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Queuing theory 

• View network as collections of queues
– FIFO data-structures

• Queuing theory provides probabilistic
analysis of these queues

• Examples:
– Average length
– Probability queue is at a certain length
– Probability a packet will be lost



Little’s Law

• Little’s Law:
Mean number tasks in system = arrival rate x mean
response time
– Observed before, Little was first to prove

• Applies to any system in equilibrium,
as long as nothing in black box
is creating or destroying tasks

Arrivals Departures

System



Proving Little’s Law

J = Shaded area = 9

Same in all cases!
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Definitions

• J: “Area” from previous slide
• N: Number of jobs (packets)
• T: Total time
" l: Average arrival rate

– N/T
• W: Average time job is in the system

– = J/N
• L: Average number of jobs in the system

– = J/T
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Proof: Method 2: Substitution
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Example using Little’s law

• Observe 120 cars in front of the Lincoln
Tunnel

• Observe 32 cars/minute depart over a period where no
cars in the tunnel at the start or end (e.g. security checks)

• What is average waiting time before and in
the tunnel?

† 

W = L
l = 120

32( ) = 3.75min



Model Queuing System

Strategy:
Use Little’s law on both the complete system and its

parts  to reason about average time in the queue
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Kendal Notation

• Six parameters in shorthand
• First three typically used, unless specified

1. Arrival Distribution
• Probability of a new packet arrives in time t

2. Service Distribution
• Probability distribution packet is serviced in time t

3. Number of servers
4. Total Capacity (infinite if not specified)
5. Population Size (infinite)
6. Service Discipline (FCFS/FIFO)



Distributions

• M: Exponential
• D: Deterministic (e.g. fixed constant)
• Ek: Erlang with parameter k
• Hk: Hyperexponential with param. k
• G: General (anything)

• M/M/1 is the simplest ‘realistic’ queue



Kendal Notation Examples

• M/M/1:
– Exponential arrivals and service, 1 server, infinite

capacity and population, FCFS (FIFO)
• M/M/m

– Same, but M servers
• G/G/3/20/1500/SPF

– General arrival and service distributions, 3 servers,
17 queue slots (20-3), 1500 total jobs, Shortest
Packet First



M/M/1 queue model
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Analysis of M/M/1 queue

• Goal: A closed form expression of the
probability of the number of jobs in the queue
(Pi)  given only l and m



Solving queuing systems

• Given:
• l: Arrival rate of jobs (packets on input link)
• m: Service rate of the server (output link)

• Solve:
– L: average number in queuing system
– Lq  average number in the queue
– W: average waiting time in whole system
– Wq average waiting time in the queue

• 4 unknown’s: need 4 equations



Solving queuing systems

• 4 unknowns: L, Lq W, Wq
• Relationships using Little’s law:

– L=lW
– Lq=lWq  (steady-state argument)
– W = Wq + (1/m)

• If we know any 1, can find the others
• Finding L is hard or easy depending on the

type of system. In general:
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Solving for P0 and Pn
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Solving for L
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Solving W, Wq and Lq
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Response Time vs. Arrivals
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Stable Region

Waiting vs. Utilization
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Empirical Example

M/M/m
system



Example

• Measurement of a network gateway:
– mean arrival rate (l): 125 Packets/s
– mean response time per packet: 2 ms

• Assuming exponential arrivals & departures:
– What is the service rate, m ?
– What is the gateway’s utilization?
– What is the probability of n packets in the gateway?
– mean number of packets in the gateway?
– The number of buffers so P(overflow) is <10-6?



The service rate, m =

utilization =

P(n) packets in the gateway =

Example (cont)
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Mean # in gateway (L) =

to limit loss probability to less than
1 in a million:

Example (cont)
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• Poisson process = exponential distribution
between arrivals/departures/service

• Key properties:
– memoryless

– Past state does not help predict next arrival
– Closed under:

– Addition
– Subtraction

Properties of a Poisson processes

tetP l--=< 1)arrival(



Addition and Subtraction

• Merge:
– two poisson streams with arrival rates l1 and l2:

• new poisson stream: l3=l1+l2

• Split :
– If any given item has a probability P1 of “leaving”

the stream with rate l1:
" l2=(1-P1)l1



Queuing Networks
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Bridging Router Performance and
Queuing Theory

