
Internet Technology
06. TCP: Transmission Control Protocol

Paul Krzyzanowski

Rutgers University

Spring 2016

1 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Last time: Reliable Data Transfer

• Checksum: so we can determine if the data is damaged

• ARQ (Automatic Repeat reQuest) protocols

– Use acknowledgements to request retransmission

• Acknowledgement (receiver feedback)

– Retransmit if NAK or corrupt ACK

• Sequence numbers

– Allow us identify duplicate segments

– No need for NAK if we use sequence numbers for ACKs

• Timeouts

– Detect segment loss

– time expiration = assume that a segment was lost

2 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Last time: Reliable Data Transfer

• Stop-and-wait protocol

– Do not transmit a segment until receipt of the previous one has been acknowledged

– Leads to extremely poor network utilization

• Use a pipelining protocol

– Go-back-N (GBN)

• Window size W – no more than W unacknowledged segments can be sent

• Cumulative acknowledgement

– Receipt of a sequence number n means that all segments up to and including n have been received

• Timeout: retransmit all unacknowledged segments

– Selective Repeat (SR)

• Acknowledge individual segments

• Sender’s window: N segments starting from the earliest unacknowledged segment

• Per-segment timer on sender: retransmit only that segment on timeout

• Receiver’s window: buffer for N segments starting from the first missing segment

– Receiver must buffer acknowledged out-of-order segments

– Deliver segments to application in order

3 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

TCP: Transmission Control Protocol

4 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

TCP

• Transport-layer protocol ... like UDP

• But:

– Connection-oriented

– Bidirectional communication channel

– Reliable data transfer

– Flow control

• Network stacks on both end systems keep state

– “Connection” managed only in end systems

– Routers are not aware of TCP

5 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

TCP: Connection Setup

• Connection setup

– Three way handshake

– Negotiate parameters

– Initialize state variables

(more details later!)

6

ti
m

e

Receiver Sender

Initialize

Acknowledge

ACK

Receive P1

Send ACK1

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

TCP Data Exchange

• TCP provides full duplex service

– If a TCP connection has been established between processes A and B, A

can send messages to B and B can send messages to A over the same

connection

• Outgoing data is placed in TCP’s send buffer

– TCP takes data from here, creates segments, and sends them out

– Data grabbed must be ≤ maximum allowable segment size (MSS)

7

kernel

TCP send buffer

TCP driver

IP driver

Ethernet driver

sending process

socket

kernel

TCP receive buffer

TCP driver

IP driver

Ethernet driver

receiving process

socket

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Data Link

Data Link

TCP Segment Size

8

TCP header

20+ bytes

IP header

20 bytes

Application Data

m bytes

Network Transport Application Data

Protocol encapsulation: logical view

Data Link

14 bytes

MSS = Maximum Segment Size
= (IP datagram size - 40 bytes)

MTU = Maximum Transmission Unit
1500 bytes for Ethernet v2 (→MSS = 1460 bytes)

9000 bytes for Jumbo frames in gigabit Ethernet (→MSS = 8960 bytes)

Maximum Segment Size (MSS) is dependent on MTU (=MTU-40)

C
h

e
c
k
s
u

m

4
 b

y
te

s

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Path MTU Discovery

• What do we use for MTU?

– No greater than the link layer’s MTU (typically 1500 or 9000 bytes)

• Path MTU = Smallest MTU of any of the hops along the path to the destination

– No easy (foolproof) way of determining this

• Path MTU Discovery (RFC 1191, 1981)

– Send ICMP (Internet Control Message Protocol) packets (TCP in later versions)

– Use MTU of 1st hop and set DF “don’t fragment” bit on the IP packet

– If the MTU of any hop is smaller, the router will

• Discard the packet

• Return “ICMP Destination Unreachable” message with a code indicating “fragmentation needed”

• Place the MTU of the next hop in a 16-bit field in the ICMP header

– The source will reduce its MTU and try again until it gets to the destination

– Repeat the discovery process periodically: default = 10 minutes on Windows & Linux

