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Queuing theory

* View network as collections of queues
— FIFO data-structures

 Queuing theory provides probabilistic
analysis of these queues

- Examples:
— Average length

— Probability queue is at a certain length
— Probability a packet will be lost



Little’s Law

System

Departures
>

Arrivals

- Little’s Law:
Mean number tasks in system = arrival rate x mean
response time
— Observed before, Little was first to prove
* Applies to any system in equilibrium,
as long as nothing in black box
IS creating or destroying tasks




Proving Little’s Law
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Definitions
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- J: “Area” from previous slide
- N: Number of jobs (packets)
» T: Total time
V \: Average arrival rate
— N/T
- W: Average time job is in the system
- =J/N
 L: Average number of jobs in the system
—=J/T



Proof: Method 1: Definition

# in 3
System?2
(L) 1

123456738
Time (T)

J =1L =

A

Time in 37
System 2
(W) 1

NW

L=(FW
L=)W

.

123
Packet # (N)



Proof: Method 2: Substitution

L=MW

= (W
= ()
L =4 Tautology

T T



Example using Little’s law

* Observe 120 cars in front of the Lincoln

Tunnel

« Observe 32 cars/minute depart over a period where no
cars in the tunnel at the start or end (e.g. security checks)

- What is average waiting time before and in
the tunnel?

A

W ==L= (120) 3.75min



Model Queuing System

Queuing System

- - O

Queue Server

Queuing System Server System
Strategy:

Use Little’s law on both the complete system and its
parts to reason about average time in the queue



Kendal Notation

- Six parameters in shorthand
First three typically used, unless specified

1. Arrival Distribution
* Probability of a new packet arrives in time t

2. Service Distribution
e Probability distribution packet is serviced in time t

Number of servers

Total Capacity (infinite if not specified)
Population Size (infinite)

Service Discipline (FCFS/FIFQO)

R



Distributions
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* M: Exponential
D: Deterministic (e.g. fixed constant)

E,: Erlang with parameter k
H,: Hyperexponential with param. k
G: General (anything)

M/M/1 is the simplest ‘realistic’ queue



Kendal Notation Examples

- M/M/:

— Exponential arrivals and service, 1 server, infinite
capacity and population, FCFS (FIFO)

« M/M/m
— Same, but M servers

- G/G/3/20/1500/SPF

— General arrival and service distributions, 3 servers,
17 queue slots (20-3), 1500 total jobs, Shortest
Packet First



M/M/1 queue model




Analysis of M/M/1 queue

- Goal: A closed form expression of the
probability of the number of jobs in the queue
(P;) given only A and u



Solving queuing systems

A S S  h—§€IS
 Given:

e A: Arrival rate of jobs (packets on input link)

e u: Service rate of the server (output link)

+ Solve:
— L: average number in queuing system
— L, average number in the queue
— W: average waiting time in whole system
— W, average waiting time in the queue

* 4 unknown’s: need 4 equations



Solving queuing systems

e
* 4 unknowns: L, Lq W, Wq
 Relationships using Little’s law:

— L=AW

— L=AW, (steady-state argument)

- W =W, + (1/u)
- If we know any 1, can find the others

» Finding L is hard or easy depending on the
type of system. In general.

L= EnPn
n=0



Equilibrium conditions
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Solving for P, and P,

B=pp ,B=()fR, P=(o)P,

P=1 Ry p'=1,6p=—1_
n=0

n=0 E p"
L o
P = ,0 <1 (geometric series)
n=0 1- p

ey T E T sE=(p) - p)



Solving for L

L= E”B, = 2”/0"(1— p) =(1- ,()),ozn,o”‘1

n=0 n=0

1
(l—p)p%(Ep”) =(1-p)pL L)
n=0
— _ P _ _A
(l_p)p 1;)2) (1-p) m



Solving W, W, and L,
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Response Time vs. Arrivals

Waiting vs. Utilization
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Stable Region

Waiting vs. Utilization
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Empirical Example
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Example
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- Measurement of a network gateway:.
— mean arrival rate (\): 125 Packets/s
— mean response time per packet: 2 ms
« Assuming exponential arrivals & departures:
— What is the service rate, u ?
— What is the gateway'’s utilization?
— What is the probability of n packets in the gateway?
— mean number of packets in the gateway?
— The number of buffers so P(overflow) is <1067?



