Queuing Theory and Traffic Analysis

CS 552

Richard Martin

Rutgers University

Queuing theory

- View network as collections of queues
 - FIFO data-structures
- Queuing theory provides probabilistic analysis of these queues
- Examples:
 - Average length
 - Probability queue is at a certain length
 - Probability a packet will be lost

Little's Law

- <u>Little's Law</u>:
 Mean number tasks in system = arrival rate x mean response time
 - Observed before, Little was first to prove
- Applies to any system in equilibrium, as long as nothing in black box is creating or destroying tasks

Proving Little's Law

J = Shaded area = 9

Same in all cases!

Definitions

- J: "Area" from previous slide
- N: Number of jobs (packets)
- T: Total time
- □ □: Average arrival rate
 - -N/T
- W: Average time job is in the system
 - = J/N
- L: Average number of jobs in the system
 - = J/T

Proof: Method 1: Definition

Proof: Method 2: Substitution

$$L = (\underline{J})W$$

$$L = (\frac{N}{T})W$$

$$\frac{J}{T} = (\frac{N}{T})(\frac{J}{N})$$

$$\frac{J}{T} = \frac{J}{T} \quad \text{Tautology}$$

Example using Little's law

- Observe 120 cars in front of the Lincoln Tunnel
 - Observe 32 cars/minute depart over a period where no cars in the tunnel at the start or end (e.g. security checks)
- What is average waiting time before and in the tunnel?

$$W = \frac{L}{\Box} = (\frac{120}{32}) = 3.75 \text{min}$$

Model Queuing System

Queuing System

Server System

Strategy:

Use Little's law on both the complete system and its parts to reason about average time in the queue

Kendal Notation

- Six parameters in shorthand
 - First three typically used, unless specified
 - 1. Arrival Distribution
 - Probability of a new packet arrives in time t
 - 2. Service Distribution
 - Probability distribution packet is serviced in time t
 - 3. Number of servers
 - 4. Total Capacity (infinite if not specified)
 - 5. Population Size (infinite)
 - 6. Service Discipline (FCFS/FIFO)

Distributions

- M: Exponential
- D: Deterministic (e.g. fixed constant)
- E_k: Erlang with parameter k
- H_k: Hyperexponential with param. k
- G: General (anything)
- M/M/1 is the simplest 'realistic' queue

Kendal Notation Examples

• M/M/1:

- Exponential arrivals and service, 1 server, infinite capacity and population, FCFS (FIFO)
- M/M/m
 - Same, but M servers
- G/G/3/20/1500/SPF
 - General arrival and service distributions, 3 servers,
 17 queue slots (20-3), 1500 total jobs, Shortest
 Packet First

M/M/1 queue model

Analysis of M/M/1 queue

 Goal: A closed form expression of the probability of the number of jobs in the queue (P_i) given only [] and []

Solving queuing systems

- Given:
 - □: Arrival rate of jobs (packets on input link)
 - □: Service rate of the server (output link)
- Solve:
 - L: average number in queuing system
 - L_{α} average number in the queue
 - W: average waiting time in whole system
 - W_q average waiting time in the queue
- 4 unknown's: need 4 equations

Solving queuing systems

- 4 unknowns: L, L_q W, W_q
- Relationships using Little's law:
 - $L= \square W$
 - − L_q=□W_q (steady-state argument)
 - $W = W_{\alpha} + (1/\square)$
- If we know any 1, can find the others
- Finding L is hard or easy depending on the type of system. In general:

$$L = \prod_{n=0}^{\infty} n P_n$$

Equilibrium conditions

inflow = outflow

1:
$$(\square + \square)P_n = \square P_{n\square 1} + \square P_{n+1}$$

2:
$$\square P_n = \square P_{n+1}$$

Solving for P₀ and P_n

1:
$$P_1 = \square P_0$$
, $P_2 = (\square)^2 P_0$, $P_n = (\square)^n P_0$

2:
$$\prod_{n=0}^{\infty} P_n = 1 , P_0 \prod_{n=0}^{\infty} \square^n = 1 , P_0 = \frac{1}{\prod_{n=0}^{\infty} \square^n}$$

