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Birth-Death Queueing Systems

in Equilibrium

In the previous chapter we studied a variety of stochastic processes. We
indicated that Markov processes play a fundamental role in the study of
queueing systems, and after presenting the main results from that theory, we
then considered a special form of Markov process known as the birth-
death process. We also showed that birth—death processes enjoy a most
convenient property, namely, that the time between births and the time
between deaths (when the system is nonempty) are each exponentially
distributed.* We then developed Eq. (2.127), which gives the basic equations
of motion for the general birth-death process with stationary birth and death
rates.t The solution of this set of equations gives the transient behavior of
the queueing process and some important special cases were discussed earlier.
In this chapter we study the limiting form of these equations to obtain the
equilibrium behavior of birth-death queueing systems.

The importance of elementary queueing theory comes from its historical
influence as well as its ability to describe behavior that is to be found in more
complex queueing systems. The methods of analysis to be used in this chapter
in large part do not carry over to the more involved queueing situations;
nevertheless, the obtained results do provide insight into the basic behavior
of many of these other queueing systems.

It is necessary to keep in mind how the birth-death process describes
queueing systems. As an example, consider a doctor’s office made up of a
waiting room (in which a queue is allowed to form, unfortunately) and a
service facility consisting of the doctor’s examination room. Each time a
patient enters the waiting room from outside the office we consider this to be
an arrival to the queueing system; on the other hand, this arrival may well be
considered to be a birth of a new member of a population, where the popula-
tion consists of all patients present. Ina similar fashion, when a patient leaves

* This comes directly from the fact that they are Markov processes.
+1n addition to these equations, one requires the conservation relation given in Eq. (2.122)
and a set of initial conditions {P(0)}.
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terms of a birth-death process this is considered to beg
of the population.

rable freedom in constructing a large number of queueing
systems through the choice of the birth coefficients 4, and death coeflicienis

My, as we shall see shortly. First, let us establish the general solution for the
equilibrium behavior.

3.1. GENERAL EQUILIBRIUM SOLUTION

As we saw in Chapter 2 the time-dependent solution of the birth-death

system quickly becomes unmanageable when we consider any sophisticated
set of birth-death coefficients, Furthermore, were we always capable of
solYing for Py(¢) it is not clear how useful that set of functions would be in
aiding our understanding of the behavior of these queueing systems (1o

much information is sometimes a curse ). Consequently, it is natural for us 1
a§k whether the probabilities P,(1) eventually settle down as ¢ gets large and
display no more “transient”

behavior. This inquiry on our part is analogous
to the questions we asked regarding the existence of w, in the limit of {1}
as 7 — 0. For our queueing studies here we choose to denote the limiting
probability as p, rather than m,, purely for convenience. Accordingly, let
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coefficients are identically equal to 0:
Ai=dy,=4,=:-"=0
H0=;“—1=;“_2="'=0

Furthermore, since it is perfectly clear that we cannot have a negative number
of members in our population, we will, in most cases, adopt the convention

that

P_lzp*2=p43= e =0
Thus, for all values of k, we may reformulate Egs. (3.2) and (3.3) into the
following set of difference equations for k=...,-2,—1,0,1,2,...
0=~ + wp + Aeo1Pr1 F HeriPrein (3.4)

We also require the conservation relation

o0

2p=1 (3.5)
=0
Recall from the previous chapter that the limit given in the Eq. 3.1) is
independent of the initial conditions.

