Cryptography may be a component of a secure system

Adding cryptography may not make a system secure

Cryptography: what is it good for?

- Authentication
 - determine origin of message
- Integrity
 - verify that message has not been modified
- Nonrepudiation
 - sender should not be able to falsely deny that a message was sent
- Confidentiality
 - others cannot read contents of the message

Terms: types of ciphers

- Types
 - restricted cipher
 - symmetric algorithm
 - public key algorithm

- Stream vs. Block
 - Stream cipher
 - Encrypt a message a character at a time
 - Block cipher
 - Encrypt a message a chunk at a time

Restricted cipher

- Secret algorithm
 - Vulnerable to:
 - Leaking
 - Reverse engineering
 - HD DVD (Dec 2006) and Blu-Ray (Jan 2007)
 - RC4
 - All digital cellular encryption algorithms
 - DVD and DIVX video compression
 - Firewire
 - Enigma cipher machine
 - Every NATO and Warsaw Pact algorithm during Cold War
 - Hard to validate its effectiveness (who will test it?)
 - Not a viable approach!
The key

Source: en.wikipedia.org/wiki/Pin_tumbler_lock

November 23, 2015 © 2013-2015 Paul Krzyzanowski

We understand how it works:

• We understand how it works:
 – Strengths
 – Weaknesses

Based on this understanding, we can assess how much to trust the key & lock

• Same for crypto

Symmetric-key algorithm

• Same secret key, K, for encryption & decryption

 $$C = E_K(P) \quad P = D_K(C)$$

• Examples: AES, 3DES, IDEA, RC5

• Key length
 – Determines number of possible keys
 • DES: 56-bit key: $2^{56} = 7.2 \times 10^{16}$ keys
 • AES-256: 256-bit key: $2^{256} = 1.1 \times 10^{77}$ keys
 – Brute force attack: try all keys

The power of 2

• Adding one extra bit to a key doubles the search space.

 Suppose it takes 1 second to search through all keys with a 20-bit key

<table>
<thead>
<tr>
<th>key length</th>
<th>number of keys</th>
<th>search time</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 bits</td>
<td>1,048,576</td>
<td>1 second</td>
</tr>
<tr>
<td>21 bits</td>
<td>2,097,152</td>
<td>2 seconds</td>
</tr>
<tr>
<td>32 bits</td>
<td>4.3×10^6</td>
<td>~ 1 hour</td>
</tr>
<tr>
<td>56 bits</td>
<td>7.2×10^{16}</td>
<td>2,178 years</td>
</tr>
<tr>
<td>64 bits</td>
<td>1.8×10^{19}</td>
<td>> 557,000 years</td>
</tr>
<tr>
<td>256 bits</td>
<td>1.2×10^{77}</td>
<td>3.5×10^{63} years</td>
</tr>
</tbody>
</table>

Distributed & custom hardware efforts typically allow us to search between 1 and >100 billion 64-bit (e.g., RC5) keys per second
Communicating with symmetric cryptography

• Both parties must agree on a secret key, K
• Message is encrypted, sent, decrypted at other side

Key explosion

Each pair of users needs a separate key for secure communication

- 2 users: 1 key
- 3 users: 3 keys
- 4 users: 6 keys
- 6 users: 15 keys
- 100 users: 4,950 keys
- 1000 users: 399,500 keys

Key distribution

Secure key distribution is the biggest problem with symmetric cryptography

Key exchange

How can you communicate securely with someone you’ve never met?

Whit Diffie: idea for a public key algorithm

Challenge: can this be done securely?
Knowledge of public key should not allow derivation of private key

Diffie-Hellman Key Exchange

Key distribution algorithm
– First algorithm to use public/private “keys”
– Not public key encryption
– Based on difficulty of computing discrete logarithms in a finite field compared with ease of calculating exponentiation

Allows us to negotiate a secret session key without fear of eavesdroppers

Diffie-Hellman Key Exchange

• All arithmetic performed in a field of integers modulo some large number
• Both parties agree on
 – a large prime number p
 – and a number $\alpha < p$
• Each party generates a public/private key pair