• Routers must handle an MTU of at least 576 bytes (512 bytes + headers)

– Minimum MTU for IPv6 = 1280 bytes

9

Try tracepath on Linux or mturoute on Windows

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

UDP Segment Structure

• Defined in RFC 768

• Eight byte header

10

Source Port # Dest Port #

Length Checksum

Application Data

32 bits

4 bytes

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

TCP Segment Structure

• Defined in RFC 1122 (and others)

• 20-byte header

11

Source Port # Dest Port #

Sequence number

Urgent data pointer

Application Data

32 bits

4 bytes

Options (if header length > 5)

Header

length

20 bytes

S
Y

N

R
S

T

P
S

H

A
C

K

U
R

G

F
IN

E
C

E

C
W

R

000 N
S

Checksum

Receive Window

ACK number

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

TCP Segment Structure: port numbers

• Source & Destination port numbers

– Used for multiplexing & demultiplexing

12

Source Port # Dest Port #

Sequence number

Urgent data pointer

Application Data

32 bits

4 bytes

Options (if header length > 5)

Header

length

20 bytes

S
Y

N

R
S

T

P
S

H

A
C

K

U
R

G

F
IN

E
C

E

C
W

R

000 N
S

Checksum

Receive Window

ACK number

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

TCP Segment Structure: checksum

• 16-bit checksum checks for data corruption in transmission

13

Source Port # Dest Port #

Sequence number

Urgent data pointer

Application Data

32 bits

4 bytes

Options (if header length > 5)

Header

length

20 bytes

S
Y

N

R
S

T

P
S

H

A
C

K

U
R

G

F
IN

E
C

E

C
W

R

000 N
S

Checksum

Receive Window

ACK number

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

TCP Checksum

• As with UDP, the TCP header contains a 16-bit checksum

– Checks for data corruption ⇒ same computation as for IP and UDP checksums

• Checksum is generated by the sender and validated only by the receiver

• Checksum is a 16-bit one’s complement sum of:

 IP pseudo header, TCP header, and data

14

TCP header

Application Data

32 bits

4 bytes

Destination IP Address

Source IP Address

Zero TCP length

IP pseudo header

for checksum computation

0

Padded with 0 at the end to get to

a 16 bit boundary (if needed)

[not transmitted;

just for checksum]

IP header fields are used

to protect against

misrouted segments
Protocol

Set to 0 to compute initial checksum

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

TCP Segment Structure: sequence numbers

• 32 bit sequence # and acknowledgement #

– used for creating a reliable data transfer service

15

Source Port # Dest Port #

Sequence number

Urgent data pointer

Application Data

32 bits

4 bytes

Options (if header length > 5)

Header

length

20 bytes

S
Y

N

R
S

T

P
S

H

A
C

K

U
R

G

F
IN

E
C

E

C
W

R

000 N
S

Receive Window

Checksum

ACK number

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

TCP Segment Structure: receive window

• number of bytes the receiver is willing to accept

– used for flow control

16

Source Port # Dest Port #

Sequence number

Application Data

32 bits

4 bytes

Options (if header length > 5)

20 bytes

S
Y

N

R
S

T

P
S

H

A
C

K

U
R

G

F
IN

E
C

E

C
W

R

000 N
S

Urgent data pointer

Receive Window
Header

length

Checksum

ACK number

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Application Data

Options (if header length > 5)

TCP Segment Structure: header length

• 4-bit header length: length of TCP header in 32-bit words

– This is almost always 5 (20 bytes)

17

Source Port # Dest Port #

Sequence number

32 bits

4 bytes

Header

length

20 bytes

S
Y

N

R
S

T

P
S

H

A
C

K

U
R

G

F
IN

E
C

E

C
W

R

000 N
S

Urgent data pointer

Receive Window

Checksum

ACK number

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

TCP Segment Structure: options

• Variable size options field

– empty in most segments

– maximum segment size negotiation, window scaling factor, timestamps, alternate

checksum, selective acknowledgements

18

Source Port # Dest Port #

Sequence number

Application Data

32 bits

4 bytes

Options (if header length > 5)