Sigmetrics 2004

Slides by N. Hohn*, D. Veitch*, K.
Papagiannaki, C. Diot



• End-to-end packet delay is an important
metric for performance and Service Level
Agreements (SLAs)

• Building block of end-to-end delay is through
router delay

• Measure the delays incurred by all packets
crossing a single router

Motivation



Overview

• Full Router Monitoring
• Delay Analysis and Modeling
• Delay Performance: Understanding and

Reporting



Measurement Environment

BackBone 1

BackBone 2

Customer 1 



Packet matching

99.93%735236757outC2
52.89%389153772InBB2
47.00%345796622InBB1
0.01%70376InC1
0.03%215987InC4
% traffic C2-outMatched pktsLinkSet



Overview

••• Full Router MonitoringFull Router MonitoringFull Router Monitoring
• Delay Analysis and Modeling
••• Delay Performance: Understanding andDelay Performance: Understanding andDelay Performance: Understanding and

ReportingReportingReporting



Definition of delay



Store & Forward Datapath

• Store: storage in input linecard’s
memory

• Forwarding decision
• Storage in dedicated Virtual Output

Queue (VOQ)
• Decomposition into fixed-size cells
• Transmission through switch fabric cell

by cell
• Packet reconstruction
• Forward: Output link scheduler

Not part of the system



Delays: 1 minute summary

MAX

MIN

Mean

BB1-In to C2-Out



Store & Forward Datapath

• Store: storage in input linecard’s
memory

• Forwarding decision
• Storage in dedicated Virtual Output

Queue (VOQ)
• Decomposition into fixed-size cells
• Transmission through switch fabric cell

by cell
• Packet reconstruction
• Forward: Output link scheduler

Not part of the system

DliLj(L)



Minimum Transit Time

Packet size dependent minimum delay.



Store & Forward Datapath

• Store: storage in input linecard’s
memory

• Forwarding decision
• Storage in dedicated Virtual Output

Queue (VOQ)
• Decomposition into fixed-size cells
• Transmission through switch fabric cell

by cell
• Packet reconstruction
• Forward: Output link scheduler

Not part of the system

       DliLj(L)

FIFO queue



Modeling



Modeling

Fluid queue with a delay element at the front



Model Validation

U(t)



Error as a function of time



Modeling results

• A crude model performs well!
– As simpler/simpler than an M/M/1 queue

• Use effective link bandwidth
– account for encapsulation

• Small gap between router performance and queuing
theory!

• The model defines Busy Periods: time between the
arrival of a packet to the empty system and the time
when the system becomes empty again.



Overview

••• Full Router MonitoringFull Router MonitoringFull Router Monitoring
••• Delay Analysis and ModelingDelay Analysis and ModelingDelay Analysis and Modeling
• Delay Performance: Understanding and

Reporting



On the Delay Performance

• Model allows for router performance
evaluation when arrival patterns are known

• Goal: metrics that
– Capture operational-router performance
– Can answer performance questions directly

• Busy Period structures contain all delay
information
– BP better than utilization or delay reporting



Busy periods metrics
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Property of significant BPs



Triangular Model

† 

dL ,A ,D
(T ) = D(1-

L
A

),if A ≥ L



Issues

• Report (A,D) measurements
• There are millions of busy periods even on a

lightly utilized router
• Interesting episodes are rare and last for a

very small amount of time



Report BP joint distribution



Duration of Congestion Level-L



Conclusions

• Results
– Full router empirical study
– Delay modeling
– Reporting performance metrics

• Future work
– Fine tune reporting scheme
– Empirical evidence of large deviations theory



Network Traffic Self-SimilarityNetwork Traffic Self-Similarity

Slides by Carey Williamson
Department of Computer Science

University of Saskatchewan



IntroductionIntroduction

• A classic measurement study has shown that
aggregate Ethernet LAN traffic is self-similar
[Leland et al 1993]

• A statistical property that is very different from
the traditional Poisson-based models

• This presentation: definition of network traffic
self-similarity, Bellcore Ethernet LAN data,
implications of self-similarity



Measurement MethodologyMeasurement Methodology

• Collected lengthy traces of Ethernet LAN
traffic on Ethernet LAN(s) at Bellcore

• High resolution time stamps
• Analyzed statistical properties of the resulting

time series data
• Each observation represents the number of

packets (or bytes) observed per time interval
(e.g., 10  4  8  12  7  2  0  5  17  9  8  8  2...)



