Internet Technology

07. Network Layer

Paul Krzyzanowski
Rutgers University
Spring 2013

Network Layer

- Transport Layer (Layer 4)
 - Application-to-application communication
- Network Layer (Layer 3)
 - Host-to-host communication
- Route
 - The path that a packet takes through the network
- Routing
 - The process of determining the path
- Forwarding
 - Transferring a packet from an incoming link to an outgoing link
- Router
 - The device that forwards packets (datagrams)

Forwarding vs. Routing

- Routing
 - Responsibility over the path
 - Routing algorithms figure out the path a packet should take
- Forwarding
 - A router consults a forwarding table
 - Examines data in a packets header & uses the table to determine the outgoing link for the packet
 - Routing algorithms configure forwarding tables
- Switches vs. Routers
 - Packet switches: transfer data between links based on link layer data (e.g., Ethernet)
 - Routers: transfer data between links based on network layer data (e.g., IP)

Network service models: our wish list

What would we like from a network?
- Guaranteed delivery (no loss)
- Bounded (maximum) delay
- In-order packet delivery
- Guaranteed constant or minimum bandwidth
- Maximum jitter
 - Jitter = variation in latency
- Endpoint authentication & encrypted delivery

Network service models: what do we get?

- IP gives us none of this
 - Best-effort = no guarantees on delivery, delay, order
- Other network architectures provide some of these items
 - E.g., ATM (Asynchronous Transfer Mode)
 - ATM CBR (Constant Bit Rate)
 - Connection setup specifies bandwidth
 - Network provides constraints on jitter and packet loss
 - Network guarantees in-order delivery
 - ATM ABR (Available Bit Rate)
 - In-order delivery
 - Guaranteed minimum bandwidth but higher rates if resources available
 - Feedback to sender if congestion is present

Virtual Circuit vs. Datagram Networks

- Virtual Circuit (VC) Networks
 - Connection service at the network layer
 - All routers in the path are involved in the connection
- Datagram Networks
 - Connectionless service at the network layer
 - Connection-oriented service provided at the transport layer
 - Only end systems are involved
 - Routers are oblivious
 - IP is a datagram network
Virtual Circuit Networks

- Connection setup
 - Set up route based on destination address
 - Each router commits resources
 - Each router builds enters the connection in its forwarding table
 - Routers maintain connection state information

- Communication
 - Each packet contains a VC#
 - Forwarding table determines the next link and VC#
 - Destination address not needed on each packet; just the VC#

- Teardown
 - Clear connection from forwarding table on each router

Datagram Networks

- Packet identified with the destination address
- No setup; routers maintain no state information
- Routers
 - Use the destination address to forward the packet
 - Forwarding table maps destination address to output link
- IP addresses are 32 bits
 - We can’t have a forwarding table with 2^{32} (4,294,967,296) entries!
 - Match a range of addresses by matching a prefix

Router Architecture: line cards

A line card is responsible for I/O on a specific interface

Shared Memory - Conventional

- Ports
 - Function as I/O devices in an OS
- Packet arrival
 - CPU interrupt
 - Copied to memory
- Routing
 - CPU determines route
 - Copies packet to output port
- Limitation
 - Only one memory read/write at a time
 - CPU & bus can be bottlenecks
Shared Memory – Distributed CPUs

- CPU & copy of routing table in line cards
- Lookup and data copy to output port done by line card
- Limitation:
 - Only one memory read/write at a time
 - Bus can be a bottleneck

Non-shared Memory – Bus Data Path

- No shared memory
- Bus used to copy packets directly from one port to another
- Limitation:
 - Shared bus can be a bottleneck

Shared Bus

CPU
Memory
Routing Table
Line Card
CPU
Line Card
CPU
Line Card
CPU
Line Card
CPU
Non-shared Memory – Crossbar Data Path

- N×N crossbar switching fabric
- One port can move a packet to another port without blocking other ports
- Multiple switching fabrics can be used to route packets
 to the same port
- Verdict:
 - Fastest solution
 - $$$