Header

length

20 bytes

S
Y

N

R
S

T

P
S

H

A
C

K

U
R

G

F
IN

E
C

E

C
W

R

000 N
S

Urgent data pointer Checksum

Receive Window

ACK number

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

TCP Segment Structure: flags

• ACK: acknowledgement number contains valid data

• RST, SYN, FIN: used for connection setup/teardown

• PSH (push): pass data to upper layer immediately

• URG: application data contains a region of “urgent” data

– 16-bit urgent data pointer points to last byte of this data

• NS, CWR, ECE: used for congestion notification

19

Urgent data pointer

Application Data

32 bits

4 bytes

Options (if header length > 5)

Header

length

20 bytes

S
Y

N

R
S

T

P
S

H

A
C

K

U
R

G

F
IN

E
C

E

C
W

R

000 N
S

Checksum

Receive Window

Push and Urgent

are not used in practice

ACK number

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

TCP sequence numbers

• TCP views application data as an ordered stream of bytes

• Sequence numbers count bytes, not segments

20

Suppose initial sequence # = 0

and we send a segment with 1000 bytes Sequence

Number

0
1000 bytes

Send next segment with 1000 bytes

Sequence

Number

1000
1000 bytes

Send next segment with 500 bytes

Sequence

Number

2000
500 bytes

Initial sequence #. We’re

using 0 here but it can be

anything.

Sending bytes 0 … 999

Sending bytes 1000 … 1999

Sending bytes 2000 … 2499

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

TCP acknowledgement numbers

Acknowledgement number

– Number of the next byte the host is expecting from the other side

(starting from the initial sequence number at the start of the connection)

21

Sent bytes

0…999
ACK # 0 Seq # 1000 Data: 1000 bytes

ACK # 1000 Seq # 0 Data: 0 bytes ACK for bytes

up though 999

ACK # tells the sender that the

remote side is expecting

seq#1000 next

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Piggybacking acknowledgements

• If a host has TCP data to transmit on a connection

– Acknowledgement placed in that TCP header (piggyback)

– No need to send a separate acknowledgement message

• If there is no data to transmit

– Acknowledgement sent with no data

22

Sent bytes

1000…1999
ACK # 0 Seq # 1000 Data: 1000 bytes

ACK # 2000 Seq # 0 Data: 236 bytes
Received bytes

0…235 and ACK for

bytes up to #1999

This TCP segment contains 236 bytes of data and

acknowledges that bytes up to #1999 have been

received. It wants a segment starting from #2000 next.

Data

ACK

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Cumulative & Duplicate acknowledgements

• TCP uses cumulative acknowledgements

– Every packet that is received without error is acknowledged

– The ACK # is the byte number that the receiver wants to see next

• Let’s assume that we sent 3 TCP segments but one gets lost: we get 2 ACKs

– The second ACK is a duplicate acknowledgement

23

Sent bytes

1000…1999
ACK # 0 Seq # 1000 Data: 1000 bytes

ACK # 2000 Seq # 0 Data: 0 bytes Received ACK for

bytes up to #1999

Sent bytes

2000…2999
ACK # 0 Seq # 2000 Data: 1000 bytes

Sent bytes

3000…3999
ACK # 0 Seq # 3000 Data: 1000 bytes

ACK # 2000 Seq # 0 Data: 0 bytes Received ACK for

bytes up to #1999

LOST

Receiver sends ACK but states that it does not have data at

seq # 2000. Same as the last ACK.

duplicate ACK

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Out of order data

• A segment that arrives out of order is not acknowledged

– Instead, a duplicate ACK is sent asking for the missing sequence

• TCP protocol does not define what happens to the received segment

• Two options:

1. Discard it

2. Hold on to out of order segments and wait for missing data

• More complex

 … but much more efficient for the network

• This is the preferred approach

24 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

TCP ACK generation

25

Event Receiver action

Arrival of in-order segment.