• If you plot the number of packets observed
per time interval as a function of time, then
the plot looks ‘‘the same’’ regardless of what
interval size you choose

• E.g., 10 msec, 100 msec, 1 sec, 10 sec,...
• Same applies if you plot number of bytes

observed per interval of time

Self-Similarity: The intuition



• In other words, self-similarity implies a
‘‘fractal-like’’ behavior: no matter what time
scale you use to examine the data, you see
similar patterns

• Implications:
– Burstiness exists across many time scales
– No natural length of a burst
– Key: Traffic does not necessarily get ‘‘smoother”

when you aggregate it (unlike Poisson traffic)

Self-Similarity: The Intuition



Self-Similarity Traffic Intuition (I)



Self-Similarity in Traffic Measurement II



• Self-similarity is a rigorous statistical property
– (i.e., a lot more to it than just the pretty ‘‘fractal-

like’’ pictures)
• Assumes you have time series data with finite

mean and variance
– i.e., covariance stationary stochastic process

• Must be a very long time series
– infinite is best!

• Can test for presence of self-similarity

Self-Similarity: The Math



• Self-similarity manifests itself in several
equivalent fashions:

• Slowly decaying variance
• Long range dependence
• Non-degenerate autocorrelations
• Hurst effect

Self-Similarity: The Math



Methods of showing Self-Similarity

H=0.5

H=0.5

H=1
Estimate H ª 0.8



• The variance of the sample decreases more
slowly than the reciprocal of the sample size

• For most processes, the variance of a sample
diminishes quite rapidly as the sample size is
increased, and stabilizes soon

• For self-similar processes, the variance
decreases very slowly, even when the sample
size grows quite large

Slowly Decaying Variance



• The ‘‘variance-time plot” is one means to test
for the slowly decaying variance property

• Plots the variance of the sample versus the
sample size, on a log-log plot

• For most processes, the result is a straight
line with slope -1

• For self-similar, the line is much flatter

Time-Variance Plot
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Variance-Time PlotVariance-Time Plot
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Slope = -1
for most processes
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• Correlation is a statistical measure of the
relationship, if any, between two random
variables

• Positive correlation: both behave similarly
• Negative correlation: behave as opposites
• No correlation: behavior of one is unrelated to

behavior of other

Long Range Dependence



• Autocorrelation is a statistical measure of the
relationship, if any, between a random
variable and itself, at different time lags

• Positive correlation: big observation usually
followed by another big, or small by small

• Negative correlation: big observation usually
followed by small, or small by big

• No correlation: observations unrelated

Long Range Dependence



• Autocorrelation coefficient can range
between:
+1 (very high positive correlation)
-1 (very high negative correlation)

• Zero means no correlation
• Autocorrelation function shows the value of

the autocorrelation coefficient for different
time lags k

Long Range Dependence
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• For most processes (e.g., Poisson, or
compound Poisson), the autocorrelation
function drops to zero very quickly
– usually immediately, or exponentially fast

• For self-similar processes, the autocorrelation
function drops very slowly
– i.e., hyperbolically, toward zero, but may never

reach zero
• Non-summable autocorrelation function

Long Range Dependence
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• For self-similar processes, the autocorrelation
function for the aggregated process is
indistinguishable from that of the original
process

• If autocorrelation coefficients match for all
lags k, then called exactly self-similar

• If autocorrelation coefficients match only for
large lags k, then called asymptotically self-
similar

Non-Degenerate Autocorrelations
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• Aggregation of a time series X(t) means
smoothing the time series by averaging the
observations over non-overlapping blocks of
size m to get a new time series Xm(t)

Aggregation



• Suppose the original time series X(t) contains
the following (made up) values

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...

• Then the aggregated series for m = 2 is:

Aggregation Example



• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...

• Then the aggregated series for m = 2 is:

Aggregation Example



• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...

• Then the aggregated series for m = 2 is:
  4.5

Aggregation Example



• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...

• Then the aggregated series for m = 2 is:
  4.5  8.0

Aggregation example



• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...

• Then the aggregated series for m = 2 is:
  4.5  8.0  2.5

Aggregation Example



• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...

• Then the aggregated series for m = 2 is:
  4.5  8.0  2.5  5.0

Aggregation Example



• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...

