

Rutgers University – CS 417: Distributed Systems

©2000-2009 Paul Krzyzanowski 1

Figure 4. Simulating group
communication with multiple unicasts

Figure 5. Simulating group
communication with a central
coordinator.

bus interconnect

Figure 2. Multicast

bus interconnect

discard

Figure 3. Simulated multicast via
broadcast

Lectures on distributed systems

Group Communication

Paul Krzyzanowski

Introduction

Remote procedure calls assume the existence of two parties: a

client and a server. This, as well as the socket-based

communication we looked at earlier, is an example of point-to-point,

or unicast, communication. Sometimes, however, we want one-to-

many, or group, communication.

Groups are dynamic (Figure 1). They may be created and

destroyed. Processes may join or leave groups and processes may

belong to multiple groups. An analogy to group communication is

the concept of a mailing list. A sender sends a message to one

party (the mailing list) and multiple users (members of the list)

receive the message. Groups allow processes to deal with collections of processes as one

abstraction. Ideally, a process should only send a message to

a group and need not know or care who its members are.

Implementing group communication

Group communication can be implemented in several ways.

Hardware support for multicasting allows the software to

request the hardware to join a multicast group. Messages

sent to the multicast address will be received by all network

cards listening on that group(s) (Figure 2). If the hardware

does not support multicasting, an alternative is to use

hardware broadcast and software filters at the receivers. Each

message is tagged with a multicast address. The software

processing the incoming messages extracts this address and

compares it with its list of multicast addresses that it should

accept. If it is not on the list, the message is simply dropped

(Figure 3). While this method generates overhead for

machines that are not members of the group, it requires the sender to only send out a single

message.

Figure 1. Group dynamics

Group communication

Rutgers University – CS 417: Distributed Systems

©2000-2009 Paul Krzyzanowski 2

A final implementation option is to simulate multicasting completely in software. In this case, a

separate message will be sent to each receiver. This can be implemented in two ways. The

sending machine can know all the members of the group and send the same message to each

group member (Figure 4). Alternatively, some machine can be designated as a group coordinator:

a central point for group membership information (Figure 5). The sender will send one message

to the group coordinator, which then iterates over each group member and sends the message to

each member.

As with unicast communication, group communication also requires a transport-level protocol.

Even with hardware support, there must be a mechanism for directing data to the interested

process(es)

Design issues

A number of design alternatives for group communication are available. These will affect how the

groups behave and send messages.

Closed group vs.

open group

With closed groups, only the group members may send a

message to the group. This is useful when multiple processes

need to communicate with others in solving a problem, such as

parallel processing applications.

The alternative is open groups, where non-members can send a

message to a group. An example use of this type of group is an

implementation of a replicated server (such as a redundant file

system).

Peer groups vs.

hierarchical groups

With peer groups, every member communicates with each other.

The benefits are that this is a decentralized, symmetric system

with no point of failure. However, decision making may be complex

since all decisions must be made collectively (a vote may have to

be taken).

The alternative is hierarchical groups, in which one member

plays the role of a group coordinator. The coordinator makes

decisions on who carries out requests. Decision making is

simplified since it is centralized. The downside is that this is a

centralized, asymmetric system and therefore has a single point of

failure.

centralized group

membership vs.

distributed

membership

If control of group membership is centralized, we will have one

group server that is responsible for getting all membership

requests. It maintains a database of group members. This is easy

to implement but suffers from the problem that centralized systems

share – a single point of failure.

The alternative mechanism is to manage group membership in a

distributed way where all group members receive messages

announcing new members (or the leaving of members).

Group communication

Rutgers University – CS 417: Distributed Systems

©2000-2009 Paul Krzyzanowski 3

Several problems can arise in managing group membership. Suppose a group member crashes.

It effectively leaves the group without sending any form of message informing others that it left

the group. Other members must somehow discover that it is missing.

Leaving and joining a group must be synchronous with message delivery. No messages should

be received by a member after leaving a group. This is easier to achieve if a group

coordinator/group server is used for message delivery and membership management.

A final design issue is that if the machines and/or the network die so the group cannot function,

how are things restarted?

Send/receive primitives

Remote procedure calls (RPC) were, for many applications, more convenient and intuitive than

the send/receive (write/read) model provided by sockets. Remote procedure calls, however, do

not lend themselves to group communication. RPC is based on a function call model wherein a

procedure is called and a value returned as a result. If we try to apply this to group

communication, one message is sent to the group to invoke the procedure. The return value is

not clear now, since every member of the group may generate one. RPC just does not expect this

behavior. We have to fall back on send/receive primitives when working with a group.