Example (cont)

The servicerate, u= 1
0.002

utilization = 0= (%) =0.25%,

=500 pps

P(n) packets in the gateway =

PP, =(1-p)(p") = (0.75)(0.25")



Example (cont)

———————————————————
Mean # in gateway (L) =

P _ 025 _
-p — 1-025 0.33

to limit loss probability to less than
1 in a million:

p" <107



Properties of a Poisson processes

» Poisson process = exponential distribution
between arrivals/departures/service

P(arrival<t)=1-¢™"

+ Key properties:

— memoryless
— Past state does not help predict next arrival

— Closed under:

— Addition
— Subtraction



Addition and Subtraction

* Merge:
— two poisson streams with arrival rates A, and A,:
* new poisson stream: A;=A;+A,

« Split :
— If any given item has a probability P, of “leaving”
the stream with rate A,.

Va,=(1-P\,



Queuing Networks
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Bridging Router Performance and
Queuing Theory

Sigmetrics 2004

Slides by N. Hohn*, D. Veitch*, K.
Papagiannaki, C. Diot



Motivation

- End-to-end packet delay is an important
metric for performance and Service Level
Agreements (SLAS)

- Building block of end-to-end delay is through
router delay

* Measure the delays incurred by all packets
crossing a single router



Overview
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* Full Router Monitoring
» Delay Analysis and Modeling

» Delay Performance: Understanding and
Reporting




Measurement Environment
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Overview

» Delay Analysis and Modeling



Definition of delay



Store & Forward Datapath

———————————
- Store: storage in input linecard’s  <€— Not part of the system
memory

- Forwarding decision

- Storage in dedicated Virtual Output
Queue (VOQ)

- Decomposition into fixed-size cells

 Transmission through switch fabric cell
by cell

« Packet reconstruction
- Forward: Output link scheduler



Delays: 1 minute summary
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« Packet reconstruction

Store & Forward Datapath

- Store: storage in input linecard’s  <€— Not part of the system
memory

- Forwarding decision

- Storage in dedicated Virtual Output
Queue (VOQ)

- Decomposition into fixed-size cells

 Transmission through switch fabric cell
by cell > AMA(L)

TN

- Forward: Output link scheduler




Minimum Router Transit Time (ps )
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« Packet reconstruction

Store & Forward Datapath

- Store: storage in input linecard’s  <€— Not part of the system
memory

- Forwarding decision

- Storage in dedicated Virtual Output
Queue (VOQ)

- Decomposition into fixed-size cells

« Transmission through switch fabric cell A
by cell >AMA(L)

- Forward: Output link scheduler

7

<— FIFO queue



Modeling
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Modeling
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Fluid queue with a delay element at the front



Model Validation
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error ( LS )

Error as a function of time
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Modeling results

A crude model performs well!

— As simpler/simpler than an M/M/1 queue
+ Use effective link bandwidth

— account for encapsulation

- Small gap between router performance and queuing
theory!

« The model defines Busy Periods: time between the
arrival of a packet to the empty system and the time
when the system becomes empty again.



Overview

» Delay Performance: Understanding and
Reporting



On the Delay Performance

+ Model allows for router performance
evaluation when arrival patterns are known
« Goal: metrics that
— Capture operational-router performance
— Can answer performance questions directly

- Busy Period structures contain all delay
information

— BP better than utilization or delay reporting



Busy periods metrics
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Triangular Model

measured busy pericd
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Issues
e
* Report (A,D) measurements

« There are millions of busy periods even on a
lightly utilized router

* Interesting episodes are rare and last for a
very small amount of time
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Duration of Congestion Level-L
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Conclusions

* Results
— Full router empirical study
— Delay modeling
— Reporting performance metrics

 Future work

— Fine tune reporting scheme
— Empirical evidence of large deviations theory



Network Traffic Self-Similarity

Slides by Carey Williamson

Department of Computer Science
University of Saskatchewan




Introduction

A classic measurement study has shown that
aggregate Ethernet LAN traffic is self-similar
[Leland et al 1993]

- A statistical property that is very different from
the traditional Poisson-based models

 This presentation: definition of network traffic
self-similarity, Bellcore Ethernet LAN data,
iImplications of self-similarity




Measurement Methodology

 Collected lengthy traces of Ethernet LAN
traffic on Ethernet LAN(s) at Bellcore

 High resolution time stamps

- Analyzed statistical properties of the resulting
time series data

- Each observation represents the number of
packets (or bytes) observed per time interval
(e.g.,10 48 127 20 5 17 9 8 8 2..)