Output Port Queuing

- If there’s a queue at an output port
 - A packet scheduler chooses one packet for transmission
 - This can be simple first-come-first-served (FCFS)
 - ... or take other factors into account
 (source, destination, protocol, service level)
- If the output port queue is full
 - We have packet loss
 - A router can decide which packet to drop
 - Active Queue Management (AQM) algorithms: decide which packets to drop

Input Port Queuing

- If packets arrive faster than they could be switched
 - They need to be queued at input ports
 - If multiple queues have a packet for the same output port
 - Only one will be switched at a time
 - The others will be blocked ... and the packets behind them will be blocked too!
 - Head-of-line blocking
 - If the queue overflows
 - We have packet loss

Head-of-line blocking

If this packet has to wait
Then these packets have to wait
Internet Protocol Stack

IP Datagram Structure
- 20 byte fixed part
- Variable-size options

IP Datagram: Version
- 4-bit identification of the protocol used: 4 = IPv4

IP Datagram: Header Length
- 4-bit header length (in # of 32-bit words)
 - IP packets usually have no options, so this is usually 5

IP Datagram: DSCP
- Differentiated Services Control Point
 - Identifies class of service for QoS aware routers (e.g., VoIP)
Explicit Congestion Notifications
- Routers normally do not inform endpoints of congestion
- ECN is an optional feature to allow them to do so

Hop count
- Router discards packet if corrupt
- Routers normally do not inform endpoints of congestion

1s complement checksum of the header
- Router discards packet if corrupt
- Must be recalculated by the router since TTL (and maybe options) change

IP Datagram: Fragmentation
- Identification: Identifies fragment of an original datagram
- Flags: control fragmentation or identify if there are more fragments
- Fragment offset: offset of fragment relative to original data

Fragmentation
- Identification: Identifies fragment of an original datagram
- Flags: control fragmentation or identify if there are more fragments
- Fragment offset: offset of fragment relative to original data

IP Datagram: Time-To-Live
- Hop count – decremented by 1 each time the datagram hits a router
 - If TTL == 0, discard the packet
 - Keeps packets from circulating indefinitely (common TTL = 60…64)

IP Datagram: Protocol
- Identifies the protocol in the data portion
 - TCP = 6, UDP = 17
 - IANA assigns the numbers

IP Datagram: ECN
- Explicit Congestion Notifications
 - Routers normally do not inform endpoints of congestion
 - ECN is an optional feature to allow them to do so

IP Datagram: Total Length
- 16-bit value of the entire datagram (including the 20-byte IP header)

IP Datagram: Header Checksum
- 1s complement checksum of the header
 - Router discards packet if corrupt
 - Must be recalculated by the router since TTL (and maybe options) change

IP Datagram: Identification
- Identification: Identifies fragment of an original datagram

IP Datagram: Options (if header length > 5)
- Options (if header length > 5)

IP Datagram: Source IP address
- Source IP address

IP Datagram: Destination IP address
- Destination IP address

IP Datagram: Data
- Data
IP Datagram: Source & Destination

- Identifies source and destination IP addresses

```
+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+
| Version  | Length   | DSCP     | ECN      | Total length | Identification | Time to Live | Protocol | Header checksum | Source IP address | Destination IP address | Options (if header length > 5) | Data |
+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+
```

IP Datagram: Options

- Extensions to the header – rarely used
- Options include: route to destination, record of route, IP timestamp

```
+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+
| Version  | Length   | DSCP     | ECN      | Total length | Identification | Time to Live | Protocol | Header checksum | Source IP address | Destination IP address | Options (if header length > 5) | Data |
+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+
```

IP Fragmentation & Reassembly

- Remember MTU (Maximum Transmission Unit)?
 - Maximum size of payload that a link layer frame can carry
 - This limits the size of an IP datagram (and hence a TCP or UDP segment)
- What if a router needs to forward a packet that is larger than that link’s MTU?
 - Break up the datagram into two or more fragments
 - Each fragment is a separate IP datagram
 - IP layer at the end system needs to reassemble the fragments before passing the data to the transport layer

```
Fragment 1
+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+
| Version  | Length   | DSCP     | ECN      | Total length | Identification | Time to Live | Protocol | Header checksum | Source IP address | Destination IP address | Options (if header length > 5) | Data |
+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+
```