• Then the aggregated series for m = 2 is:
  4.5  8.0  2.5  5.0  6.0  7.5  7.0  4.0  4.5  5.0...

Aggregation Example



• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...

Then the aggregated time series for m = 5 is:

Aggregation Example



Aggregation: An ExampleAggregation: An Example

• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...

Then the aggregated time series for m = 5 is:



Aggregation: An ExampleAggregation: An Example

• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...

Then the aggregated time series for m = 5 is:
      6.0



Aggregation: An ExampleAggregation: An Example

• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...

Then the aggregated time series for m = 5 is:
      6.0         4.4



Aggregation: An ExampleAggregation: An Example

• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...

Then the aggregated time series for m = 5 is:
      6.0         4.4          6.4          4.8 ...



Aggregation: An ExampleAggregation: An Example

• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...

Then the aggregated time series for m = 10 is:



Aggregation: An ExampleAggregation: An Example

• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...

Then the aggregated time series for m = 10 is:
            5.2



Aggregation: An ExampleAggregation: An Example

• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...

Then the aggregated time series for m = 10 is:
            5.2                          5.6
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• For almost all naturally occurring time series,
the rescaled adjusted range statistic (also
called the R/S statistic) for sample size n
obeys the relationship

                E[R(n)/S(n)] = c nH

where:
R(n) = max(0, W1, ... Wn) - min(0, W1, ... Wn)
S2(n) is the sample variance, and
                                       for k = 1, 2, ... n

† 

WK = (Xi) - k Xn
i=1

n

Â

Hurst Effect



• For models with only short range dependence,
H is almost always 0.5

• For self-similar processes, 0.5 < H < 1.0
• This discrepancy is called the Hurst Effect,

and H is called the Hurst parameter
• Single parameter to characterize self-similar

processes

Hurst Effect



R/S Statistic: An ExampleR/S Statistic: An Example

• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1
• There are 20 data points in this example



R/S Statistic: An ExampleR/S Statistic: An Example

• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1
• There are 20 data points in this example
• For R/S analysis with n = 1, you get 20

samples, each of size 1:



R/S Statistic: An ExampleR/S Statistic: An Example

• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1
• There are 20 data points in this example
• For R/S analysis with n = 1, you get 20

samples, each of size 1:
Block 1: X  = 2, W = 0, R(n) = 0, S(n) = 0

n 1



R/S Statistic: An ExampleR/S Statistic: An Example

• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1
• There are 20 data points in this example
• For R/S analysis with n = 1, you get 20

samples, each of size 1:
Block 2: X = 7, W = 0, R(n) = 0, S(n) = 0

n  1



R/S Statistic: An ExampleR/S Statistic: An Example

• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1
• For R/S analysis with n = 2, you get 10

samples, each of size 2:



R/S Statistic: An ExampleR/S Statistic: An Example

• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1
• For R/S analysis with n = 2, you get 10

samples, each of size 2:
Block 1: X  = 4.5, W  = -2.5, W  = 0,
R(n) = 0 - (-2.5) = 2.5, S(n) = 2.5,
R(n)/S(n) = 1.0n 1 2



R/S Statistic: An ExampleR/S Statistic: An Example

• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1
• For R/S analysis with n = 2, you get 10

samples, each of size 2:
Block 2: X  = 8.0, W  = -4.0, W  = 0,
R(n) = 0 - (-4.0) = 4.0, S(n) = 4.0,
R(n)/S(n) = 1.0n 1 2



R/S Statistic: An ExampleR/S Statistic: An Example

• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1
• For R/S analysis with n = 3, you get  6

samples, each of size 3:



R/S Statistic: An ExampleR/S Statistic: An Example

• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1
• For R/S analysis with n = 3, you get 6

samples, each of size 3:
Block 1: X  = 4.3, W  = -2.3, W  = 0.3, W = 0
R(n) = 0.3 - (-2.3) = 2.6, S(n) = 2.05,
R(n)/S(n) = 1.30n 1 2 3



R/S Statistic: An ExampleR/S Statistic: An Example

• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1
• For R/S analysis with n = 3, you get 6

samples, each of size 3:
Block 2: X  = 5.7, W  =  6.3, W  = 5.7, W = 0
R(n) = 6.3 - (0) = 6.3, S(n) = 4.92,
R(n)/S(n) = 1.28n 1 2 3