 Private key for user i: X_i
 Public key for user i: $Y_i = \alpha^{X_i} \mod p$
Diffie-Hellman exponential key exchange

- Alice has secret key X_A
- Alice has public key Y_A
- Alice computes $K = Y_B^{X_A} \mod p$

$K = (Bob's \ public \ key) \ (Alice's \ private \ key) \ mod \ p$

- Bob has secret key X_B
- Bob has public key Y_B
- Bob computes $K = Y_A^{X_B} \mod p$

$K' = (Alice's \ public \ key) \ (Bob's \ private \ key) \ mod \ p$

RSA Public Key Cryptography

- Ron Rivest, Adi Shamir, Leonard Adleman created a true public key encryption algorithm in 1977

Each user generates two keys:
- Private key (kept secret)
- Public key (can be shared with anyone)

Difficulty of algorithm based on the difficulty of factoring large numbers
- keys are functions of a pair of large (~300 digits) prime numbers

RSA algorithm

How to generate keys
- choose two random large prime numbers p, q
- Compute the product $n = pq$
- randomly choose the encryption key, e, such that: e and $(p - 1)(q - 1)$ are relatively prime
- Compute a decryption key, d such that: $ed = 1 \ mod \ ((p - 1)(q - 1))$
- discard p, q

RSA Encryption

- Key pair: e, d
- Agreed-upon modulus n

Encrypt:
- divide data into numerical blocks < n
- encrypt each block: $c = m^e \ mod \ n$

Decrypt:
- $m = c^d \ mod \ n$
Public-key algorithm

- Two related keys.
 \[C = E_{K1}(P) \quad P = D_{K2}(C) \]
 \[C' = E_{K2}(P) \quad P = D_{K1}(C') \]
 \(K_1\) is a public key
 \(K_2\) is a private key

- Examples:
 - RSA, Elliptic curve algorithms
 - DSS (digital signature standard), Diffie-Hellman (key exchange only)

- Key length
 - Unlike symmetric cryptography, not every number is a valid key
 - 3072-bit RSA = 256-bit elliptic curve = 128-bit symmetric cipher
 - 15360-bit RSA = 521-bit elliptic curve = 256-bit symmetric cipher

Communication with public key algorithms

Different keys for encrypting and decrypting
- No need to worry about key distribution

Hybrid Cryptosystems

- Session key: randomly-generated key for one communication session
- Use a public key algorithm to send the session key
- Use a symmetric algorithm to encrypt data with the session key
- Public key algorithms are almost never used to encrypt messages
 - MUCH slower; vulnerable to chosen-plaintext attacks
 - RSA-2048 approximately 55x slower to encrypt and 2000x slower to decrypt than AES-256

Communication with a hybrid cryptosystem

Alice

- Alice's public key: \(K_A\)
- Alice's private key: \(K_A\)
- \(E_{K_A}(P)\) encrypt message with Alice's public key
- \(D_{K_A}(C)\) decrypt message with Alice's private key

Bob

- Bob's public key: \(K_B\)
- Bob's private key: \(K_B\)
- \(E_{K_B}(K)\) encrypt message using a symmetric algorithm and key \(K\)
- \(D_{K_B}(C)\) decrypt message using a symmetric algorithm and key \(K\)

Now Bob knows the secret session key, \(K\)
Communication with a hybrid cryptosystem

Alice

Bob

Bob's public key: \(K_B \)

\(K = D_B(E_K(P)) \)

decrypt message using a symmetric algorithm and key \(K \)

encrypt message using a symmetric algorithm and key \(K \)

McCarthy's puzzle (1958)

The setting:

- Two countries are at war
- One country sends spies to the other country
- To return safely, spies must give the border guards a password
- Spies can be trusted
- Guards chat – information given to them may leak

McCarthy's puzzle

Challenge

How can a guard authenticate a person without knowing the password?

Enemies cannot use the guard's knowledge to introduce their own spies

Solution to McCarthy's puzzle:

Michael Rabin, 1958

Use a one-way function, \(B = f(A) \)

- Guards get \(B \)
- Enemy cannot compute \(A \) if they know \(A \)
- Spies give \(A \), guards compute \(f(A) \)
- If the result is \(B \), the password is correct.