Just as we used the state-transition-rate diagram as an inspection technique
for writing down the equations of motion in Chapter 2, so may we use the
same concept in writing down the equilibrium equations [Eqs. (3.2) and (3.3)]
directly from that diagram. In this equilibrium case it is clear that flow must
be conserved in the sense that the input flow must equal the output flow from a
given state. For example, if we look at Figure 2.9 once again and concentrate
on state E, in equilibrium, we observe that

Flow rate into E, = A, _apra + MeirPrss
and
Flow rate out of E, = (4, + )P

In equilibrium these two must be the same and so we have immediately
JiaPros + HepPrn = (i + P (3.6)

But this last is just Eq. (3.4) again! By inspection we have established the
equilibrium difference equations for our system. The same comments apply
here as applied earlier regarding the conservation of flow across any closed
boundary; for example, rather than surrounding each state and writing down
its equation we could choose a sequence of boundaries the first of which
surrounds E,, the second of which surrounds E, and E;, and so on, each time
adding the next higher-numbered state to get a new boundary. In such an
example the kth boundary (which surrounds states E, E,, ..., E,_;) would
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Iead to the following simple conservation of flow relationship:

Tp1Preoy = ppy 3.7
This last set of equations is equivalent to
adjacent states and equating flows across t
equations is equivalent to our earlier set.

The solution for Prin Eq. (3.4) may be obtained by at least two methods,

One way is first to solve for Py in terms of p, by considering the case k = 0,
that is,

drawing a vertical line separating
his boundary; this set of difference

A
p=""p, (3.8)

My
We may then consider Eq. (3.4) for the case k = 1 and using Eq. (3.8) obtain
0=—( + #)Py + Zop, + H2Ps

A
0= —(4, + ) =0 Po + Aopy + MaP2

1

A2
0= — ‘; OPO — Aobo + AoPo + paps
and so !
Aol
pe =~ p, (3.9
Malts

If we examine Egs. (3.8) and

(3.9) we may Justifiably guess that the general
solution to Eq. (3.4) must be

A .-
P = L Zk‘lpo (3.10)
Ml " " Uy

To validate this assertion we need merely use the inductive argument and
apply Eq. (3.10) to Eq. (3.4) solving for p,, .. Carrying out this operation we
do, in fact, find that (3.10) is the solution to the general birth-death process
in this steady-state or limiting case. We have thus expressed all equilibrium
probabilities p, in terms of a single unknown constant Po:

-1 g
pk=p0 — k=0,1,2,... -(3.1])
=0 figy
(Recall the usual convention that an empty product is unity by definition.)
Equation (3.5) provides the additional condition that allows us to determine
Po; thus, summing over all k, we obtain

1

Do = =g == (3.12)
1+ T~
E=1i=0 fh;q
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This *“product” solution for p, (k =0,1,2,...) simply obtained, is a
principal equation in elementary queueing theory and, in fact, is the point of
departure for all of our further solutions in this chapter.

A second easy way to obtain the solution to Eq. (3.4) is to rewrite that
equation as follows:

. Ae1Pp—1 — Py = MDp — Mr+1 Pt (3.13)
Defining
& = MPr — MpsaPrit (3.14)
we have from Eq. (3.13) that
8r—1 = &k (3.15)
Clearly Eq. (3.15) implies that
g, = constant with respect to k (3.16)

However, since 1_; = u, = 0, Eq. (3.14) gives

g1=0

and so the constant in Eq. (3.16) must be 0. Setting g; equal to 0, we immed-
iately obtain from Eq. (3.14)

Pr (3.17)
Hria

Solving Eq. (3.17) successively beginning with & = 0 we obtain the earlier

solution, namely, Egs. (3.11) and (3.12).

We now address ourselves to the existence of the steady-state probabilities
P given by Eqgs. (3.11) and (3.12). Simply stated, in order for those expres-
sions to represent a probability distribution, we usually require that p, > 0.
This clearly places a condition upon the birth and death coefficients in those
equations. Essentially, what we are requiring is that the system occasionally
empties; that this is a condition for stability seems quite reasonable when one
interprets it in terms of real life situations.* More precisely, we may classify
the possibilities by first defining the two sums

Az v N
=SS (3.18)

sé%{a/(zkﬁ——>> (3.19)

* It is easy to construct counterexamples to this case, and so we require the precise argu-
ments which follow.
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All states E; of our birth-death process will be ergodic if and only if
Ergodic: S < o
Se = o
On the other hand, all states will be recurrent null if and only if

Recurrent null: S, =
S2 == Q0
Also, all states will be transient if and only if

Transient: Sy = o
S, < oo

It is the ergodic case that gives rise to the equilibrium probabilities {p,} and
that is of most interest to our studies. We note that the condition for
ergodicity is met whenever the sequence {4,/u,} remains below unity from some
k onwards, that is, if there exists some ko such that for all £ > k, we have

2
“+ <1 (3.20)
M

We will find this to be true in most of the queueing systems we study.