All data up to this sequence #

has been acknowledged.

Delayed ACK. Wait up to 500 ms for the

arrival of another in-order segment.

Otherwise send ACK.

Arrival of in-order segment.

One other in-order segment

waiting for ACK transmission.

Send a single cumulative ACK. This

acknowledges both segments.

Arrival of out-of-order segment

with higher sequence #.

Send duplicate ACK with sequence number

of next expected byte.

Arrival of out-of-order segment

that fills in a gap

Send ACK with sequence number of next

unfilled byte (might be duplicate).

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

TCP Timeouts

26 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Round-trip time estimation

• Round trip time:

– elapsed time from sending a segment to getting an ACK

• RTT helps us determine a suitable timeout value

• TCP measures RTT for each non-retransmitted segment

• RTTs fluctuate

– SRTT = “Smoothed Round Trip Time” = weighted average

 SRTT = (1 – α) · SRTT + α·RTT

 α = 0.125

– Exponential weighted moving average (EWMA)

– Greater weight on recent measurements

27 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Round-trip time variation estimation

• Compute the average variation in round-trip time from the estimate

(smoothed average)

• Another exponential weighted moving average

 RTTVAR = (1 – β) ·RTTVAR + β·(SRTT – RTT)

 β = 0.25

• RTTVAR = estimate of how much RTT typically deviates from SRTT

28

See RFC 6298

Round Trip Time

Variation

Smoothed Round Trip

Time

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Setting the TCP timeout interval

• Timeout ≥ SRTT

– Otherwise we’ll time out too early and retransmit too often

– But don’t want a value that’s too high

• Because we will introduce excessive delays for retransmission

• Use SRTT + x

– x should be large when there is a lot of variation in RTT

– x should be small when there is little variation in RTT

– This is what RTTVAR gives us!

• TCP sets retransmission timeout to:

 Timeout interval = SRTT + 4 · RTTVAR

– Initial value of 1 second

• When timeout occurs, the timeout interval is doubled until the next

round trip

29 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

TCP Reliable Data Transfer

30 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

TCP reliable data transfer

• TCP uses a single timer

– Even if there are multiple transmitted unacknowledged segments

– Less overhead than a timer per segment

• Timer is associated with oldest unacknowledged segment

• Receiver sends cumulative acknowledgements

31

If received data from application

• Create TCP segment

• Set sequence #

• Start timer (=timeout interval)

if not already running

• Send data to IP layer

• next sequence # =

 sequence # + data size

• Retransmit

non-acknowledged

segment with smallest

sequence #

• Start timer

If timeout

• if (y > SendBase)

 SendBase = y

• if any non-acknowledged

segments remaining, start

timer

If receive ACK value y

unacknowledged acknowledged unsent application

new data send buffer

SendBase

Receiver tells

us it correctly

received all

bytes up to y-1

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Example: Lost ACK

On timeout, sender retransmits segment with the same sequence #

32

ti
m

e

Receiver Sender

Send segment

& start timer

Receive and acknowledge

ACK# = next expected byte # (92+8 = 100)

Timeout

Resend segment

Receive duplicate (we don’t need seq 92)

Send ACK for next expected byte (100)

ti
m

e
o

u
t

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

ti
m

e
o

u
t
in

te
rv

a
l

Example: Delayed ACKs

Pipelined transmits; delayed ACKs. What happens?

33

ti
m

e

Receiver Sender

Send segment

& start timer

Receive and acknowledge

ACK# = next expected byte # (92+8 = 100)

Timeout

Resend earliest non-acknowledged

segment (seq=92)

Restart timer

Receive duplicate (we don’t need seq 92)

Send ACK for next expected byte (120)

ti
m

e
o

u
t
in

te
rv

a
l

Receive and acknowledge

ACK# = next expected byte # (100+20 = 120)

All data up to

99 received!