IP Fragmentation

- When an IP datagram is first created
 - Sender creates an ID number for each datagram (usually value of a counter)
 - DF bit (“Don’t Fragment”) set to 0: fragmenting is allowed

```
Identification | Flags | 13-bit Fragment offset
```

- When a router needs to fragment a datagram
 - Each fragment contains the same ID #, source address, destination address
 - Fragment offset
 - Identifies offset of the fragment relative to the original datagram in 8-byte blocks
 - First datagram Offset = 0
 - All fragments except for the last one have the MF (“More Fragments”) bit set

```
Identification | Flags | 13-bit Fragment offset
```

IP Reassembly

- Identification
 - Receiver knows a packet is a fragment if
 - MF is 1 and/or Fragment Offset is not 0
- Matching & Sequencing
 - Identification field is used to match fragments from the same datagram
 - Offsets identify the sequence of fragments
- Size of original
 - When the receiver gets the last fragment (MF==0, Offset != 0)
 - It knows the size of the datagram (offset+8)+length
- Giving up
 - If any parts are missing within a time limit, discard the packet
 - Linux:/proc/sys/net/ipv4/ippfrag_time (default 30 seconds)
- Once reassembled, pass to protocol that services this datagram

```
Identification | Flags | 13-bit Fragment offset
```

Example: send 4,000 byte datagram
- 20 bytes IP header + 3980 bytes data
- Outbound link at router has a 1500-byte MTU

```
Fragment 1
+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+
| Version  | Length   | DSCP     | ECN      | Total length | Identification | Time to Live | Protocol | Header checksum | Source IP address | Destination IP address | Options (if header length > 5) | Data |
+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+
```

```Fragment 2
+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+
| Version  | Length   | DSCP     | ECN      | Total length | Identification | Time to Live | Protocol | Header checksum | Source IP address | Destination IP address | Options (if header length > 5) | Data |
+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+
```

```Fragment 3
+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+
| Version  | Length   | DSCP     | ECN      | Total length | Identification | Time to Live | Protocol | Header checksum | Source IP address | Destination IP address | Options (if header length > 5) | Data |
+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+
```
IP Addressing

- IPv4 address: 32 bits expressed in dotted-decimal notation
 - \texttt{www.rutgers.edu} = \texttt{0x80064489} = 128.6.68.137
- Each interface needs to have an IP address
 - E.g., each link on a router has an address
 - If your laptop is connected via Ethernet and 802.11, you have 2 IP addresses
 - Every interface at a router has its own address

Route Aggregation: Subnets

- IP address = 32 bits = \(2^{32}\) addresses
 - But addresses cannot be assigned randomly
 - Otherwise routing tables would have to be \(2^{32}\) entries long!
 - ... and maintaining them would be a nightmare
- Instead, assign groups of adjacent addresses to an organization

- \begin{itemize}
 \item \texttt{www.rutgers.edu} = 128.6.68.137
 \item All hosts in Rutgers start with 128.6
 \item First 16 bits of the IP address identify a host at Rutgers
 \item Routers need to know how to route to just 128.6 instead of all 65,536 possible addresses
\end{itemize}

- Route aggregation = use one prefix to advertise routes to multiple devices or networks

Subnets

- Subnet (= subnetwork = network)
 - Group of IP addresses sharing a common prefix (n high-order bits)
 - A logical network connected to a router (LAN or collection of LANs)
- Rutgers subnet = 128.6.0.0/16
 - CIDR notation (Classless Inter-Domain Routing)
 - A/N: N most significant (leftmost) bits of address

- \texttt{www.rutgers.edu} = 128.6.68.137
 - \begin{array}{c}
 \text{Network number} \quad \text{Host number}
 \end{array}
 - \begin{array}{cccc}
 10000000 & 00000110 & 01000100 & 10001001
 \end{array}

Subnet Mask

- A subnet mask (or netmask)
 - A bit mask with 1s in the network number position
 - Address & netmask → strips away host bits
 - Address & ~netmask → strips away network bits
- For Rutgers, the netmask is
 - \begin{itemize}
 \item \texttt{255.255.0.0}
 \item \texttt{11111111 11111111 00000000 00000000}
 \end{itemize}
- For a 221.2.1.0/26 network, the netmask is
 - \begin{itemize}
 \item \texttt{255.255.255.192}
 \item \texttt{11111111 11111111 11111111 11000000}
 \end{itemize}

How are IP addresses assigned?