Self-Similarity: The intuition
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» If you plot the number of packets observed
per time interval as a function of time, then
the plot looks “the same” regardless of what
interval size you choose

- E.g., 10 msec, 100 msec, 1 sec, 10 sec,...

- Same applies if you plot number of bytes
observed per interval of time



Self-Similarity: The Intuition

* In other words, self-similarity implies a
“fractal-like” behavior: no matter what time
scale you use to examine the data, you see

similar patterns
* Implications:
— Burstiness exists across many time scales

— No natural length of a burst

— Key: Traffic does not necessarily get “smoother”
when you aggregate it (unlike Poisson traffic)



Self-Similarity Traffic Intuition (I)
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Self-Similarity in Traffic Measurement |l
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Self-Similarity: The Math

- Self-similarity is a rigorous statistical property

— (i.e., a lot more to it than just the pretty “fractal-
like” pictures)

« Assumes you have time series data with finite
mean and variance
— I.e., covariance stationary stochastic process

- Must be a very long time series
— infinite is best!

+ Can test for presence of self-similarity




Self-Similarity: The Math

- Self-similarity manifests itself in several
equivalent fashions:

- Slowly decaying variance

- Long range dependence

* Non-degenerate autocorrelations
 Hurst effect




Methods of showing Self-Similarity

Estimate H= 0.8

\ R/S method

g 10iv's)

H=0.5 ko1 Gl
variance time method

4

o1 Ol i)
A5
-~
/
3

0.7

R P O{ DR M)

Hurst Farametes Estimales

0 2 4 B A

periodogram

log10{m)




Slowly Decaying Variance

- The variance of the sample decreases more
slowly than the reciprocal of the sample size

« For most processes, the variance of a sample
diminishes quite rapidly as the sample size is
Increased, and stabilizes soon

 For self-similar processes, the variance
decreases very slowly, even when the sample
size grows quite large




Time-Variance Plot

The “variance-time plot” is one means to test
for the slowly decaying variance property

Plots the variance of the sample versus the
sample size, on a log-log plot

* For most processes, the result is a straight
iIne with slope -1

« For self-similar, the line is much flatter




Variance

Time Variance Plot




Variance-Time Plot
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Variance

Variance-Time Plot




Variance

Variance-Time Plot




Variance

Variance-Time Plot

Slope = -1
for most processes




Variance

Variance-Time Plot
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Variance

Variance-Time Plot

\\Epe flatter than -1

for self-similar process




Long Range Dependence

« Correlation is a statistical measure of the
relationship, if any, between two random
variables

 Positive correlation: both behave similarly
* Negative correlation: behave as opposites

 No correlation: behavior of one is unrelated to
behavior of other



Long Range Dependence

 Autocorrelation is a statistical measure of the
relationship, if any, between a random
variable and itself, at different time lags

 Positive correlation: big observation usually
followed by another big, or small by small

* Negative correlation: big observation usually
followed by small, or small by big

 No correlation: observations unrelated



Long Range Dependence

I
» Autocorrelation coefficient can range
between:
+1 (very high positive correlation)
-1 (very high negative correlation)
- Zero means no correlation
 Autocorrelation function shows the value of
the autocorrelation coefficient for different
time lags k



Autocorrelation Function
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Autocorrelation Function
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Autocorrelation Function
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Autocorrelation Function
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Long Range Dependence

« For most processes (e.g., Poisson, or
compound Poisson), the autocorrelation

function drops to zero very quickly
— usually immediately, or exponentially fast
 For self-similar processes, the autocorrelation

function drops very slowly
— i.e., hyperbolically, toward zero, but may never
reach zero

 Non-summable autocorrelation function
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Autocorrelation Function
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Autocorrelation Function
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Non-Degenerate Autocorrelations
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 For self-similar processes, the autocorrelation
function for the aggregated process is
indistinguishable from that of the original
process

- |f autocorrelation coefficients match for all
ags k, then called exactly self-similar

- If autocorrelation coefficients match only for
arge lags k, then called asymptotically self-
similar
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Aggregation
I SN N S NSNS S ShShAhAhANANhN N SNANhNhANhNh}h N N N N N N N NS SNANAh}h}h}N}N}NNhNNNhNhNNhhhhh...