One-way functions

- Easy to compute in one direction
- Difficult to compute in the other

Examples:

- **Factoring:**

 \(\text{find } p, q \text{ given } N \) \hspace{1cm} \text{DIFFICULT}

- **Discrete Log:**

 \(a^b \mod c = N \) \hspace{1cm} \text{EASY}

 \(\text{find } b \text{ given } a, c, N \) \hspace{1cm} \text{DIFFICULT}
McCarthy's puzzle example

Example with an 18 digit number

A = 289407349786637777

A² = 837566141105253089445338203501729

Middle square, B = 1105253089445338

Given A, it is easy to compute B

Given B, it is difficult to compute A

"Difficult" = no known short-cuts; requires an exhaustive search

Message Integrity: Digital Signatures

- Validate the creator (signer) of the content
- Validate the content has not been modified since it was signed
- The content itself does not have to be encrypted

Digital Signatures: Public Key Cryptography

Encrypting a message with a private key is the same as signing it!

Alice

Encrypt message with Alice’s private key

Bob

Decrypt message with Bob’s public key

But...

- Not quite what we want
 - We don’t want to permute or hide the content
 - We just want Bob to verify that the content came from Alice

- Moreover...
 - Public key cryptography is much slower than symmetric encryption
 - What if Alice sent Bob a multi-GB movie?

Hashes to the rescue!

- **Cryptographic hash function** (also known as a digest)
 - Input: arbitrary data
 - Output: fixed-length bit string

- **Properties**
 - One-way function
 - Given H=hash(M), it should be difficult to compute M given H
 - Collision resistant
 - Given H=hash(M), it should be difficult to find M’, such that H=hash(M’)
 - For a hash of length L, a perfect hash would take 2(L/2) attempts
 - Efficient
 - Computing a hash function should be computationally efficient

Popular hash functions

- **SHA-2**
 - Designed by the NSA; published by NIST
 - SHA-224, SHA-256, SHA-384, SHA-512
 - e.g., Linux passwords used MD5 and now SHA-512

- **SHA-3**
 - NIST standardization still in progress

- **MD5**
 - 128 bits (not often used now since weaknesses were found)

- **Derivations from ciphers:**
 - Blowfish (used for password hashing in OpenBSD)
 - 3DES – used for old Linux password hashes
Digital signatures using hash functions

- **You:**
 - Create a hash of the message
 - Encrypt the hash with your private key & send it with the message

- **Recipient:**
 - Decrypts the encrypted hash using your public key
 - Computes the hash of the received message
 - Compares the decrypted hash with the message hash
 - If they're the same then the message has not been modified

Digital signatures: public key cryptography

Alice:
- Generates a hash of the message
- Encrypts the hash with her private key
- Sends the message & the encrypted hash

Bob:
- Decrypts the hash using Alice's public key
- Computes the hash of the message sent by Alice
- If the hashes match, the signature is valid
 - the encrypted hash must have been generated by Alice
Digital signatures: multiple signers

Alice
- Generates a hash of the message, H(P)
- Decrypts Alice’s signature with Alice’s public key
- Validates the signature: \(D_A(S) \approx H(P) \)

Bob
- Decrypts Bob’s signature
- Validates the signature: \(D_B(S) \approx H(P) \)

Charles
- Generates a hash of the message, H(P)
- Decrypts Alice’s signature with Alice’s public key
- Validates the signature: \(D_A(S) \approx H(P) \)

Covert AND authenticated messaging

If we want to keep the message secret
- combine encryption with a digital signature

Use a session key:
- Pick a random key, \(K \), to encrypt the message with a symmetric algorithm
- encrypt \(K \) with the public key of each recipient
- for signing, encrypt the hash of the message with sender’s private key

Covert and authenticated messaging

Alice generates a digital signature by encrypting the message with her private key

Alice picks a random key, \(K \), and encrypts the message \(P \) with it using a symmetric cipher

Alice encrypts the session key for each recipient of this message using their public keys

The aggregate message is sent to Bob & Charles
Cryptographic toolbox

- Symmetric encryption
- Public key encryption
- One-way hash functions
- Random number generators

The End