- IP addresses are distributed hierarchically
 - Internet Assigned Numbers Authority (IANA) at the top
 - IANA is currently run by ICANN
 - Internet Corporation for Assigned Names and Numbers
 - Regional Internet Registries (RIR)
- Allocate blocks of addresses to ISPs
 - Permanent (static or temporary (dynamic))
Address allocation: it's a hierarchy

Special addresses

- Network address: all host bits 0
 - Rarely, if ever, used
 - Rutgers = 128.6.0.0

- Limited broadcast address: all bits 1
 - Broadcast address for this network, the local network.
 - Datagrams are not forwarded by routers to other networks
 - Rutgers = 128.6.255.255

- Broadcast address: all host bits 1
 - All hosts on the specified subnet get datagrams sent to this address
 - Routers may or may not forward broadcasts (no for outside an organization)
 - Rutgers = 128.6.255.255

- Loopback address: 127.0.0.1 = localhost
 - Communicate with your own device
 - Uses the loopback network interface

Host Configuration

- How do you assign an address to a host?
 - Manually, configure the device with its
 - IP address
 - Subnet mask, so it knows what addresses are local
 - Gateway: default address for non-local addresses not in a routing table
 - Name server address(es), so it can look up addresses
 - Automatically, via the Dynamic Host Configuration Protocol (DHCP)

Dynamic Host Configuration Protocol

- Protocol for client to get an IP address and network parameters
- It has to work before the client has a valid address on the network!
 - Use IP broadcasts
- DHCP server must be running on the same network link (LAN)
 - Else each link must run a DHCP Relay Agent that forwards the request to
 a DHCP server

DHCP: Three mechanisms for allocation

1. Automatic allocation
 - DHCP assigns an permanent IP address to a client
2. Dynamic allocation
 - DHCP assigns an IP address to a client for a limited period of time
 - Allows automatic reuse of an address that is no longer needed by the client
3. Manual allocation
 - A client IP address is assigned by the network administrator

DHCP: The Protocol

Discover
- Client broadcasts DHCP Discover
- Server sends a limited broadcast DHCP Discover UDP message to port 67
- Contains random transaction identifier

Request
- Client broadcasts DHCP Request
- Sends back a DHCP message with a copy of the parameters
- This performs: selection (if multiple offers), confirmation of data, extension of lease

DHCP: The Protocol

Offer
- Server responds with an offer
- Server sends a limited broadcast DHCP Offer UDP message to port 68
- Response contains
 - Matching transaction identifier
 - Proposed IP address
 - Subnet mask
 - Lease time

ACK
- Server sends DHCP ACK
- Sends configuration parameters, including committed IP address
NAT: Network Address Translation

- Every device on the Internet needs an IP address
 - Every address has to be unique
 - ... otherwise, how do you address a host?
- IP addresses are not plentiful
 - Does an organization with 10,000 IP hosts really need 10,000 addresses?

NAT: Private Addresses

- We cannot use IP addresses of valid external hosts locally
 - ... how will we distinguish local vs. external hosts?
- RFC 1918: Address Allocation for Private Internets
 - Defines unregistered, non-routable addresses for internal networks

Advantages of NAT

- Internal address space can be much larger than the addresses allocated by the ISP
- No need to change internal addresses if ISP changes your address
- Enhanced security
 - A computer on an external network cannot contact an internal computer
 - Unless the internal computer initiated the communication
 - But can only contact the computer on that specific port
 (this is where active mode FTP had problems)
Internet Control Message Protocol (ICMP)

- Network-layer protocol to allow hosts & routers to communicate network-related information
- ICMP information is carried as IP payload

ICMP Segment Structure

- Variable-size segment; 8-byte minimum
- Type: command or status report ID
- Code: status code for the type
- Checksum: Checksum from ICMP header & data
- Rest of header: depends on type
 - Error reports contain the IP header & first 8 bytes of original datagram's data

