06. Logical Clocks

Paul Krzyzanowski
Rutgers University
Fall 2014
Logical clocks

Assign sequence numbers to messages
- All cooperating processes can agree on order of events
- *vs.* physical clocks: report time of day

Assume no central time source
- Each system maintains its own local clock
- No total ordering of events
 - No concept of happened-when
Lamport’s “happened-before” notation

\[a \rightarrow b \] event \(a \) happened before event \(b \)

E.g.: \(a \): message being sent, \(b \): message receipt

Transitive:

If \(a \rightarrow b \) and \(b \rightarrow c \) then \(a \rightarrow c \)
Logical clocks & concurrency

Assign a “clock” value to each event
- if $a \rightarrow b$ then $\text{clock}(a) < \text{clock}(b)$
- since time cannot run backwards

If a and b occur on different processes that do not exchange messages, then neither $a \rightarrow b$ nor $b \rightarrow a$ are true
- These events are **concurrent**
- Otherwise, they are **causal**
Event counting example

• Three systems: P_0, P_1, P_2

• Events a, b, c, …

• Local event counter on each system

• Systems occasionally communicate
Event counting example

P_1: a b c d e f
 1 2 3 4 5 6

P_2: j g h i
 1 2 3

P_3: j k
 1 2

September 24, 2014
© 2014 Paul Krzyzanowski
Event counting example

Bad ordering:

\[e \rightarrow h \quad \text{but} \quad 5 \geq 2 \]
\[f \rightarrow k \quad \text{but} \quad 6 \geq 2 \]
Lamport’s algorithm

• Each message carries a timestamp of the sender’s clock

• When a message arrives:
 – if receiver’s clock < message_timestamp
 set system clock to (message_timestamp + 1)
 – else do nothing

• Clock must be advanced between any two events in the same process
Lamport’s algorithm

Algorithm allows us to maintain time ordering among related events

– Partial ordering
Event counting example

Applying Lamport’s algorithm

We have good ordering where we used to have bad ordering:

- e \rightarrow h and 5 < 6
- f \rightarrow k and 6 < 7
Summary

• Algorithm needs monotonically increasing software counter

• Incremented at least when events that need to be timestamped occur

• Each event has a Lamport timestamp attached to it

• For any two events, where \(a \rightarrow b \):
 \[L(a) < L(b) \]
Problem: Identical timestamps

$a \rightarrow b$, $b \rightarrow c$, … : local events sequenced

$i \rightarrow c$, $f \rightarrow d$, $d \rightarrow g$, … : Lamport imposes a send \rightarrow receive relationship

Concurrent events (e.g., b & g; i & k) may have the same timestamp … or not
Unique timestamps (total ordering)

We can force each timestamp to be unique

– Define global logical timestamp \((T_i, i)\)

 • \(T_i\) represents local Lamport timestamp

 • \(i\) represents process number (globally unique)

 – e.g., (host address, process ID)

– Compare timestamps:

 \((T_i, i) < (T_j, j)\)

 if and only if

 \(T_i < T_j\) or

 \(T_i = T_j\) and \(i < j\)

Does not necessarily relate to actual event ordering
Unique (totally ordered) timestamps
Problem: Detecting causal relations

If $L(e) < L(e')$
 – We cannot conclude that $e \rightarrow e'$

By looking at Lamport timestamps
 – We cannot conclude which events are causally related

Solution: use a vector clock
Vector clocks

Rules:

1. Vector initialized to 0 at each process
 \[V_i[j] = 0 \text{ for } i, j = 1, \ldots, N \]

2. Process increments its element of the vector in local vector before timestamping event:
 \[V_i[i] = V_i[i] + 1 \]

3. Message is sent from process \(P_i \) with \(V_i \) attached to it

4. When \(P_j \) receives message, compares vectors element by element and sets local vector to higher of two values
 \[V_j[i] = \max(V_i[i], V_j[i]) \text{ for } i = 1, \ldots, N \]

For example,

received: \([0, 5, 12, 1]\), have: \([2, 8, 10, 1]\)
new timestamp: \([2, 8, 12, 1]\)
Comparing vector timestamps

Define
\[V = V' \iff V[i] = V'[i] \quad \text{for } i = 1 \ldots N \]
\[V \leq V' \iff V[i] \leq V'[i] \quad \text{for } i = 1 \ldots N \]

For any two events \(e, e' \)
- if \(e \rightarrow e' \) then \(V(e) < V(e') \)

 … just like Lamport’s algorithm
- if \(V(e) < V(e') \) then \(e \rightarrow e' \)

Two events are \textbf{concurrent} if neither
\[V(e) \leq V(e') \quad \text{nor} \quad V(e') \leq V(e) \]
Vector timestamps