We are now ready to apply our general solution as given in Egs. (3.11)
and (3.12) to some very important special cases. Before we launch headlong
into that discussion, let us put at ease those readers who feel that the birth—
death constraints of permitting only nearest-neighbor transitions are too
confining. It is true that the solution given in Egs. (3.11) and (3.12) applies
only to nearest-neighbor birth-death processes. However, rest assured that
the equilibrium methods we have described can be extended to more general

than nearest-neighbor systems; these generalizations are considered in
Chapter 4.

3.2. M/M/1: THE CLASSICAL QUEUEING SYSTEM

As mentioned in Chapter 2, the celebrated M/M/I queue is the simplest

nontrivial interesting system and may be described by selecting the birth—
death coefficients as follows:

Ay = A k=0,1,2,...
Hy = k=1,2,3,...

That is, we set all birth* coefficients equal to a constant A and all death*

*1In this case, the average interarrival time is 7 = /A and the average service time is
X = 1/u; this follows since both 7 and & are both exponentially distributed.
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Figure 3.1 State-transition-rate diagram for M/M/1.

coefficients equal to a constant u. We further assume that infinite queueing

space is provided and that customers are served in a first-come-first-served

fashion (although this last is not necessary for many of our results). For this

important example the state-transition-rate diagram is as given in Figure 3.1.
Applying these coefficients to Eq. (3.11) we have

k—1 2
Pr = Do H -
i=0 p
or
2\
Pr = Po{ ~ k>0 (3.21)
U

The result is immediate. The conditions for our system to be ergodic (and,
therefore, to have an equilibrium solution Pr > 0) are that §; < o and
S, = co; in this case the first condition becomes

o @ /‘lk

£=0 Dy k=0\l

The series on the left-hand side of the inequality will converge if and only if
Alp < 1. The second condition for ergodicity becomes

o 1 oolluk

* TN Mpufpe) 20 a\2

This last condition will be satisfied if Al < 1; thus the necessary and suffi-
cient condition for ergodicity in the M/M/1 queue is simply A < u. In order
to solve for p, we use Eq. (3.12) [or Eq. (3.5) as suits the reader] and obtain

0 lk
po=1/|14+3{=
k=1 \[L
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The sum converges since A < # and so

1
Dy = A
| Alp
1~ u
Thus
A
Po=1~= (3.22)
M

From Eq. (2.29) we have p = Au. From our stability conditions, we there-

fore require that 0 < p < 1 ; note that this insures that Po > 0. From Eq.
(3.21) we have, finally,

=0—=pp* k=012 ... = (3.23)

Equation (3.23) is indeed the solution for the steady-state probability of
finding k customers in the system.* We make the Important observation that
2r depends upon A and 4 only through their ratio p.

The solution given by Eq. (3.23) for this fundamental system is graphed in
Figure 3.2 for the case of p = 1/2. Clearly, this is the geometric distribution
(which shares the fundamental memoryless property with the exponential
distribution). As we develop the behavior of the M/M/1 queue, we shall
continue to see that almost all of its important probability distributions are
of the memoryless type.