- Aggregation of a time series X(t) means
smoothing the time series by averaging the
observations over non-overlapping blocks of
size m to get a new time series X, (t)

. 2 .




Aggregation Example
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-« Suppose the original time series X(t) contains
the following (made up) values

27 4125082846 911 3 357 291...
» Then the aggregated series for m = 2 is:



Aggregation Example
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-« Suppose the original time series X(t) contains
the following (made up) values:

27 4125 082846 911 3 357 291...
- Then the aggregated series for m = 2 is:



Aggregation Example

-« Suppose the original time series X(t) contains
the following (made up) values:

27 4125082846 911 3 35729 1...
. \:I'hen the aggregated series form =2 is:
4.5



Aggregation example

-« Suppose the original time series X(t) contains
the following (made up) values:

27 4125082846 9 11 3 357 291...
. The? the aggregated series form =2 is:
45 8.0



Aggregation Example

-« Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 5 8 2846 911 335729 1.
« Then th%aggregated series form = 2|s
45 8.0 2.5



Aggregation Example

-« Suppose the original time series X(t) contains
the following (made up) values:

27 4125082 846 911 3 35729 1...
- Then the aggregated series for m = 2 is:
45 8.0 2.5 5.0



Aggregation Example

-« Suppose the original time series X(t) contains
the following (made up) values:

27 4125082846 911 3 357 291...
- Then the aggregated series for m = 2 is:
45 8.0 25 5.0 6.0 75 7.0 40 45 5.0...



Aggregation Example

-« Suppose the original time series X(t) contains
the following (made up) values:

27 4125082846 911 3 357 291...
Then the aggregated time series for m = 5 is:



Aggregation: An Example

-« Suppose the original time series X(t) contains
the following (made up) values:

27 4125 082846 911 3 357 291...
Then the aggregated time series for m =5 is:



Aggregation: An Example

-« Suppose the original time series X(t) contains
the following (made up) values:

27 4125 082846 911 3 357 291...
Thenlthe aggregated time series for m =5 is:
6.0



Aggregation: An Example

-« Suppose the original time series X(t) contains
the following (made up) values:

27 4125 082 84¢€¢ 911 3 35729 1...
Then the aggregated time series for m =5 is:

6.0 4.4



Aggregation: An Example

-« Suppose the original time series X(t) contains
the following (made up) values:

2 7 4 12 510 8 2 8 4 6/9 11 3 3 57 2 9 1...

Then the aggregated time series for m =5 is:
6.0 4.4 6.4 4.8 ...



Aggregation: An Example

-« Suppose the original time series X(t) contains
the following (made up) values:

27 4125082846 911 3 357 291...
Then the aggregated time series for m = 10 is:



Aggregation: An Example

-« Suppose the original time series X(t) contains
the following (made up) values:

27 4125 082846 911 3 357 291...
Then thelaggregated time series for m = 10 is:
5.2



Aggregation: An Example

-« Suppose the original time series X(t) contains
the following (made up) values:

Then thelaggregated time s¢ries for m = 10 is:

v
5.2 5.6
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Hurst Effect

T
» For almost all naturally occurring time series,

the rescaled adjusted range statistic (also
called the R/S statistic) for sample size n
obeys the relationship

E[R(n)/S(n)] = ¢ n"

where:
R(n) = max(0, W, ... W) - min(0, W,, ... W)
S2(n) is the sample variance, and

WK=E(Xi)_an fork=1,2,...n
i=1




Hurst Effect

» For models with only short range dependence,
- is almost always 0.5

 For self-similar processes, 0.5 <H< 1.0

 This discrepancy is called the Hurst Effect,
and H is called the Hurst parameter

- Single parameter to characterize self-similar
processes




R/S Statistic: An Example

-« Suppose the original time series X(t) contains
the following (made up) values:

274125082846911335729 1
» There are 20 data points in this example



R/S Statistic: An Example

-« Suppose the original time series X(t) contains
the following (made up) values:

274125082846911335729 1
» There are 20 data points in this example

- For R/S analysis with n = 1, you get 20
samples, each of size 1:



R/S Statistic: An Example

-« Suppose the original time series X(t) contains
the following (made up) values:

274125082846911335729 1
» Trere are 20 data points in this example

- For R/S analysis with n = 1, you get 20
samples, each of size 1:

Block 1: X =2, W =0, R(n) =0, S(n) =0

n 1



R/S Statistic: An Example

-« Suppose the original time series X(t) contains
the following (made up) values:

274125082846911335729 1
» There are 20 data points in this example

- For R/S analysis with n = 1, you get 20
samples, each of size 1:

Block 2: X =7, W =0, R(n) =0, S(n) = 0

n 1



R/S Statistic: An Example

-« Suppose the original time series X(t) contains
the following (made up) values:

27 4 1
« For

25082846911335729 1
R/S analysis with n = 2, you get 10

Sam

nles, each of size 2:



R/S Statistic: An Example

-« Suppose the original time series X(t) contains
the following (made up) values:

2741250828469113357291

+ -or /S analysis with n =2, you get 10
samples, each of size 2:

Block 1: X =45 W =-25 W =0,
R(n) = 0 - (-2:5) = 2.5, S(n) = 2.5,
R(n)/S(n) = 1.0 : :



R/S Statistic: An Example

-« Suppose the original time series X(t) contains
the following (made up) values:

2741250828469113357291

* For R/S analysis with n =2, you get 10
samples, each of size 2:

Block 2: X =8.0, W =-4.0, W =0,
R(n) = O - (-4:0) = 4.0, S(n) = 4.0,
R(n)/S(n) = 1.¢' : :




R/S Statistic: An Example

-« Suppose the original time series X(t) contains
the following (made up) values:

27 4 1
« For

25082846911335729 1
R/S analysis with n = 3, you get 6

Sam

nles, each of size 3:



R/S Statistic: An Example

-« Suppose the original time series X(t) contains
the following (made up) values:

2741250828469113357291

- F-or R/S analysis with n = 3, you get 6
samples, each of size 3:

Block 1: X =43, W =23, W =03, W=0
R(n) = 0.3 - (2.3) = 2.6, S(n) = 2.05,
R(n)/S(n) = 1.30 : :




R/S Statistic: An Example

-« Suppose the original time series X(t) contains
the following (made up) values:

27 4 1
* For

250828469113357291
R/>S analysis with n = 3, you get 6

Sam

nles, each of size 3:

Block2: X =57, W = 6.3,W =57, W=0

R(n) =

R(n)/S

6.3 - () = 6.3, S(n) = 4.92,
(n)=1.28 : : 3



R/S Statistic: An Example

-« Suppose the original time series X(t) contains
the following (made up) values:

27 4 1
« For

25082846911335729 1
R/S analysis with n = 5, you get 4

Sam

nles, each of size 5:



R/S Statistic: An Example

-« Suppose the original time series X(t) contains
the following (made up) values:

2741250828469113357291

» F-or R/S analysis with n = 5, you get 4
samples, each of size 4:

Block 1: X =6.0, W =-4.0, W =-3.0,
W =-50,W=1.0,W =0, S(n) = 3.41,

R(n) = 1.0 - (-8'0) = 6.0, R(n)/S(n) =1.76
3 4 5




R/S Statistic: An Example

-« Suppose the original time series X(t) contains
the following (made up) values:

2741250828469113357291

- For R/S analysis with n = 5, you get 4
samples, each of size 4:

Block2: X =44 W =-44 W =-0.8,
W=-32,W=04,W =0, S(h) =3.2,

R(n) = 0.4 - (-4'4) = 4.8, R(n)/S(n) =1.5
3 4 5




R/S Statistic: An Example

-« Suppose the original time series X(t) contains
the following (made up) values:

27 4 1
« For

25082846911335729 1
R/S analysis with n = 10, you get 2

Sam

ples, each of size 10:



R/S Statistic: An Example

-« Suppose the original time series X(t) contains
the following (made up) values:

2741250828469113357291

- For R/S analysis with n = 20, you get 1
sample of size 20:




R/S Plot

- Another way of testing for self-similarity, and
estimating the Hurst parameter

« Plot the R/S statistic for different values of n,
with a log scale on each axis

- If time series is self-similar, the resulting plot
will have a straight line shape with a slope H
that is greater than 0.5

-+ Called an R/S plot, or R/S pox diagram



R/S Statistic

R/S Pox Diagram

Block Size n




R/S Statistic

R/S Pox Diagram

R/S statistic R(n)/S(n)

on a logarithmic scale

Block Size n




R/S Statistic

R/S Pox Diagram

Sample size n
on a logarithmic scale

|

Block Size n




R/S Statistic

R/S Pox Diagram

Block Size n




R/S Statistic

R/S Pox Diagram

Slope 0.5

Block Size n




R/S Statistic

R/S Pox Diagram

Slope 0.5

Block Size n




R/S Statistic

R/S Pox Diagram

Slope 1.0

Slope 0.5

Block Size n




R/S Statistic

R/S Pox Diagram

Slope 1.0

Slope 0.5

Block Size n




R/S Statistic

R/S Pox Diagram

Self-
Slope 1.0 / similar
\ process

Slope 0.5

Block Size n




R/S Statistic

R/S Pox Diagram

Slope 1.0

.

Slope H
(0.5<H<1.0)
(Hurst parameter)

Slope 0.5

Block Size n



Self-Similarity Summary
NN AN —§™— D
- Self-similarity is an important mathematical
property that has recently been identified as

present in network traffic measurements

 Important property: burstiness across many
time scales, traffic does not aggregate well

« There exist several mathematical methods to
test for the presence of self-similarity, and to
estimate the Hurst parameter H

 There exist models for self-similar traffic



Newer Results
T
. Paxson, S. Floyd, Wide-Area Traffic: The Failure of

Poisson Modeling, IEEE/ACM Transaction on Networking,
1995.

- TCP session arrivals are well modeled by a Poisson

process

- A number of WAN characteristics were well modeled by

heavy tailed distributions

Packet arrival process for two typical applications (TELNET,
FTP) as well as aggregate traffic is self-similar



Another Study

M. Crovella, A. Bestavros, Self-Similarity in World Wide
Web Traffic: Evidence and Possible Causes,
IEEE/ACM Transactions on Networking, 1997

- Analyzed WWW logs collected at clients over a 1.5
month period
— First WWW client study

— Instrumented MOSAIC
« ~600 students
- ~130K files transferred
- ~2.7GB data transferred



Self-Similar Asgeots of Web traffic

One difficulty in the analysis was finding stationary,
busy periods

— A number of candidate hours were found

All four tests for self-similarity were employed

— 0.7<H<0.8




Explaining Self-Similarity
A S S  h—§€IS

- Consider a set of processes which are either
ON or OFF

— The distribution of ON and OFF times are heavy
tailed

— The aggregation of these processes leads to a
self-similar process
- So, how do we get heavy tailed ON or OFF
times?



Impact of File Sizes

|
« Analysis of client logs showed that ON times were, in fact,
heavy tailed

— Over about 3 orders of magnitude
- This lead to the analysis of underlying file sizes

— Over about 4 orders of magnitude

— Similar to FTP traffic
- Files available from UNIX file systems are typically heavy tailed



Heavy Tailed OFF times

 Analysis of OFF times showed that they are
also heavy tailed

« Distinction between Active and Passive OFF
times
— Inter vs. Intra click OFF times

- Thus, ON times are more likely to be cause of
self-similarity



Major Results from CB97
e

« Established that WWW traffic was self-similar

- Modeled a number of different WWW
characteristics (focus on the tail)

* Provide an explanation for self-similarity of WWW
traffic based on underlying file size distribution



Where are we now?

There is no mechanistic model for Internet traffic

— Topology?

— Routing?

People want to blame the protocols for observed behavior

Multiresolution analysis may provide a means for better
models

Many people (vendors) chose to ignore self-similarity
— Does it matter????
— Critical opportunity for answering this question.



