
‘this state time must be qgcpqnentially distributed. In a real sense, then, the
exponential distribution is a continuous distribution which is “memoryless”
(we will discuss this notion at considerable length later in this chapter).
Similarly, in the discrete-time Markov chain, the process may remain in the
given state for a time that must be geometrically distributed; this is the only
discrete probability mass function that “is ‘memoryléss. This memoryless
property is required of all Markov chains and restricts the generality of the
processes one would like to consider.

Expressed analytically the Markov property may be written as

P[X(tn+1) = xn+1 l X(tn) = Ty, X(tn—l) = xn—l, see s X(tl) = xl]
= P[X(tp1) = @y | X(t) = 4] (2.36)

where t; <ty < " <1, < lpy1 and z, is included in some discrete state
space.

The consideration of Markov processes is central to the study of queueing
theory and much of this text is devoted to that study. Therefore, a good
portion of this chapter deals with discrete-and continuous-time Markov
chains.

- (d) Birth—death Processes. A very important special class of Markov
chains has come to be known as the birth-death process. These may be either
discrete-or continuous-time processes in which the defining condition is that
state transitions take place between neighboring states only. That is, one may

“choose the set of integers as the discrete state space (with no loss of generality)
and then the birth-death process requires that if X, =ithen X, ,; =i—1,
i, ori + 1 and no other. As we shall see, birth—-death processes have played.a
significant role in the development of queueing theory. For the moment,
however, let us proceed with our general view of stochastic processes to see
how each fits into the general scheme of things.
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(¢) Semi-Markov Processes. We begin by discussing discrete-time
semi-Markov processes. The discrete-time Markov chain had the property
that at every unit interval on the time axis the process was required to make a
transition from the current state to some other state (possibly back to the
same state). The transition probabilities were completely arbitrary; however,
the requirement that a transition be made at every unit time (which really
came about because of the Markov property) leads to the fact that the time
spent in a state is geometrically distributed [as we shall see in Eq. (2.66)].
As mentioned earlier, this imposes a strong restriction on the kinds of
processes we may consider. If we wish to relax that restriction, namely, to
permit an arbitrary distribution of timé the process may remain in a state,
then we are led directly into the notion of a discrete-time semi-Markov
process; specifically, we now permit the times between state transitions to
obey an arbitrary probability distribution. Note, however, that at the instants
of state transitions, the process behaves just like an ordinary Markov chain
and, in fact, at those instants we say we have an imbedded Markov chain.

Now the definition of a continuous-time semi-Markoy ‘process follows
directly. Here we permit state transitions at any instant in time. However, as
opposed to the Markov process which required an exponentially distributed
time in state, we now permit an arbitrary distribution. This then affords us
much greater generality, which we are happy to employ in our study of
queueing systems. Here, again, the imbedded Markov process is defined at
those instants of state transition. Certainly, the class of Markov processes is
contained within the class of semi-Markov processes.

(f) Random Walks. In the study of random processes one often en-
counters a process referred to as a random walk. A random walk may be
thought of as a particle moving among states in some (say, discrete) state
space. What is of interest is to identify the location of the particle in that state
space. The salient feature of a random walk is that the next position the
process occupies is equal to the previous position plus a random variable
whose value is drawn independently from an arbitrary distribution; this
distribution, however, does not change with the state of the process.* That is,
a sequence of random variables {S,} is referred to as a random walk (starting
at the origin) if

So=Xo+Xo+ - +X, n=1,2,... (2.37)

where S, = O and X;, X,, .. .isa sequence of independent random variables
with a common distribution. The index merely counts the number of state
transitions the process goes through; of course, if the instants of these
transitions are taken from a discrete set, then we have a discrete-time random

* Except perhaps at some boundary states.
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walk, whereas if they are taken from a continuum, then we have a continuous-
time random walk. In any case, we assume that the interval between these
transitions is distributed in an arbitrary way and so a random walk is a
special case of a semi-Markov process.* In the case when the common
distribution for X, is a discrete distribution, then we have a discrete-state
random walk; in this case the transition probability p;; of going from state i
to state j will depend only upon the difference in indices j — ¢ (which we
denote by g,_,).

An example of a continuous-time random walk is that of Brownian motion;
in the discrete-time case an example is the total number of heads observed ina
sequence of independent coin tosses.

A random walk is occasionally referred to as a process with “independent
increments.”

(2) Renewal Processes. A renewal process is relatedf to a random walk.
However, the interest is not in following a particle among many states but
rather in counting transitions that take place as a function of time. That is,
we consider the real time axis on which is laid out a sequence of points; the
distribution of time between adjacent points is an arbitrary common distri-
bution and each point corresponds to an instant of a state transition. We
assume that the process begins in state 0 [i.e., X(0) = 0] and increases by
unity at each transition epoch; that is, X (t) equals the number of state tran-
sitions that have taken place by 7. In this sense it is special case of a random
walk in which g, = 1 and g, = 0 for i 7 1. We may think of Eq. (2.37) as
describing a renewal process in which S,, is the random variable denoting the
time at which the nth transition takes place. As earlier, the sequence {X,,} isa
set of independent identically distributed random variables where X, now
represents the time between the (n — 1)th and nth transition. One shouldbe f
careful to distinguish the interpretation of Eq. (2.37) when it applies to |
renewal processes as here and when it applies to a random walk as earlier. |
The difference is that here in the renewal process the equation describes the
time of the nth renewal or transition, whereas in the random walk it describes
the state of the process and the time between state transitions is some other |
random variable. A

An important example of a renewal process is the set of arrival instants
to the G/G/m queue. In this case, X, is identified with the interarrival time.