Atomic multicast

One desirable property for certain types of group communication is that of ensuring that all group

members get a message. More specifically, if a message is sent to a group and one member

receives it, that member can be sure that all members will get the message. This is an all or

nothing property: it either arrives correctly at all members or else no member receives the

message. There will never be a situation where some members receive the message and others

do not. This property is known as atomicity and this type of multicast is called an atomic

multicast. An atomic multicast is appealing because it makes application design easier in that

there is one less thing to worry about – missing or partially delivered messages.

While this property is desirable, it is not easy to achieve. The only way to be sure that a

destination received a message is to have it send back an acknowledgement message upon

message receipt. This is prone to problems since some replies can be lost, the sender may have

crashed after sending the message and cannot process the replies, or the receiver crashed

before it could send a reply. What we need to do to achieve an atomic multicast is to ensure that

we can deliver messages even with process failures.

There are several ways that we can achieve this. One way is to use the concept of a persistent

log from database systems. The persistent log is simply a series of messages written onto a disk

or some non-volatile memory so that it could be recovered even if the process dies. Should a

process die, it is responsible for reading the log when it comes up again.

In this system, the sender sends messages to all members of the group and waits for an

acknowledgement from each member. The sender saves a copy of the message in the log and

also logs each acknowledgement it has received. This way, even if it dies, it can resume where it

left off once the process is restarted. If an acknowledgement has not been received from a

member, the sender will retransmit periodically until the member acknowledges the message. On

the receiving side, a group member logs the received message into its persistent log upon

Group communication

Rutgers University – CS 417: Distributed Systems

©2000-2009 Paul Krzyzanowski 4

receiving the message and prior to sending the acknowledgement. Even if the member dies now,

it will have the message when it restarts. When all members have acknowledged receipt of the

message, the sender can then send a “deliver” message, instructing each member to deliver the

message to the higher layers of the software that will process the message.

This solution is somewhat troublesome to implement in terms of logging and recovering from

failed processes. The essential point is that the protocol must account for the sender crashing

after it sent some or all of the messages and for receivers that may be dead at any point during

the multicast.

Reliable multicast

A compromise to atomic multicast is to assume that the sending machine will remain alive to

ensure that a message was sent out to all members of the group. This is called a reliable

multicast. It is a best-effort attempt at reliability but makes no guarantees in the case where the

sender is unable to transmit or receive messages to other group members. One implementation

can be:

1. Set a long timer, TL. This will be used to detect an unresponding machine.

2. Set a shorter timer, TS. This will be used to detect lost messages or lost
acknowledgements.

3. Send a message to each group member.

4. Wait for an acknowledgement message from each group member.

5. If timer TS goes off, then retransmit the message to members that have not
responded, reset the timer, and wait.

6. If timer TL goes off, then label the unresponding machines as “failed” and
remove them from the group.

In the best case, if multicast or broadcast facilities are available, the sender needs to only send

one message. If these facilities are not available, they can be simulated:

for (dest in group)

 send(dest, msg)

Each recipient sends one message as an acknowledgement.

We can try to increase performance by decreasing the number of messages sent. The sender

maintains a count of the number of messages sent. This count is appended to each message

sent and acts as a message sequence number. Recipients send no acknowledgement message

unless the sequence number indicates that a message was missed. This is known as a negative

acknowledgement protocol. The sender is responsible for keeping copies of old messages for

retransmission. The problem with this protocol is that the sender has no way to detect that a

machine is no longer responding.

Unreliable multicast

If the reliable multicast is deemed too costly, the next step down is the unreliable multicast. This

is the basic multicast in which a message is sent and the process just hopes that it arrives at all

destinations. It is useful for services that don’t require reliability (e.g. multicast video and audio). It

is also useful in cases when the sender does not know the identity of the group members.

Group communication

Rutgers University – CS 417: Distributed Systems

©2000-2009 Paul Krzyzanowski 5

If multicast or broadcast facilities are available, the sender needs to only send one message. The

recipients need to send nothing. If these facilities are not available, they can be simulated as

mentioned above.

Message ordering

To make group communication easy to use and understand, two properties are desirable:

 atomicity: message arrives everywhere

 first-in-first-out (FIFO) message ordering: consistent message ordering.