All data up to

119 received!

Duplicate ACK

We already processed ACKs up to seq 119

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Example: Lost ACK for one segment

ACKs are cumulative; it’s OK if we miss some

34

ti
m

e

Receiver Sender

Send segment

& start timer

Receive and acknowledge

ACK# = next expected byte # (92+8 = 100)

ti
m

e
o

u
t
in

te
rv

a
l

Receive and acknowledge

ACK# = next expected byte # (100+20 = 120)

This means the

receiver got all

bytes up to 119

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Timeouts

• Timeout interval is normally set to

 Timeout interval = SRTT + 4 · RTTVAR

• But if a timeout occurs

– Retransmit unacknowledged segment with smallest seq #

– Set timer to

 Timeout interval = 2 · previous timeout interval

– If timer expires again, do the same thing:

• Retransmit & double the timeout

– This gives us exponentially longer time intervals

• This is a form of congestion control

• Any other even that requires a timer reset

– Set normal time interval (SRTT + 4 · RTTVAR)

35 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

TCP Fast Retransmit

• TCP uses pipelining

– Will usually send many segments before receiving ACKs for them

• If a receiver detects a missing sequence #

– It means out-of-order delivery or a lost segment

– TCP does not send NAKs

– Instead, acknowledge every segment with the last in-order seq #

– Each segment received after a missing one

will generate replies with duplicate ACKs

36 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

TCP Fast Retransmit

• Waiting for timeouts causes a delay in retransmission

– Increases end-to-end latency

• But a sender can detect segment loss via duplicate ACKs

– Duplicate ACK:

Sender receives an ACK for a segment that was already ACKed

– That means that a segment was received but not the sequentially next one

• If a sender receives three duplicate ACKs

– Sender assumes the next segment was lost

(it could have been received out of order but we’re guessing that’s unlikely

since three segments after it have been received)

– Performs a fast retransmit

• Sends missing segment before the retransmission timer expires

37 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

GBN or SR?

• TCP looks like a Go-Back-N protocol

– Sender only keeps track of smallest sequence # that was

transmitted but not acknowledged

• But not completely…

– GBN will retransmit all segments in the window on timeout

– TCP will retransmit at most one segment (lowest #)

– TCP will retransmit no segments if it gets ACKs for higher-

numbered segments before a timeout

– Most TCP receivers will hold out-of-order segments in a buffer

• We can call it a modified Go-Back-N

38 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

SACK: Selective Acknowledgements

• Enhancement to TCP to make it be a Selective Repeat

protocol

• RFC 2018: TCP Selective Acknowledgement Options

• When receiving an out-of-order segment:

– Send duplicate ACK segment (as before)

– But append TCP option field containing range of data received

• List of (start byte, end byte) values

– Negotiated between hosts at the start of a connection

• SACK may be used if both hosts support it

39 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Flow Control

40 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Flow control

• Incoming data goes to receive buffer

• What if it comes in faster than the process reads it?

• We don’t want overflow!

• Flow control: match transmission rate with rate at which

the app is reading data

41 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Flow control

Receive window

Sender’s idea of how much free buffer space is available at receiver

• Receiver sends window size

to sender in reply segments

• If the receiver has no messages

for the sender and the buffer was full,

the sender won’t know that the

buffer is being emptied!

• Probing

– If the sender sees the receive window = 0, it will periodically send messages with 1 byte

of data

– Receiver will not accept them if the window size is really 0

– Eventually one of them will cause an ACK reporting a non-zero window

42

free buffer space received data application
incoming segments

receive buffer

receive window

Source Port # Dest Port #

Sequence number

Urgent data pointer

S
Y

N

R
S

T

P
S

H

A
C

K

U
R

G

F
IN

E
C

E

C
W

R

000 N
S

Receive Window
Header

length

Checksum

ACK number

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Connection Management

43 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Connection setup: Three-way handshake

44

Server Client

Create SYN segment

Allocate TCP buffers & variables

Create SYN-ACK segment

• SYN=1

• Random initial seq # (client_isn)

• No data

• SYN=1

• ACK = client_isn + 1

• server_isn = random #

• No data

Allocate TCP buffers & variables

Create ACK segment

• SYN = 0

• ACK = server_isn + 1

• Data optional

Server knows the client has the sequence #

Connection is established!