3:
$$\prod_{n=0}^{n} \square^n = \frac{1}{1 \square \square}, \square < 1$$
 (geometric series)

4:
$$P_0 = \frac{1}{\prod_{n=0}^{\infty} p^n} = \frac{1}{\frac{1}{(1 \square p)}} = 1 \square \square \qquad 5: P_n = (\square)^n (1 \square \square)$$

Solving for L

Solving W, W_q and L_q

$$W = \frac{L}{\Box} = \left(\frac{1}{\Box \Box} \right) \left(\frac{1}{\Box} \right) = \frac{1}{\Box \Box}$$

$$W_q = W \left(\frac{1}{\Box} \right) = \left(\frac{1}{\Box} \right) \left(\frac{1}{\Box} \right) = \frac{1}{\Box(\Box\Box\Box)}$$

$$L_q = \Box W_q = \Box \frac{1}{\Box(\Box\Box\Box)} = \frac{1}{\Box(\Box\Box\Box)}$$

Response Time vs. Arrivals

$$W = \frac{1}{\Box\Box\Box}$$

Stable Region

Empirical Example

Example

- Measurement of a network gateway:
 - mean arrival rate (□): 125 Packets/s
 - mean response time per packet: 2 ms
- Assuming exponential arrivals & departures:
 - What is the service rate, □?
 - What is the gateway's utilization?
 - What is the probability of n packets in the gateway?
 - mean number of packets in the gateway?
 - The number of buffers so P(overflow) is <10⁻⁶?</p>

Example (cont)

The service rate,
$$\Box = \frac{1}{0.002} = 500 pps$$

utilization =
$$\Pi = (\Pi/\Pi) = 0.25\%$$

P(n) packets in the gateway =

$$P_0 P_n = (1 \square \square)(\square^n) = (0.75)(0.25^n)$$

Example (cont)

Mean # in gateway (L) =

$$\frac{\Box}{\Box\Box\Box} = \frac{0.25}{\Box\Box0.25} = 0.33$$

to limit loss probability to less than 1 in a million:

$$\Box^n \Box 10^{\Box 6}$$

Properties of a Poisson processes

 Poisson process = exponential distribution between arrivals/departures/service

$$P(\text{arrival} < t) = 1 \square e^{\square t}$$

- Key properties:
 - memoryless
 - Past state does not help predict next arrival
 - Closed under:
 - Addition
 - Subtraction

Addition and Subtraction

Merge:

- two poisson streams with arrival rates \square_1 and \square_2 :
 - new poisson stream: $\square_3 = \square_1 + \square_2$

Split :

If any given item has a probability P₁ of "leaving"
 the stream with rate □₁:

Queuing Networks

Bridging Router Performance and Queuing Theory

Sigmetrics 2004

Slides by N. Hohn*, D. Veitch*, K. Papagiannaki, C. Diot

Motivation

- End-to-end packet delay is an important metric for performance and Service Level Agreements (SLAs)
- Building block of end-to-end delay is through router delay
- Measure the delays incurred by all packets crossing a single router

Overview

- Full Router Monitoring
- Delay Analysis and Modeling
- Delay Performance: Understanding and Reporting

Measurement Environment

Packet matching

Set	Link	Matched pkts	% traffic C2-out
C4	In	215987	0.03%
C1	In	70376	0.01%
BB1	In	345796622	47.00%
BB2	In	389153772	52.89%
C2	out	735236757	99.93%

Overview

- Full Router Monitoring
- Delay Analysis and Modeling
- Delay Performance: Understanding and Reporting

Definition of delay

Store & Forward Datapath

- Store: storage in input linecard's memory
- **←** Not part of the system

- Forwarding decision
- Storage in dedicated Virtual Output Queue (VOQ)
- Decomposition into fixed-size cells
- Transmission through switch fabric cell by cell
- Packet reconstruction
- Forward: Output link scheduler

Delays: 1 minute summary

Store & Forward Datapath

- Store: storage in input linecard's memory
- Forwarding decision
- Storage in dedicated Virtual Output Queue (VOQ)
- Decomposition into fixed-size cells
- Transmission through switch fabric cell by cell
- Packet reconstruction
- Forward: Output link scheduler

← Not part of the system

 $\square_{\mathsf{i}}\square_{\mathsf{j}}(\mathsf{L})$

Minimum Transit Time

Packet size dependent minimum delay.