Suppose there is a group of four machines {0, 1, 2, 3}. Machines 0 and 1 send messages

simultaneously via multiple unicasts:

 0 1, 0 2, 0 3

 1 0, 1 2, 1 3

If the messages appear on the network in the following chronological sequence:

{0 1}, {1 0}, {1 2}, {0 2}, {0 3}, {1 3}

then machine 2 receives a message from machine 1 first, followed by a message from machine

0. Machine 3, however, receives a message from machine 0 first, followed by a message from

machine 1. If machines 0 and 1 were trying to update the same record in a database, 2 and 3

could end up with different values. To avoid confusion and potential problems, it is desirable to

have all messages arrive in the exact orders sent. This is known as global time ordering. It is

not always easy to implement global time ordering. A compromise it to say that if two messages

are close together, the system picks one of them as being “first.” All messages arrive at all group

members in the same order (which may or may not be the exact order sent). This compromise is

called consistent time ordering or total ordering.

One algorithm for achieving total ordering is:

1. Assign a unique totally sequenced message ID
1
 to each message.

2. Each message is regarded as stable at an element if no message with a lower
ID is expected to arrive. When messages can arrive out of order, the system
will accept such messages but not forward them to the application. A message
is stable at an element when the system has received all earlier messages
and passed them on to the receiving process. Any message that is stable at
an element can be immediately passed on to the receiving process. This
ensures in-order delivery. Any other messages are buffered until the out-of-
order messages are received.

3. The communications driver passes only stable at an element messages to the
application, passing the message with he lowest ID first.

4. Each member saves all messages in a queue for delivery to applications.

One problem that arises in implementing this protocol is that of generating a message identifier

since we need a shared sequence of identifiers. A few solutions can be adopted:

1
 By a totally sequenced message ID we mean that all members of the group get unique, chronologically

increasing sequence numbers.

Group communication

Rutgers University – CS 417: Distributed Systems

©2000-2009 Paul Krzyzanowski 6

1110 28-bit multicast ID

Figure 5. A class D IP address

- Use a sequencer, a common process to which all multicast messages are sent. The

sequencer receives a message, attaches a sequence number, and then resends the

message to the group members.

- Use a sequence number server. A process will first contact the sequence number

server to request a sequence number. The process will then attach the sequence

number to the message and multicast it.

- Alternatively, one can come up with a distributed protocol for generating unique,

monotonically increasing message identifiers.

We can relax ordering rules further and dictate that ordering will be preserved only amongst

related messages. Unrelated messages may be received in a different order on different systems.

This partial ordering is known as causal ordering and the concept of related messages refers to

Lamport message ordering and its happened-before

relationship. Here, concurrent messages will not be

ordered. Messages are sequenced strictly by their

Lamport timestamps.

Relaxing the rules even more, we can decide that ordering does not matter at all and messages

can be received in a different order at different machines. However, we can provide a special

message type: a synchronization (sync) primitive that can be sent to ensure that any pending

messages are processed before any additional (post-sync) messages will be accepted. This

means that if a message is sent, it will be processed by all members before the synchronization

operation. Any message sent after a member sends a sync message will be processed by all

members after the sync. Message delivery is not split on either side of the sync. A sync is also

known as barrier. This type of message ordering is known as sync ordering.

Finally, the most relaxed form of message delivery is the unordered multicast. Messages can

be delivered in a different order to different members. We may impose sequential ordering per

source, which means that all messages sent from one member will be received in the order sent

by all members, although members may receive different interleaved messages from others.

IP multicasting

As an example of a commonly-used multicasting protocol, we can consider IP multicasting.

Multicasting under the Internet Protocol is performed by addressing IP packets with a multicast

address. The class D network was created for this. A class D address contains four leading bits of

1110 followed by a 28-bit multicast ID number. This spans the IP addresses from 224.0.0.0

through 239.255.255.255 (Figure 5). The set of all machines listening to a particular multicast

address make up a host group. These machines can span multiple physical networks.

Membership is dynamic – a machine can leave or join a group at any time and there is no

restriction on the number of hosts in a group. A machine does not have to be a member of the

group to send messages to the group.