An important measure of a queueing system is the average number of
customers in the system N. This is clearly given by

N =3kp,
r=0
= (1 — p) > kp"
k=0
Using the trick similar to the one used in deriving Eq. (2.142) we have

F=(—ppl >0

Op =0
Jd 1
=(1 — p)p = ——
( p)pap1 =,
N=—f_ = (3.24)
L—p

*If we inspect the transient solation for M/M/1 given in Eq. (2.163), we see the term

(I — p)p¥; the reader may verify that, for p < 1, the limit of the iransient solution agrees
with our solution here.
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)

Figure 3.2

The behavior of the ex;
By similar methods we
given by

We may now apply Lit!

z|

Figure 3.3

P




3.2. M/M/1: THE CLASSICAL QUEUEING SYSTEM

1~p
B (1—-plp
(3.22)
(1—-p)p?
ility conditions, we there- I (1~f)p3
es that p, > 0. From Eq. T )
o E 0 1 2 3 4 5

k

) = (3.23)

Ly o

teady-state probability of
mportant observation that

Figure 3.2 The solution for p; in the system M/M/1.

The behavior of the expected number in the system is plotted in Figure 3.3.

p-

tental system is graphed in By similar methods we find that the variance of the number in the system is
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Figure 3.4 Average delay as a function of p for M/M/1.

T, the average time spent in the system as follows:

.
2

= (7))

T = 11-/.ﬂp = (3.26)

This dependence of average time on the utilization factor p is shown in
Figure 3.4. The value obtaised by T'when p = 0is exactly the average service

time expected by a customer; that is, he spends no time in queue and 1/u sec
in service on the average.
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simple pole at p = 1. This type of behavior with respect to p as p approaches
1 is characteristic of almost every queueing system one can encounter. We will
see it again in M/G/1 in Chapter 5 as well as in the heavy traffic behavior
of G/G/1 (and also in the tight bounds on G/G/1 behavior) in Volume II,
Chapter 2.

Another interesting quantity to calculate is the probability of finding at
least k customers in the system:

P[>k in system]

o
M
™

=> (1 — pp'
i=k
P[>k in system] = p* e (3.27)
Thus we see that the probability of exceeding some limit on the number of

customers in the system is a geometrically decreasing function of that number
and decays very rapidly.

With the tools at hand we are now in a position to develop the probability
density function for the time spent in the system. However, we defer that
development until we treat the more general case of M/G/1 in Chapter 5
[see Eq. (5.118)]. Meanwhile, we proceed to discuss numerous other birth~
death queues in equilibrium.

3.3. DISCOURAGED ARRIVALS

This next example considers a case where arrivals tend to get discouraged
when more and more people are present in the system. One possible way to
model this effect is to choose the birth and death coefficients as follows:

. o
k+1
Py = k=1,2,3,...

k=20,1,2,...

A

We are here assuming an harmonic discouragement of arrivals with respect to
the number present in the system. The state-transition-rate diagram in this

intuitive explanation here is that with random flow (e.g., M/M/1) we get occasional bursts of
traffic which temporarily overwhelm the server; while it is still true that the server will be
idle on the average 1 — p = p, of the time this average idle time will not be distributed
uniformly within smali time intervals but will only be true in the long run. On the other
hand, in the steady flow case (which corresponds to our system D/D/1) the system idle time
will be distributed quite uniformly in the sense that after every service time (of exactly 1/u
secs) there will be an idle time of exactly (1/4) ~ (1/p) sec. Thus it is the variability in both
the interarrival time and in the service time which gives rise to the disastrous behavior near
p = 1;any reduction in the variation of either random variable will lead to a reduction in
the average waiting time, as we shall see again and again.




Figure 3.5 State-transition-rate diagram for discouraged arrivals,

case is as shown in Figure 3.5. We apply Eq. (3.11) immediately to obtain
for p,

Pr = Do ﬁoc/(i +1)

= (3.28)
k
1
P = p(;‘) y (3.29)
Solving for p, from Eq. (3.12) we have
o0 I
=i/l +3(31]
=\y/ k!
Do =€
From Eq. (2.32) we have therefore,
p=1— ¢t (3.30)

Note that the ergodic condition here is merely «/p < 0. Going back to
Eq. (3.29) we have the final solution

— (a/f"‘)k ewa/u
k!