P_1: a → b
P_2: c → d
P_3: e → f
Vector timestamps

Event	timestamp
a | (1,0,0)

19 September 24, 2014

© 2014 Paul Krzyzanowski
Vector timestamps

(0,0,0) P_1 (1,0,0) a b
(0,0,0) P_2 (2,0,0) c d
(0,0,0) P_3 e f

<table>
<thead>
<tr>
<th>Event</th>
<th>timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(1,0,0)</td>
</tr>
<tr>
<td>b</td>
<td>(2,0,0)</td>
</tr>
</tbody>
</table>
Vector timestamps

<table>
<thead>
<tr>
<th>Event</th>
<th>Timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(1,0,0)</td>
</tr>
<tr>
<td>b</td>
<td>(2,0,0)</td>
</tr>
<tr>
<td>c</td>
<td>(2,1,0)</td>
</tr>
</tbody>
</table>

© 2014 Paul Krzyzanowski
Vector timestamps

<table>
<thead>
<tr>
<th>Event</th>
<th>timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(1,0,0)</td>
</tr>
<tr>
<td>b</td>
<td>(2,0,0)</td>
</tr>
<tr>
<td>c</td>
<td>(2,1,0)</td>
</tr>
<tr>
<td>d</td>
<td>(2,2,0)</td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
</tr>
</tbody>
</table>
Vector timestamps

Event	timestamp
a | (1,0,0)
b | (2,0,0)
c | (2,1,0)
d | (2,2,0)
e | (0,0,1)
Vector timestamps

Event	timestamp
a | (1,0,0)
b | (2,0,0)
c | (2,1,0)
d | (2,2,0)
e | (0,0,1)
f | (2,2,2)
Vector timestamps

Event	timestamp
\(a\) | \((1,0,0)\)
\(b\) | \((2,0,0)\)
\(c\) | \((2,1,0)\)
\(d\) | \((2,2,0)\)
\(e\) | \((0,0,1)\)
\(f\) | \((2,2,2)\)

Concurrent events
Vector timestamps

<table>
<thead>
<tr>
<th>Event</th>
<th>timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(1,0,0)</td>
</tr>
<tr>
<td>b</td>
<td>(2,0,0)</td>
</tr>
<tr>
<td>c</td>
<td>(2,1,0)</td>
</tr>
<tr>
<td>d</td>
<td>(2,2,0)</td>
</tr>
<tr>
<td>e</td>
<td>(0,0,1)</td>
</tr>
<tr>
<td>f</td>
<td>(2,2,2)</td>
</tr>
</tbody>
</table>

concurrent events
Vector timestamps

Event	timestamp
 a | (1,0,0)
 b | (2,0,0)
 c | (2,1,0)
 d | (2,2,0)
 e | (0,0,1)
 f | (2,2,2)

concurrent events
Vector timestamps

<table>
<thead>
<tr>
<th>Event</th>
<th>Timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(1,0,0)</td>
</tr>
<tr>
<td>b</td>
<td>(2,0,0)</td>
</tr>
<tr>
<td>c</td>
<td>(2,1,0)</td>
</tr>
<tr>
<td>d</td>
<td>(2,2,0)</td>
</tr>
<tr>
<td>e</td>
<td>(0,0,1)</td>
</tr>
<tr>
<td>f</td>
<td>(2,2,2)</td>
</tr>
</tbody>
</table>

concurrent events
Generalizing Vector Timestamps

• A “vector” can be an list of tuples:
 – For processes P_1, P_2, P_3, …
 – Each process has a globally unique Process ID, P_i (e.g., MAC_address:PID)
 – Each process maintains its own timestamp: $T_{P1}, T_{P2}, …$
 – Vector: \{ <P_1, T_{P1}>, <P_2, T_{P2}>, <P_3, T_{P3}>, … \}

• Any one process may have only partial knowledge of others
 – New timestamp for a received message:
 • Compare all matching sets of process IDs: set to highest of values
 • Any non-matched $<P, T>$ sets get added to the timestamp
 – For a happened-before relation:
 • At least one set of process IDs must be common to both timestamps
 • Match all corresponding $<P, T>$ sets: A:$<P_i, T_a>$, B:$<P_i, T_b>$
 • If $T_a \leq T_b$ for all common processes P, then $A \rightarrow B$
Summary: Logical Clocks & Partial Ordering

• Causality
 – If $a \rightarrow b$ then event a can affect event b

• Concurrency
 – If neither $a \rightarrow b$ nor $b \rightarrow a$ then one event cannot affect the other

• Partial Ordering
 – Causal events are sequenced

• Total Ordering
 – All events are sequenced
The End