Store & Forward Datapath

Store: storage in input linecard's memory

Not part of the system

Forwarding decision

 Storage in dedicated Virtual Output Queue (VOQ)

Decomposition into fixed-size cells

 Transmission through switch fabric cell by cell

Packet reconstruction

Forward: Output link scheduler

FIFO queue

Modeling

Modeling

Fluid queue with a delay element at the front

Model Validation

Error as a function of time

Modeling results

- A crude model performs well!
 - As simpler/simpler than an M/M/1 queue
- Use effective link bandwidth
 - account for encapsulation
- Small gap between router performance and queuing theory!
- The model defines Busy Periods: time between the arrival of a packet to the empty system and the time when the system becomes empty again.

Overview

- Full Router Monitoring
- Delay Analysis and Modeling
- Delay Performance: Understanding and Reporting

On the Delay Performance

- Model allows for router performance evaluation when arrival patterns are known
- Goal: metrics that
 - Capture operational-router performance
 - Can answer performance questions directly
- Busy Period structures contain all delay information
 - BP better than utilization or delay reporting

Busy periods metrics

Property of significant BPs

Triangular Model

$$d_{L,A,D}^{(T)} = D(1 \square \frac{L}{A}), if \quad A \ge L$$

Issues

- Report (A,D) measurements
- There are millions of busy periods even on a lightly utilized router
- Interesting episodes are rare and last for a very small amount of time

Report BP joint distribution

Duration of Congestion Level-L

Conclusions

- Results
 - Full router empirical study
 - Delay modeling
 - Reporting performance metrics
- Future work
 - Fine tune reporting scheme
 - Empirical evidence of large deviations theory

Network Traffic Self-Similarity

Slides by Carey Williamson

Department of Computer Science University of Saskatchewan

Introduction

- A classic measurement study has shown that aggregate Ethernet LAN traffic is <u>self-similar</u> [Leland et al 1993]
- A statistical property that is very different from the traditional Poisson-based models
- This presentation: definition of network traffic self-similarity, Bellcore Ethernet LAN data, implications of self-similarity

Measurement Methodology

- Collected lengthy traces of Ethernet LAN traffic on Ethernet LAN(s) at Bellcore
- High resolution time stamps
- Analyzed statistical properties of the resulting time series data
- Each observation represents the number of packets (or bytes) observed per time interval (e.g., 10 4 8 12 7 2 0 5 17 9 8 8 2...)

Self-Similarity: The intuition

- If you plot the number of packets observed per time interval as a function of time, then the plot looks "the same" regardless of what interval size you choose
- E.g., 10 msec, 100 msec, 1 sec, 10 sec,...
- Same applies if you plot number of bytes observed per interval of time

Self-Similarity: The Intuition

- In other words, self-similarity implies a "fractal-like" behavior: no matter what time scale you use to examine the data, you see similar patterns
- Implications:
 - Burstiness exists across many time scales
 - No natural length of a burst
 - Key: Traffic does not necessarily get "smoother" when you aggregate it (unlike Poisson traffic)

Self-Similarity Traffic Intuition (I)

Self-Similarity in Traffic Measurement II

Self-Similarity: The Math

- Self-similarity is a rigorous statistical property
 - (i.e., a lot more to it than just the pretty "fractal-like" pictures)
- Assumes you have time series data with finite mean and variance
 - i.e., covariance stationary stochastic process
- Must be a <u>very long</u> time series
 - infinite is best!
- Can test for presence of self-similarity