We thus have a Poisson distribution for the number of customers in the

system of discouraged arrivals! From Egs. (2.131) and (2.132) we have that
the expected number in the system is

k=0,1,2,... (3.31)

k

N =-
I
In order to calculate T, the average time spent in the system, we may use

Little’s result again. For this we require 4, which is directly calculated from
p = A% = Au; thus from Eq. (3.30)

h=pp =l — e
Using this* and Little’s result we then obtain

%

T = m (3.32)

* Note that this result could have been obtained from A = zklkpk. The reader should
verify this last calculation.
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3.4. M/Mjco: RESPONSIVE SERVERS (INFINITE NUMBER
OF SERVERS)
Here we consider the case that may be interpreted either as that of a
responsive server who accelerates her service rate linearly when more

customers are waiting or may be interpreted as the case where there is
always a new clerk or server available for each arriving customer. In partic-

ular, we set
Ay =2 k=0,1,2,...

e = kp k=1,2,3,...

Here the state-transition-rate diagram is that shown in Figure 3.6. Going
directly to Eq. (3.11) for the solution we obtain

r—1 ;L

pk:p"g(ww

Need we go any further? The reader should compare Eq. (3.33) with Eqg.
(3.28). These two are in fact equivalent, and so we immediately have the

solutions for p, and N,

(3.33)

M
pk=<-i/%‘)—e*”" k=0,1,2,... (3.34)
y=?

,u

Here, too, the ergodic condition is simply Afp < oo. It appears then that a
system of discouraged arrivals behaves exactly the same as a system that
includes a responsive server. However, Little’s result provides a different
(and simpler) form for 7 here than that given in Eq. (3.32); thus

1
I

T =

This answer is, of course, obvious since if we use the interpretation where
each arriving customer is granted his own server, then his time in system will
be merely his service time which clearly equals 1/p on the average.

Figure 3.6 State-transition-rate diagram for the infinite-server case M/M/ .
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3.5. M/M/m: THE m-SERVER CASE

Here again we consider a system with an unlimited waiting room and with
a constant arrival rate A. The system provides for a maximum of m servers.
This is within the reach of our birth—-death formulation and leads to

=4 k=012...

g = min [ku, mu]

_ {ky 0<k<m
mu m<k
From Eq. (3.20) it is easily seen that the condition for ergodicity is A/mpu < 1.
The state-transition-rate diagram is shown in Figure 3.7. When we go to
solve for p, from Eq. (3.11) we find that we must separate the solution into
two parts, since the dependence of 1, upon k is also in two parts. Accordingly,
for k < m,

k—1 /1
P = Pozg(i T

AV
= po(;) " (3.35)
Similarly, for k& > m, '

A1
- po(—) —L_ (3.36)
nomlm
Collecting together the results from Eqs. (3.35) and (3.36) we have
(mp)*
Po~ k<m
P = . m (3.37)
(p)m™
Pom— k2>m
m!
where
A
p="<1 (3.38)
mu
This expression for p follows that in Eq. (2.30) and is consistent with our
A A A A A A
u 2u (m—"1)u miL mu m

Figure 3.7 State-transition-rate diagram for M/M/m.
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definition in terms of the expected fraction of busy servers. We may now
solve for p, from Eq. (3.12), which gives us

.and with m—1 ( )k o ( )k 1 1
m m B
7 Servers. P = [1 + Z F') + Z p’ k—m:l
‘o =1 k! k=m mM! m
and so
m-1 L2 m -1
P oS R
=0 k! m! 1 - P