R/S Statistic: An ExampleR/S Statistic: An Example

• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1
• For R/S analysis with n = 5, you get  4

samples, each of size 5:



R/S Statistic: An ExampleR/S Statistic: An Example

• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1
• For R/S analysis with n = 5, you get 4

samples, each of size 4:
Block 1: X  = 6.0, W  = -4.0, W  = -3.0,
W  = -5.0 , W  = 1.0 , W  = 0, S(n) = 3.41,
R(n) = 1.0 - (-5.0) = 6.0, R(n)/S(n) = 1.76n 1 2

3 4 5



R/S Statistic: An ExampleR/S Statistic: An Example

• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1
• For R/S analysis with n = 5, you get 4

samples, each of size 4:
Block 2: X  = 4.4, W  = -4.4, W  = -0.8,
W  = -3.2 , W  = 0.4 , W  = 0, S(n) = 3.2,
R(n) = 0.4 - (-4.4) = 4.8, R(n)/S(n) = 1.5n 1 2

3 4 5



R/S Statistic: An ExampleR/S Statistic: An Example

• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1
• For R/S analysis with n = 10, you get  2

samples, each of size 10:



R/S Statistic: An ExampleR/S Statistic: An Example

• Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1
• For R/S analysis with n = 20, you get  1

sample of size 20:



• Another way of testing for self-similarity, and
estimating the Hurst parameter

• Plot the R/S statistic for different values of n,
with a log scale on each axis

• If time series is self-similar, the resulting plot
will have a straight line shape with a slope H
that is greater than 0.5

• Called an R/S plot, or R/S pox diagram

R/S Plot
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• Self-similarity is an important mathematical
property that has recently been identified as
present in network traffic measurements

• Important property: burstiness across many
time scales, traffic does not aggregate well

• There exist several mathematical methods to
test for the presence of self-similarity, and to
estimate the Hurst parameter H

• There exist models for self-similar traffic

Self-Similarity Summary



Newer Results

V. Paxson, S. Floyd, Wide-Area Traffic:  The Failure of
Poisson Modeling, IEEE/ACM Transaction on Networking,
1995.

• TCP session arrivals are well modeled by a Poisson
process

• A number of WAN characteristics were well modeled by
heavy tailed distributions

• Packet arrival process for two typical applications (TELNET,
FTP) as well as aggregate traffic is self-similar



Another Study

M. Crovella, A. Bestavros, Self-Similarity in World Wide
Web Traffic: Evidence and Possible Causes,
IEEE/ACM Transactions on Networking, 1997

• Analyzed WWW logs collected at clients over a 1.5
month period
– First WWW client study
– Instrumented MOSAIC

• ~600 students
• ~130K files transferred
• ~2.7GB data transferred



Self-Similar Aspects of Web traffic

• One difficulty in the analysis was finding stationary,
busy periods
– A number of candidate hours were found

• All four tests for self-similarity were employed
–  0.7 < H < 0.8



Explaining Self-Similarity

• Consider a set of processes which are either
ON or OFF
– The distribution of ON and OFF times are heavy

tailed
– The aggregation of these processes leads to a

self-similar process
• So, how do we get heavy tailed ON or OFF

times?



• Analysis of client logs showed that ON times were, in fact,
heavy tailed
– Over about 3 orders of magnitude

• This lead to the analysis of underlying file sizes
– Over about 4 orders of magnitude
– Similar to FTP traffic

• Files available from UNIX file systems are typically heavy tailed

Impact of File Sizes



Heavy Tailed OFF times

• Analysis of OFF times showed that they are
also heavy tailed

• Distinction between Active and Passive OFF
times
– Inter vs. Intra click OFF times

• Thus, ON times are more likely to be cause of
self-similarity



Major Results from CB97

• Established that WWW traffic was self-similar
• Modeled a number of different WWW

characteristics (focus on the tail)
• Provide an explanation for self-similarity of WWW

traffic based on underlying file size distribution



Where are we now?

• There is no mechanistic model for Internet traffic
– Topology?
– Routing?

• People want to blame the protocols for observed behavior
• Multiresolution analysis may provide a means for better

models
• Many people (vendors) chose to ignore self-similarity

– Does it matter????
– Critical opportunity for answering this question.