* Usually, the distribution of time between intervals is of little concern in a random walk; §
emphasis is placed on the value (position) S, after n transitions. Often, it is assumed that
this distribution of interval time is memoryless, thereby making the random walk a special
case of Markov processes; we are more generous in our definition here and permit an f
arbitrary distribution. :
t It may be considered to be a special case of the random walk as defined in (f) above. A
renewal process is occasionally referred to as a recurrent process.
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Figure 2.4 Relationships among the interesting random processes. SMP: Semi-
Markov process; MP: Markov process; RW: Random walk; RP: Renewal process;
BD: Birth-Death Process.

So there we have it—a self-consistent classification of some interesting
stochastic processes. In order to aid the reader in understanding the relation-
ship among Markov processes, semi-Markov processes, and their special
cases, we have prepared the diagram of Figure 2.4, which shows this relation-
ship for discrete-state systems. The figure is in the form of a Venn diagram.
Moreover, the symbol p,; denotes the probability of making a transition next
to state j given that the process is currently in state i. Also, f; denotes the
distribution of time between transitions; to say that “f, is memoryless”
implies that if it is a discrete-time process, then £, is a geometric distribution,
whereas if it is a continuous-time process, then f; is an exponential distri-
pution. Furthermore, it is implied that f, may be a function both of the
current and the next state for the process.

The figure shows that birth—death processes form a subset of Markov
processes, which themselves form a subset of the class of semi-Markov
processes. Similarly, renewal processes form a subset of random walk
processes Which also are a subset of semi-Markov processes. Moreover,
there are some renewal processes that may also be classified as birth-death
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processes. Similarly, those Markov processes for which p,; = ¢;—; (that is,
where the transition probabilities depend only upon the différence of the
indices) overlap those random walks where f; is memoryless. A random walk
for which f; is memoryless and for which g, ; = 0 when | J — il > 1 overlaps
the class of birth~death processes. If in addition to this last requirement our
random walk has g; = 1, then we have a process that lies at the intersection
of all five of the processes shown in the figure. This is referred to as a “pure
birth” process; although f; must be. memoryless, it may be a distribution
which depends upon the state itself. If £, is independent of the state (thus
giving a constant “‘birth rate’’) then we have a process that is figuratively and
literally at the “center” of the study of stochastic processes and enjoys the
nice properties of each! This very special case is referred to as the Poisson
process and plays a major role in queueing theory. We shall develop its
properties later in this chapter.

So much for the classification of stochastic processes at this point. Let us
now elaborate upon the definition and properties of discrete-state Markov
processes. This will lead us naturally into some of the elementary queueing
systems. Some of the required theory behind the more sophisticated contin-
uous-state Markov processes will be developed later in this work as the need
arises. We begin with the simpler discrete-state, discrete-time Markov
chains in the next section and follow that with a section on discrete-state,
continuous-time Markov chains.

2.3. DISCRETE-TIME MARKOV CHAINS*

As we have said, Markov processes may be used to describe the motion of
a particle in some space. We now consider discrete-time Markov chains,
which permit the particle to occupy discrete positions and permit transitions
between these positions to take place only at discrete times. We present the
elements of the theory by carrying along the following contemporary example.

Consider the hippie who hitchhikes from city to city across the country.
Let X,, denote the city in which we find our hippie at noon on day n. When
he is in some particular city 7, he will accept the first ride leaving in the
evening from that city. We assume that the travel time between any two cities
is negligible. Of course, it is possible that no ride comes along, in which
case he will remain in city i until the next evening. Since vehicles heading for
various neighboring cities come along in some unpredictable fashion, the
hippie’s position at some time in the future is clearly a random variable.
It turns out that this random variable may properly be described through the
use of a Markov chain.

* See footnote on p. 19.




APPENDIX II

Probability Theory Refresher

In this appendix we review selected topics from probability theory, which
are relevant to our discussion of queueing systems. Mostly, we merely list

a course would typically use one of
e following texts that contain additional details and derivations: Feller,

Volume I [FELL 68]; Papoulis [PAPO 65]; Parzen [PARZ 60]; or Daven-

- Probability theory concerns itself with d

escribing random events. A typical
lictionary definition of a random ey

ent is an event lacking aim, purpose, or

, that makes
probability theory interesting and useful. The notion of statistical regularity

Scentral to our studies. For example, if one were to toss a fair coin four times,
e expects on the average two heads and two tails. Of course, there is one

, if an unusual
be terribly surprised nor
r hand, if we tossed the
gain we expect approximately half heads and

puence came up (that is, no heads), we would not
ould we suspect the coin was unfair. On the othe
(in a million times, then once a

jite that this coin was clearly unfair. In fact, the odds are better than 1088
b1 that at least 490,000 heads will occur! This is what we mean by statistical

Wollarity, namely, that we can make some very precise statements about
brge collections of random events,

il A set of possible experimental outcomes.
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