The probability that an arriving customer is forced to join the queue is
Jmp < 1. given by

we go to Plqueucing] = 3 p,

1tion into k=m
ordingly, S (mp)* 1
=2r
k=m m! m
Thus
)
! 1 —
(3-35) Plqueueing] = - km ~ P = (3.40)
["jz (mp) + ((mp) )( 1 )J
—o k! m! 1—p
This probability is of wide use in telephony and gives the probability that no
trunk (i.e., server) is available for an arriving call (customer) in a system of m
(3.36) trunks; it is referred to as Erlang’s C formula and is often denoted* by
C(m, Afw).
3.6. M/M/i/K: FINITE STORAGE
== (3.37) We now consider for the first time the case of a queueing system in which
there is a maximum number of customers that may be stored; in particular,
we assume the system can hold at most a total of K customers (including the
customer in service) and that any further arriving customers will in fact be
(3.38) refused entry to the system and will depart immediately without service.
) Newly arriving customers will continue to be generated according to a
with our Poisson process but only those who find the system with strictly less than X
customers will be allowed entry. In telephony the refused customers are
A considered to be “lost’; for the system in which K = 1 (i.e., no waiting
EZ .o room at all) this is referred to as a “blocked calls cleared” system with a

single server,

* Europeans use the symbol Ey m(10).
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A A A A
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Figure 3.8 State-transition-rate dia

gram for the case of finite storage room
M/M/1/K.

It is interesting that we are capable of accommodating this seemingly
complex system description with our birth-death model. In particular, we

accomplish this by effectively “turning off” the Poisson input as soon as the
systems fills up, as follows:

l—l k<K
. =
0 k>K
B = k=1,2,...,K

From Eq. (3.20), we see that this system is always ergodic. The state-transi-
tion-rate diagram for this finite Markov chainis shown in Figure 3.8. Proceed-
ing directly with Eq. (3.11) we obtain

k-1 Z
Pr = Py H - k<K
i=0 Y
or
A k
Pr = Po(/;) k<K (3.41)
Of course, we also have
pr=70 k>K (3.42)

In order to solve for p, we use Egs. (3.41) and (3.42) in Eq. (3.12) to obtain

=[50

= M -1
|1+ ]

L — A
and so
_ 1=

T = e
Thus, finally,

1 — Au ( Z)k

PR —— I 0<k<K,
Py = f 1= G\, sks = (3.43)
lO otherwise

u
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(m—1)u m

Figure 3.9 State-transition-rate diagram for m-server loss system M/M/m/m.

For the case of blocked calls cleared (K = 1) we have

L k=0
1+ Au
P = Alp k=1=k (3.44)
L+ A
0 otherwise

3.7. M/M/m/m: m-SERVER LOSS SYSTEMS

Here we have again a blocked calls cleared situation in which there are
available m servers. Each newly arriving customer is given his private server;
however, if a customer arrives when all servers are occupied, that customer is

lost. We create this artifact as above by choosing the following birth and
death coefficients:

A k< m
0 k>m
U = kp k=1,2,... . m

Ay =

Here again, ergodicity is always assured. This finite state-transition-rate
diagram is shown in Figure 3.9.

Applying Eq. (3.11) we obtain

k—1 ].
= <
D POLI:—_! (i + 1),u b

or

(&)}CL k<m
pe= (P = = (3.45)

0 k>m

P= 2GR -

This particular system is of great interest to those in telephony [so much so
that a special case of Eq. (3.45) has been tabulated and graphed in many books

Solving for p, we have
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on telephony]. Specifically, p,. describes the fraction of time that all m servers

are busy. The name given to this probability expression is Erlang’s loss
Jormula and it is given by

_ Gl im!
3 Ay

This equation is also referred to as Erlang’s B formula and is commonly
denoted* by B(m, 1/u). Formula (3.46) was first derived by Erlang in 19171

P =(3.46)