A multicast address may be chosen arbitrarily, but some well-known host group addresses are

assigned by the IANA (Internet Assigned Numbers Authority). IANA information can be found in

RFC 1340. This is similar to port numbers: arbitrary ports may be chosen but certain numbers are

Group communication

Rutgers University – CS 417: Distributed Systems

©2000-2009 Paul Krzyzanowski 7

reserved for known applications. For example, some well-known ports are 21 for FTP, 25 for

SMTP, 80 for HTTP. Some well-known multicast addresses are 244.0.0.1 for all systems on this

subnet, 224.0.1.2 for SGI's Dogfight, and 224.0.1.7 for the Audionews service.

LAN multicasting

Since IP is a logical network built on top of physical networks, it is worthwhile to examine how

multicasting works on LAN cards (e.g. an ethernet card). LAN cards that support multicast

support it in one of two ways:

1. Packets are filtered based on a hash value of the multicast hardware address (some

unwanted packets may pass through because of hash collisions.

2. The LAN card supports a small, fixed number of multicast addresses on which to listen.

If the host needs to receive more, the LAN card is put in a multicast promiscuous mode

to receive all hardware multicast packets.

In either case, the device driver must check that the received packet is really the one that is

needed. Even if the LAN card performed perfect filtering, there may still need to be a need to

translate a 28-bit IP multicast ID to the hardware address (e.g. a 48-bit ethernet address). The

translation of IP multicast ID numbers to ethernet addresses is defined by the IANA (Internet

Assigned Numbers Authority), which decrees that the least significant 23 bits of the IP address

are copied into an ethernet MAC address of the form 01:00:5e:xx:xx:xx.

IP multicasting on a single network

On a single physical network, the sender specifies a destination IP address that is a multicast

address (class D). The device driver then converts this address to a corresponding ethernet

address and uses this address in its hardware header (which envelopes the IP header). Now it

sends out this multicast ethernet packet which contains a multicast IP packet within it.

When a process wishes to receive multicast packets, it notifies the IP layer that it wants to receive

datagrams destined for a certain IP address. The device driver has to enable reception of

ethernet packets that contain that IP multicast address. This action is known as joining a

multicast group.

Upon receiving such packets, the device driver sends the IP packet to the IP layer, which must

deliver a copy of the packet to all processes that belong to the group.

IP multicasting beyond the physical network

When IP packets flow through multiple physical networks, they go through routers which bridge

one network to another. In the case of multicasting, a multicast-aware routed needs to know

whether there are any hosts on a physical network that belong to a multicast group.

The Internet Group Management Protocol (IGMP, RFC 1112) is designed to accomplish this task.

It is a simple datagram based protocol that is similar in principle to ICMP. Packets are fixed-size

messages containing a 20-byte IP header, and 8 bytes of IGMP data. This data includes:

- 4-bit version number

- 4-bit operation type (1=query sent by router, 2=response)

Group communication

Rutgers University – CS 417: Distributed Systems

©2000-2009 Paul Krzyzanowski 8

- 16-bit checksum

- 32-bit IP class D address

The IGMP protocol works as follows:

- When the first process on a machine joins a multicast group, the machine sends an

IGMP report stating that it is interested in that particular multicast address.

- Each multicast router broadcasts IGMP queries at regular intervals to see whether any

machines still have processes belonging to any groups. One query is sent per network

interface.

- When a machine receives an IGMP query, it sends one IGMP response packet for

each group for which it is still interested in receiving packets.

The machine never sends a report when a process leaves the group (even if it is the last process

that joined the group. Eventually the multicast router will stop forwarding packets to the network

when it receives no IGMP responses for a particular multicast address.

Group communication

Rutgers University – CS 417: Distributed Systems

©2000-2009 Paul Krzyzanowski 9

References

Distributed Systems: Concepts and Design, G. Coulouris, J. Dollimore, T. Kindberg, Third
Edition ©2001 Pearson Education Limited.

Distributed Systems: Concepts and Design, G. Coulouris, J. Dollimore, T. Kindberg, ©1996
Addison Wesley Longman, Ltd.

Distributed Systems, Principles & Paradigms, Andrew S. Tanenbaum and Maarten Van
Steen. Second Edition ©2007 Pearson Education Limited.

Distributed Operating Systems, Andrew Tanenbaum, © 1995 Prentice Hall.

Modern Operating Systems, Andrew Tanenbaum, ©1992 Prentice Hall.

TCP/IP Illustrated – Volume 1 – the protocols, Richard Stevens, ©1994 Addison-Wesley.