Self-Similarity: The Math

- Self-similarity manifests itself in several equivalent fashions:
- Slowly decaying variance
- Long range dependence
- Non-degenerate autocorrelations
- Hurst effect

Methods of showing Self-Similarity

Slowly Decaying Variance

- The variance of the sample decreases more slowly than the reciprocal of the sample size
- For most processes, the variance of a sample diminishes quite rapidly as the sample size is increased, and stabilizes soon
- For self-similar processes, the variance decreases <u>very slowly</u>, even when the sample size grows quite large

Time-Variance Plot

- The "variance-time plot" is one means to test for the slowly decaying variance property
- Plots the variance of the sample versus the sample size, on a log-log plot
- For most processes, the result is a straight line with slope -1
- For self-similar, the line is much flatter

Time Variance Plot

Variance-Time Plot

Variance-Time Plot

Variance-Time Plot

- Correlation is a statistical measure of the relationship, if any, between two random variables
- Positive correlation: both behave similarly
- Negative correlation: behave as opposites
- No correlation: behavior of one is unrelated to behavior of other

- Autocorrelation is a statistical measure of the relationship, if any, between a random variable and itself, at different time lags
- Positive correlation: big observation usually followed by another big, or small by small
- Negative correlation: big observation usually followed by small, or small by big
- No correlation: observations unrelated

- Autocorrelation coefficient can range between:
 - +1 (very high positive correlation)
 - -1 (very high negative correlation)
- Zero means no correlation
- Autocorrelation function shows the value of the autocorrelation coefficient for different time lags k

- For most processes (e.g., Poisson, or compound Poisson), the autocorrelation function drops to zero very quickly
 - usually immediately, or exponentially fast
- For self-similar processes, the autocorrelation function drops very slowly
 - i.e., hyperbolically, toward zero, but may never reach zero
- Non-summable autocorrelation function

Non-Degenerate Autocorrelations

- For self-similar processes, the autocorrelation function for the aggregated process is indistinguishable from that of the original process
- If autocorrelation coefficients match for all lags k, then called <u>exactly</u> self-similar
- If autocorrelation coefficients match only for large lags k, then called <u>asymptotically</u> selfsimilar

Aggregation

 Aggregation of a time series X(t) means smoothing the time series by averaging the observations over non-overlapping blocks of size m to get a new time series X_m(t)

 Suppose the original time series X(t) contains the following (made up) values

```
2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...
```

 Suppose the original time series X(t) contains the following (made up) values:

```
2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...
```

 Suppose the original time series X(t) contains the following (made up) values:

```
2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...
```

 Suppose the original time series X(t) contains the following (made up) values:

```
2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...
```

 Suppose the original time series X(t) contains the following (made up) values:

```
2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...
```

```
4.5 8.0 2.5
```

 Suppose the original time series X(t) contains the following (made up) values:

```
2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...
```

```
4.5 8.0 2.5 5.0
```

 Suppose the original time series X(t) contains the following (made up) values:

```
2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...
```

```
4.5 8.0 2.5 5.0 6.0 7.5 7.0 4.0 4.5 5.0...
```

 Suppose the original time series X(t) contains the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...

Then the aggregated time series for m = 5 is:

 Suppose the original time series X(t) contains the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...

Then the aggregated time series for m = 5 is:

 Suppose the original time series X(t) contains the following (made up) values:

```
2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...

Then the aggregated time series for m = 5 is:
6:0
```

 Suppose the original time series X(t) contains the following (made up) values:

```
2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...

Then the aggregated time series for m = 5 is:
6.0 4.4
```

 Suppose the original time series X(t) contains the following (made up) values:

```
2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...
```

Then the aggregated time series for m = 5 is:

6.0

4.4

6.4 4.8 ...

Aggregation: An Example

 Suppose the original time series X(t) contains the following (made up) values:

2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...