3.8. M/M/1//M+t: FINITE CUSTOMER POPULATION—
SINGLE SERVER

Here we consider the case where we no longer have a Poisson input
process with an infinite user population, but rather have a finite population
of possible users. The system structure is such that we have a total of M
users; a customer is either in the system (consisting of a queue and a single
server) or outside the system and in some sense “arriving.” In particular,
when a customer is in the “arriving” condition then the time it takes him to
arrive is a random variable with an exponential distribution whose mean is
1/4 sec. All customers act independently of each other. As a result, when there
are k customers in the system (queue plus service) then there are M-k
customers in the arriving state and, therefore, the total average arrival rate
in this state is A(M — k). We see that this system is in a strong sense self-
regulating. By this we mean that when the system gets busy, with many of
these customers in the queue, then the rate at which additional customers
arrive is in fact reduced, thus lowering the further congestion of the system.

We model this quite appropriately with our birth-death process choosing for
parameters '

MM —1k)y 0<k<M
0 otherwise
Uy = 4 k=1,2,...
The system is ergodic. We assume that we have sufficient room to contain M

customers in the system. The finite state-transition-rate diagram is shown in
Figure 3.10. Using Eq. (3.11) we solve for Py as follows:

B0
po=po TT2M =D O<k<M
0 p

* Europeans use the notation £y mAlp).

T Recall that a blank eniry in either of the last two optional positions in this notation means
an entry of oo; thus here we have the system M/M/1/co/M.
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M2A M= 22 A
u n ® M

Figure 3.10  State-transition-rate diagram for single-server finite population
system M/M/1//M.

Thus
k 1
po(&)i_ 0<k<M
ul (M — k)! = (3.47)

0 k>M
In addition, we obtain for p,

Po = [é (g)k#%ﬂ_l = (3.48)

Pr =

3.9. M/M/oo//M: FINITE CUSTOMER POPULATION—
“INFINITE” NUMBER OF SERVERS

We again consider the finite population case, but now provide a separate
server for each customer in the system. We model this as follows:
/1 MM — k) 0<kLM
* 0 otherwise
e = ku k=1,2,...
Clearly, this too is an ergodic system. The finite state-transition-rate diagram
is shown in Figure 3.11. Solving this system, we have from Eq. (3.11)

M - D
Pr = POZ:O (i + Dp
k
= po(f) (M) 0< k<M (3.49)
w \k

where the binomial coefficient is defined in the usual way,

(A:) = k! (1\]4\4'— k!

(M—1)u Mpu

tigure 3.11 State-transition-rate diagram for “infinite”-server finite population
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=[S0

"

Solving for p, we have

and so
Py = ! Y Figure 3.12 State-tran
(1 + Aw™ population system M/
Thus N
(‘) ( p ) In Figure 3.12 we see
= R i der tc
Pr = 0L<k<M diagrams. In orde
I (1 + 2w (3.50) for the range 0 < k -
0 otherwise
We may easily calculate the expected number of people in the system from Pi
M
N=3kp,
k=0
M \k .
Ek(ﬁ) (M) For the region m </
_ow=0 \p/ \ k
(1 + 4™ Dy =
Using the partial-differentiation trick such as for obtaining Eq. (3.24) we
then have M =
N o= _M2u
L 2 The expression for p
‘ it may be computed
3.10. M/M/m/K/M: FINITE POPULATION, m-SERVER CASE, system (ie., M > K

FINITE STORAGE

This rather general system is the most complicated we have so far consid-
sred and will reduce to all of the previous cases (except the example of dis- Pr
couraged arrivals) as we permit the parameters of this system to vary. We
assume we have a finite population of M customers, each with an “arriving”

parameter A. In addition, the system has m servers, each with parameter u. This is known as the
The system also has finite storage room such that the total number of custo- We could continug
mers in the system (queueing plus those in service) is no more than K. benevolent approach
We assume M > K > m; customers arriving to find K already in the system examples are given i
are “lost” and return immediately to the arriving state as if they had just ‘ that a large number
completed service. This leads to the following set of birth-death coefficients: the birth-death proc
model the multiple-s

— MM — k) O<k<Kk-—1 case and combinatio

o otherwise the solution for the ¢

kp 0<k<m (3.12). Only systems

P = considered in this che

i kzm that lend themselves
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Figure 3.12 State-transition-rate diagram for m-server, finite storage, finite
population system M/M/m/K/M.