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

SYN Flooding

• An OS will allocate only a finite # of TCP buffers

• SYN Flooding attack

– Send lots of SYN segments but never complete the handshake

– The OS will not be able to accept connections until those time out

• SYN Cookies: Dealing with SYN flooding attacks

– Do not allocate buffers & state when a SYN segment is received

– Create initial sequence # =

 hash(src_addr, dest_addr, src_port, dest_port, SECRET)

– When an ACK comes back, validate the ACK #

 Compute the hash as before & add 1

– If valid, then allocate resources necessary for the connection & socket

45 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

MSS Announcement

• Remember the Maximum Segment Size (MSS)?

• For direct-attached networks

– MSS = MTU of network interface – protocol headers

• Ethernet MTU of 1500 bytes yields MSS of 1460 (1500-20-20)

• For destinations beyond the LAN (routing needed)

– Use TCP Options field to set Maximum Segment Size

• Set MSS in SYN segment

– MSS may be obtained from PATH MTU discovery

• Other side receives this and records it as MSS for sent messages.

• It can respond with the MSS it wants to use for incoming messages in

the SYN-ACK message

– All IP routers must support MSS ≥ 536 bytes

46 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Special cases

• What if the host receives a TCP segment where the port

numbers or source address do not match any connection?

– Host sends back a “reset” segment (RST = 1)

“I don’t have a socket for this”

• For UDP messages to non-receiving ports

– Send back an ICMP message to the sending host

47 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Connection teardown

• Either side can end a connection

• Buffers & state variables need to be freed

• Both sides agree to send no more messages

To close:

1. Send a TCP segment with the FIN bit set (FIN = Finish)

• You are saying “I will not send any more data on this connection”

2. Other side acknowledges this

3. Other side then agrees to close the connection

• Sends a TCP segment with the FIN bit set

4. You acknowledge receipt of this

• Then wait (TIME_WAIT state) to ensure that your ACK had time to get to the

other side and that any stray segments for the connection have been received

– Wait time = 2 × maximum segment lifetime (timeout interval × 2)

– Opportunity to resend final ACK in case it is lost

48 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Connection teardown

49

Host B Host A

Receive ACK to the close request

Set the TIMEWAIT timer

FIN=1

FIN_WAIT_1 state ACK

CLOSE_WAIT state

Receive close request

Host requests to close the connection

LAST_ACK state Receive ACK to the close request

TIME_WAIT state

FIN_WAIT_2 state

Wait until we’re sure the

remote side received the final ACK

ACK

CLOSED state

Final ACK

CLOSED state

(B may still send data)

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

TCP Congestion Control

50 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Congestion control

• Congestion control goal

Limit rate at which a sender sends traffic based on congestion in the network

(Flow control goal was: limit traffic based on remote side’s ability to process)

• Must use end-to-end mechanisms

– The network gives us no information

– We need to infer that the network is congested

– Generally, more packet loss = more congestion

51 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Regulating Rate: Congestion Window

• Window size = # bytes we can send without waiting for ACKs

• Receive Window (rwnd) – flow control request from receiver

– # bytes that a receiver is willing to receive (reported in header)

• Congestion Window (cwnd) – rate control by sender

– Window size to limit the rate at which TCP sender will transmit

• TCP will use window size = min(rwnd, cwnd)

– These are per-connection values!

• How does a window regulate transmission rate?

