Session Initiation Protocol (SIP)

- Dominant protocol for Voice over IP (VoIP)
 - RFC 3261
- Allows a call to be established between multiple parties
 - Notify a callee of a call request
 - Agree on media encodings
 - Allow a participant to end the call
 - Determine IP address of callee
 - No assumption on the callee having a fixed IP address
 - Add new media streams, change encoding, add/drop participants
- Messages are HTTP style (line-oriented text) using UDP or TCP

Proxies

- SIP proxy server
 - Helps route requests
 - Forwards requests to one or more destinations and sends responses to the requester
 - Contacts remote registrar to look up addresses
 - Often run on the same server as a registrar
- Usually a proxy at each SIP domain

Registration

- A user's SIP address is an IP address & port number
 - In most cases, this changes over time
- Registration
 - When a phone is switched on (or phone software is run)
 - A registration process takes place
 - Registrations expire, so re-register periodically
- Location Server: name server
 - Stores a mapping between the user’s address and the address of their phone
 - user’s address = Address of Record (AOR): sip:alice@sip.rutgers.edu
- SIP Registrar:
 - Accepts REGISTER requests and interacts with the Location Server
 - SIP proxy, registrar, & location server normally run on the same system

SIP Example

- Alice wants to call bob@sip.mit.edu
- She sends an INVITE message to her proxy server
 - HTTP-style
 - Identifies Bob (bob@sip.mit.edu)
 - Specifies Alice's current IP address
 - Specifies media type (e.g., PCM-encoded audio via RTP)
 - Port on which she'd like to receive the message

- Alice’s SIP proxy server needs to look up bob@sip.mit.edu
 - Uses DNS to look up contact Bob’s SIP server (NAPTR or SRV records)
 - Forwards the Alice’s INVITE to Bob’s SIP proxy
 - Tells Alice that it’s TRYING to contact the party
SIP Example

• Routing
 – SIP INVITE requests are sent from proxy to proxy until it reaches one that knows the location of the callee
 – A Proxy may respond with a REDIRECT message

SIP Example

• Bob’s proxy server
 – Forwards the INVITE to Bob’s phone
 – Tells Alice’s proxy server that it’s trying to reach Bob

SIP Example

• Bob’s phone gets the INVITE message
 – Starts ringing
 – Sends RINGING response

SIP Example

• Bob can accept or decline the call
 – If he accepts it, the INVITE is acknowledged with a 200 OK
 – INVITE feedback is propagated back to Alice

SIP Example

• Now Alice & Bob talk point-to-point
 – Alice sends an ACK to confirm setup
 – Both sides exchange media streams (usually RTP)

SIP Example

• To disconnect, one party sends a BYE message
• The other side confirms with a 200 OK
• SIP is an out-of-band protocol
 – SIP messages are sent on different sockets than media data
 – All messages are acknowledged, so either TCP or UDP can be used
NAT Traversal

NAT traversal & why do we need it?

• Remember NAT?
 – Private IP addresses
 – NAT gateway (usually on a gateway router)
 • Translates between internal addresses/ports & external ones

• It’s awesome!
 – Cut down on lots of wasted addresses – usually, you need just one

• But it breaks end-to-end connectivity!
 – What if you want to contact a service behind NAT?
 – Consider two VoIP clients that want to communicate
 • No foolproof solution

NAT: This is easy

NAT: This is tricky

Relay all messages

Core methods
Relay all messages

- B wants to connect to A
 - But A is behind a NAT
- Somehow get B to send a message to A, asking for it to open a connection to B
- Two approaches
 - Relay the request via a server (but A must be connected to the server)
 - As with passive FTP
 - Assume an existing connection between A & B and ask for a new one

Connection reversal

- B wants to talk to A
- Existing connection between A & B (set up by B)

UDP hole punching

- Hosts A & B want to communicate
- Have an Internet-accessible rendezvous server, S
- Host A sends a message to S
 - That sets up a NAT translation on A’s NAT gateway
 - S now knows the external host & port
- Host B sends a message to S
 - That sets up a NAT translation on B’s NAT gateway
 - S also knows the external host & port on B
- S tells B: talk on A’s IP address & port
- S tells A: talk to B’s IP address & port