Then the aggregated time series for m = 10 is:

Aggregation: An Example

 Suppose the original time series X(t) contains the following (made up) values:

```
2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...

Then the aggregated time series for m = 10 is:

5.2
```

Aggregation: An Example

 Suppose the original time series X(t) contains the following (made up) values:

```
2 7 4 12 5 0 8 2 8 4 6 9 11 3 3 5 7 2 9 1...

Then the aggregated time series for m = 10 is:

5.2

5.6
```

Autocorrelation Function

Hurst Effect

 For almost all naturally occurring time series, the rescaled adjusted range statistic (also called the <u>R/S statistic</u>) for sample size n obeys the relationship

$$E[R(n)/S(n)] = c n^H$$

where:

R(n) = max(0, W₁, ... W_n) - min(0, W₁, ... W_n) S²(n) is the sample variance, and $W = \prod_{i=1}^{n} (Y_i) \prod_{i=1}^{n} \overline{Y_i} \quad \text{for } k = 1, 2, ... n$

$$W_K = \prod_{i=1}^{n} (X_i) \prod_{i=1}^{n} k \overline{X_n}$$
 for k = 1, 2, ... n

Hurst Effect

- For models with only short range dependence,
 H is almost always 0.5
- For self-similar processes, 0.5 < H < 1.0
- This discrepancy is called the <u>Hurst Effect</u>, and H is called the Hurst parameter
- Single parameter to characterize self-similar processes

- Suppose the original time series X(t) contains the following (made up) values:
- 2741250828469113357291
- There are 20 data points in this example

- Suppose the original time series X(t) contains the following (made up) values:
- 2741250828469113357291
- There are 20 data points in this example
- For R/S analysis with n = 1, you get 20 samples, each of size 1:

 Suppose the original time series X(t) contains the following (made up) values:

2741250828469113357291

- There are 20 data points in this example
- For R/S analysis with n = 1, you get 20 samples, each of size 1:

Block 1:
$$X = 2$$
, $W = 0$, $R(n) = 0$, $S(n) = 0$

n

 Suppose the original time series X(t) contains the following (made up) values:

2741250828469113357291

- There are 20 data points in this example
- For R/S analysis with n = 1, you get 20 samples, each of size 1:

Block 2:
$$X = 7$$
, $W = 0$, $R(n) = 0$, $S(n) = 0$

1

- Suppose the original time series X(t) contains the following (made up) values:
- 2741250828469113357291
- For R/S analysis with n = 2, you get 10 samples, each of size 2:

 Suppose the original time series X(t) contains the following (made up) values:

2741250828469113357291

For R/S analysis with n = 2, you get 10 samples, each of size 2:

Block 1:
$$X = 4.5$$
, $W = -2.5$, $W = 0$, $R(n) = 0 - (-2.5) = 2.5$, $S(n) = 2.5$, $R(n)/S(n) = 1.0^n$

 Suppose the original time series X(t) contains the following (made up) values:

2741250828469113357291

For R/S analysis with n = 2, you get 10 samples, each of size 2:

- Suppose the original time series X(t) contains the following (made up) values:
- 2741250828469113357291
- For R/S analysis with n = 3, you get 6 samples, each of size 3:

 Suppose the original time series X(t) contains the following (made up) values:

2741250828469113357291

 For R/S analysis with n = 3, you get 6 samples, each of size 3:

Block 1:
$$X = 4.3$$
, $W = -2.3$, $W = 0.3$, $W = 0$
 $R(n) = 0.3 - (-2.3) = 2.6$, $S(n) = 2.05$,
 $R(n)/S(n) = 1.30$

 Suppose the original time series X(t) contains the following (made up) values:

2741250828469113357291

 For R/S analysis with n = 3, you get 6 samples, each of size 3:

Block 2:
$$X = 5.7$$
, $W = 6.3$, $W = 5.7$, $W = 0$
 $R(n) = 6.3 - (0) = 6.3$, $S(n) = 4.92$,
 $R(n)/S(n) = 1.28$

- Suppose the original time series X(t) contains the following (made up) values:
- 2741250828469113357291
- For R/S analysis with n = 5, you get 4 samples, each of size 5:

 Suppose the original time series X(t) contains the following (made up) values:

2741250828469113357291

 For R/S analysis with n = 5, you get 4 samples, each of size 4:

 Suppose the original time series X(t) contains the following (made up) values:

2741250828469113357291

For R/S analysis with n = 5, you get 4 samples, each of size 4:

Block 2:
$$X = 4.4$$
, $W = -4.4$, $W = -0.8$, $W = -3.2$, $W = 0.4$, $W = 0$, $S(n) = 3.2$, $R(n) = 0.4 - (-4.4) = 4.8$, $R(n)/S(n) = 21.5$

- Suppose the original time series X(t) contains the following (made up) values:
- 2741250828469113357291
- For R/S analysis with n = 10, you get 2 samples, each of size 10:

- Suppose the original time series X(t) contains the following (made up) values:
- 2741250828469113357291
- For R/S analysis with n = 20, you get 1 sample of size 20:

R/S Plot

- Another way of testing for self-similarity, and estimating the Hurst parameter
- Plot the R/S statistic for different values of n, with a log scale on each axis
- If time series is self-similar, the resulting plot will have a straight line shape with a slope H that is greater than 0.5
- Called an R/S plot, or R/S pox diagram

R/S Statistic

Block Size n

Block Size n

Sample size n on a logarithmic scale

Block Size n

Block Size n

Block Size n

Block Size n

Block Size n

Block Size n

Block Size n

Block Size n

Self-Similarity Summary

- Self-similarity is an important mathematical property that has recently been identified as present in network traffic measurements
- Important property: burstiness across many time scales, traffic does not aggregate well
- There exist several mathematical methods to test for the presence of self-similarity, and to estimate the Hurst parameter H
- There exist models for self-similar traffic

Newer Results

- V. Paxson, S. Floyd, Wide-Area Traffic: The Failure of Poisson Modeling, IEEE/ACM Transaction on Networking, 1995.
- TCP session arrivals are well modeled by a Poisson process
- A number of WAN characteristics were well modeled by heavy tailed distributions
- Packet arrival process for two typical applications (TELNET, FTP) as well as aggregate traffic is self-similar

Another Study

- M. Crovella, A. Bestavros, *Self-Similarity in World Wide Web Traffic: Evidence and Possible Causes, IEEE/ACM* Transactions on Networking, 1997
- Analyzed WWW logs collected at clients over a 1.5 month period
 - First WWW client study
 - Instrumented MOSAIC
 - ~600 students
 - ~130K files transferred
 - ~2.7GB data transferred

Self-Similar Aspects of Web traffic

- One difficulty in the analysis was finding stationary, busy periods
 - A number of candidate hours were found
- All four tests for self-similarity were employed
 - -0.7 < H < 0.8

Explaining Self-Similarity

- Consider a set of processes which are either ON or OFF
 - The distribution of ON and OFF times are heavy tailed
 - The aggregation of these processes leads to a self-similar process
- So, how do we get heavy tailed ON or OFF times?

Impact of File Sizes

- Analysis of client logs showed that ON times were, in fact, heavy tailed
 - Over about 3 orders of magnitude
- This lead to the analysis of underlying file sizes
 - Over about 4 orders of magnitude
 - Similar to FTP traffic
- Files available from UNIX file systems are typically heavy tailed

Heavy Tailed OFF times

- Analysis of OFF times showed that they are also heavy tailed
- Distinction between Active and Passive OFF times
 - Inter vs. Intra click OFF times
- Thus, ON times are more likely to be cause of self-similarity

Major Results from CB97

- Established that WWW traffic was self-similar
- Modeled a number of different WWW characteristics (focus on the tail)
- Provide an explanation for self-similarity of WWW traffic based on underlying file size distribution

Where are we now?

- There is no mechanistic model for Internet traffic
 - Topology?
 - Routing?
- People want to blame the protocols for observed behavior
- Multiresolution analysis may provide a means for better models
- Many people (vendors) chose to ignore self-similarity
 - Does it matter????
 - Critical opportunity for answering this question.