In Figure 3.12 we see the most complicated of our finite state-transition-rate
diagrams. In order to apply Eq. (3.11) we must consider two regions. First,
for the range 0 < k < m — 1 we have

LM — 1)
b= PO;EO[ (i + D
k
= po(g) (M> 0<k<<m—1 (3.51)
w \k

For the region m < k < K we have
el M — D EL UM — )

1T

Pe=Po G f D ma
14 \,'
_ pe(ﬂ) (M)’—; m"t om <k <K (3.52)
w \ k/m!

The expression for p, is rather complex and will not be given here, although
it may be computed in a straightforward manner. In the case of a pure loss
system (i.e., M > K = m), the stationary state probabilities are given by

2006

This is known as the Engset distribution.

We could continue these examples ad nauseam but we will instead take a
benevolent approach and terminate the set of examples here. Additional
examples are given in the exercises. It should be clear to the reader by now
(hat a large number of interesting queueing structures can be modeled with
the birth-death process. In particular, we have demonstrated the ability to
model the multiple-server case, the finite-population case, the finite-storage
case and combinations thereof. The common element in all of these is that
(he solution for the equilibrium probabilities {p;} is given in Eqs. (3.1 1) and
(3.12). Only systems whose solutions are given by these equations have been
considered in this chapter. However, there are many other Markovian systems
(hat lend themselves to simple solution and which are important in queueing

k=01,...,m (3.53)
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theory. In the next chapter (4) we consider the equilibrium solution for
Markovian queues; in Chapter 5 we will generalize to semi-Markov processes
in which the service time distribution B(%) is permitted to be general, and in
Chapter 6 we revert back to the exponential service time case, but permit
the interarrival time distribution A4(¢) to be general; in both of these cases
an imbedded Markov chain will be identified and solved. Only when both
A(#) and B(z) are nonexponential do we require the methods of advanced
queueing theory discussed in Chapter 8. (There are some special nonexpon-
ential distributions that may be described with the theory of Markov processes
and these too are discussed in Chapter 4.)

EXERCISES

3.1. Consider a pure Markovian queueing system in which

A 0<k<K
24 K<k
k=1,2,...

My = W

(a) Find the equilibrium probabilities p, for the number in the
system.

(b) What relationship must exist among the parameters of the

problem in order that the system be stable and, therefore, that

this equilibrium solution in fact be reached? Interpret this

answer in terms of the possible dynamics of the system.

3.2. Considef a Markovian queueing system in which

Lh=odl k>00<a<]1
= p k>1

(a) Find the equilibrium probability p, of having k customers in the
system. Express your answer in terms of p,.
(b) Give an expression for p,.

3.3. Consider an M/M/2 queueing system where the average arrival rate
is 4 customers per second and the average service time is 1/ sec,
where A < 2p.

(a) Find the differential equations that govern the time-dependent
probabilities P,(f).
(b) Find the equilibrium probabilities

P = lim P,(¢)

t—rec

34.

3.5.

3.6.

3.7.

Consider an M/M/1
are impatient. Spec
queueing time w an
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new arrival finds & i
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k in the system
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(b) ForO0<ua, O-
solution hold?
{(¢) Fora-— oo, fir

system.
Consider a birth—de
coefficients:
A
M

All other coefficient:
(a) Solve for p,. B

of 4, k, and p
(b) Find the avera;

Consider a birth—de:

A = ok
te = Bk

where K; < K, and
K, <k < K,. Solve
K, < k £ K, custon

Consider an M/M/n
Poisson arrival stre:
given by 4, and ex;
Vup; (i=1,2). The
arrival requires exac
then any newly arriv:
second class each rec
occupy them all simt
amount of time who
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that are lost.