Some ICMP Message Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Echo reply (ping)</td>
</tr>
<tr>
<td>3</td>
<td>Destination unreachable</td>
</tr>
<tr>
<td>4</td>
<td>Source quench</td>
</tr>
<tr>
<td>5</td>
<td>Redirect message</td>
</tr>
<tr>
<td>8</td>
<td>Echo request</td>
</tr>
<tr>
<td>9</td>
<td>Router advertisement</td>
</tr>
<tr>
<td>10</td>
<td>Router solicitation</td>
</tr>
<tr>
<td>11</td>
<td>TTL exceeded</td>
</tr>
<tr>
<td>12</td>
<td>Bad IP header</td>
</tr>
<tr>
<td>13</td>
<td>Timestamp</td>
</tr>
<tr>
<td>14</td>
<td>Timestamp reply</td>
</tr>
<tr>
<td>15</td>
<td>Address mask request</td>
</tr>
<tr>
<td>16</td>
<td>Address mask reply</td>
</tr>
</tbody>
</table>

Ping program

- Get a network ping (echo) from a requested host
 - Test network reachability
 - Measure round-trip time
 - Optionally specify packet size

- Request/response protocol
 - Ping Client
 - Create socket (AF_INET, SOCK_RAW, IPPROTO_ICMP)
 - Set IP header fields & ICMP header fields
 - Send it to a destination via sendto()
 - Wait for a response from the destination address via recvfrom()
Ping program

- Get a network ping (echo) from a requested host
 - Test network reachability
 - Measure round-trip time
 - Optionally specify packet size

- Request
 - Send ICMP type=8 (echo request), code 0 (no options to echo)
 - Destination responds back with an ICMP type=0 (echo reply), code=0

Traceroute program

- Traceroute – trace a route to a specific host
 - Send a series of UDP segments with a bogus destination port
 - 33434 to 33534 on Linux systems
 - First IP datagram has TTL=1
 - Second IP datagram has TTL=2, and so on
 - Keep a timer for each datagram sent

- At a router
 - When the TTL expires, a router sends an ICMP warning message
 - Type 11, code 0 = TTL expired
 - ICMP message includes the name of the router and its IP address

- At the final destination
 - The destination sends an ICMP warning message
 - Type 3 code 3 = Destination port unreachable

IPv6

- We’ve been rapidly using up IPv4 addresses ever more rapidly
 - Growth of the web
 - Always-on IP devices
 - Set-top boxes and phones
 - Inefficient network allocation

- We dealt with it with
 - NAT
 - Name-based web hosting
 - Reallocation of network allocation & subnetting

- Those solutions helped a lot … but not enough
 - We’re out of IPv4 addresses in parts of the world
 - IPv6 to the rescue!

Highlights

- Huge address space
 - 128-bit addresses: 3.4×10^{38} addresses (>7.9 $\times 10^{28}$ more than IPv4)

- Simplified 40-byte header
 - Longer addresses but far fewer fields
 - Focus is to simplify routing

- Anycast address
 - Allows a datagram to be delivered to one of a group of interfaces
 - Usually used to identify the nearest host of several hosts

- Flow label
 - Allows related packets that require specific levels of service to be identified
 - E.g., voice, video
 - Not well defined yet

IP Datagram Structure

- Version: protocol version (not compatible with IPv4!)
- Traffic class: category of service
- Flow label: identification tag for related flows
- Payload length: # bytes following the 40-byte datagram
- Next header: identifies higher-level protocol (e.g., TCP or UDP)
 - Same as in IPv4
- Hop limit: TTL; decremented at each router
- Source & destination addresses
- Data
 - No fragmentation!
 - No header checksum! Ethernet does it; so do TCP and UDP
Transitioning

- IPv6 systems can bridge to IPv4 networks
 - IPv4 addresses are a subset of IPv6 addresses
- Dual-stack systems
 - Hosts with both IPv4 and IPv6 network stacks to communicate with both protocols
 - DNS can identify if a given domain is IPv5 capable or not
- IPv4 systems cannot communicate with IPv6 systems
 - Migrating to IPv6 results in a loss of global visibility in the IPv4 network
- Initial transition is not visible to end users
 - Cable modems, set-top boxes, VoIP MTAs
 - IPv6 access