UDP hole punching

- Send a message to establish a NAT mapping (hole)
TCP hole punching

- Same principle BUT
 - Need to use the same port # to listen for connections as we used to initiate outgoing connections
 - Most operating systems support a socket option `SO_REUSEADDR` that does this

STUN

- Session Traversal Utilities for NAT; RFC 5389
 - Allows clients to discover whether they are in a NAT environment
 - Sends a message to a STUN server on the Internet
 - STUN server returns the source IP address and port number
 - A client can share this external address/port
 - If both peers are behind NAT, they will need to find a way to share this information

TURN

- Traversal Using Relays around NAT; RFC 5766
 - Protocol that uses a relay server

TURN server: Relay-based protocol

- .155 connects to a TURN server
- Informs the server which locations it should accept packets from
- Gets an IP address & port allocated by the TURN server to use as a relay

TURN server: STUN server with relay capabilities

- .33 contacts the TURN server, which relays its external host:port to .155
ICE

- Interactive Connectivity Establishment; RFC 5245
 - Protocol to negotiate NAT traversal
 - Discover presence of NAT on either side
 - Exchange information
 - Discover how to get a useful connection
 - Choose STUN or TURN
 - Extension to SIP (but can be used by other protocols)

Zero Configuration Networking

Network Configuration

- Normally
 - DHCP server to get an IP address (and subnet mask, gateway)
 - DNS for looking up names
- What if we don’t have these available?
 - Use IP Link-Local Addresses
 - Goal: each device gets an IP address that is unique in the LAN
 - These are non-routable

IPv6 Stateless Address Autoconfiguration (SLAAC)

- Autoconfigure routable IP addresses on a LAN
- Combination of address prefix & interface ID
 - Routers advertise prefixes that identify the link’s subnet
 - Hosts generate a unique interface ID from the MAC address
- Run Duplicate Address Detection to ensure address is unique
 - Send a Neighbor Solicitation request (IPv6’s version of ARP)
 - If someone else has it, fail: admin intervention required.
- SLAAC is like a simplified DHCP
 - Good if just getting a unique, routable address is sufficient

Link-Local Addresses

- IPv4
 - 169.254.0.0/16 block
 - Pick a random address in the 169.254.0.0/16 range
 - Use ARP to see if someone else also has it
 - If so, try again
- IPv6: SLAAC local connectivity
 - Autoconfigure
 - Use fe80::/64 block as an address prefix
 - MAC address used for lower bits

Multicast DNS & Service discovery

- Part of Apple Bonjour
 - Translate between names and IP addresses without a DNS server
 - Multicast DNS: Use IP multicast for DNS queries
 - Each computer stores its own list of resource records
 - Runs its own mini DNS server: mDNSResponder
Multicast DNS & Service discovery

- Locate or advertise services without using a directory server
- Example, Apple DNS-based Service Discovery
 - DNS-SD (RFC 6763)
 - Use DNS services (DNS or multicast DNS)
 - Structured Instance Names
 - SRV record: <Instance>.<Service>.<Domain>
 gives target IP, port
 - TXT record with same name: extra info as key/value pairs
 - PTR record: service type to see all instances of the service
 - Also
 - Simple Service Discovery Protocol (SSDP; part of UPnP)
 - Service Location Protocol (SLP)

SRV record example

- Example DNS SRV record
 - myprinter._printer._tcp.local. 120 IN SRV 0 0 5432 myserver.local.

- DNS TXT record
 - May contain additional information.
 - Example:
 - Different print queues for printer services on the same IP address
 - Information is application-specific

- PTR record
 - myprinter._printer._tcp.local. 28800 PTR myprinter._printer._tcp.local.
 - Allows one to query DNS for all services of type _printer.

Bonjour steps

- New device starts up
 - Is there a DHCP server?
 - If yes, get IP address and routing info
 - If no, pick an address in the link-local (zeroconf) range: 169.254.0.0/16
 - Test the address and claim it if nobody responds
 - Start up Multicast DNS responder
 - Requests a chosen hostname
 - Multicasts query to see if it’s taken
 - Claims it if not taken
 - Start up service (get port)
 - Publish service (friendly name, service name, address, port)
 - Create SRV record friendly_name.service_name._tcp.local that points to the hostname and port for the service
 - Create PTR record service_name._tcp.local

The end