– If we ignore loss and delays, we transmit cwnd bytes before waiting

– The time we wait is the round-trip time (RTT)

 Transmission rate ≈ cwnd / RTT bytes/second

52 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

 Basic mechanisms

• Timeout or three duplicate ACKs

– Assume segment loss → decrease cwnd = decrease sending rate

• Sender receives expected ACKs

– Assume no congestion → increase cwnd = increase sending rate

• ACKs pace the transmission of segments

– ACKs trigger increase in cwnd size

– If ACKs arrive slowly (slow network) → cwnd increases slowly

– TCP is self-clocking

• Bandwidth probing

– Increase rate in response to arriving ACKs

– … until loss occurs; then back off and start probing (increasing rate) again

53 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Basic Principle: Additive Increase (AI)

If we feel we have extra network capacity

– Increase window by 1 segment each RTT

• If we successfully send cwnd bytes, increase window by 1 MSS

• That means increase window fractionally for each ACK

 cwnd = cwnd + [MSS ÷ (cwnd/MSS)]

– This is Additive (linear) Increase

54 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Basic Principle: Multiplicative Decrease (MD)

If we feel we have congestion (timeout due to lost segment)

– Decrease cwnd by halving it

 cwnd = cwnd ÷ 2

– This is Multiplicative decrease

Additive Increase / Multiplicative Decrease (AIMD)

AIMD is a necessary condition for TCP congestion control to be stable

55

TCP Congestion Control

Three Parts:

1. Slow Start

2. Congestion Avoidance

3. Fast Recovery

56

REQUIRED

RECOMMENDED

REQUIRED

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Speeding things up at the start

AIMD gives us linear ramps

– Transmission follows a sawtooth pattern

– But it can take a long time to ramp up the transmission speed

57

time

c
w

n
d

lost segment lost segment

lost segment

lost segment

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

TCP Slow Start

• Prevent the slow ramp at startup

• Start with an initial exponential increase in cwnd size

This is what TCP Slow Start is about … it’s actually an accelerated start

– Avoid the slow start of a linear ramp

– … but it’s still slower than just sending the rwnd # of bytes

– … but doing so might cause congestion and we won’t know the threshold

58

time

c
w

n
d

lost segment
lost segment

lost segment

lost segment

lost segment

Slow start

TCP Slow Start

• Sender-based flow control

• Rate of acknowledgements determines rate of transmission

• For a new connection, initial cwnd = 1 MSS

Example:

• Increase cwnd by 1 MSS for each acknowledged segment
Start with 1 MSS (get 1 ACK)

– Then cwnd = 2 MSS (get 2 ACKs)

– Then cwnd = 4 MSS (get 4 ACKs)

– Then cwnd = 8 MSS …

• Transmission rate grows exponentially

– Doubles every RTT

59

Two events bring us to this state:

1. Cold start (start of connection)

2. Timeout

If MSS = 1460 bytes and RTT = 90 ms

Transmission rate ≈ 130 kbps

This is stop-and-wait

performance!

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

TCP Slow Start

• “Slow Start” actually grows quickly!

• When do we stop going faster?

– On timeout (we assume this is due to congestion)

• Sender sets cwnd=1 and restarts Slow Start process

• Set slow start threshold, ssthresh = cwnd/2

– When cwnd ≥ ssthresh

• switch to Congestion Avoidance mode (slow the ramp)

• This is not set at cold start; we will time out

– When three duplicate ACKs received

(following a normal ACK for a segment)

• Perform Fast Retransmit of segment

• Enter Fast Recovery State

60 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Congestion Avoidance

• cwnd is ½ of the size when we saw congestion

– We think that’s safe

– … it worked before but doubling it gave a timeout – so we’re close

• Increase rate additively: 1 MSS each RTT

– # segments in window = cwnd/MSS

• E.g., if MSS = 1460 bytes & cwnd= 23360 bytes, cwnd/MSS =16

– Each ACK means we increase cwnd by MSS/(cwnd/MSS)

• E.g., after 16 ACKs, cwnd increased by 1 MSS

= increase cwnd by 1/16 MSS (~91 bytes) for each received ACK

• Now we have a linear growth in transmission speed

61

Slow Start + Congestion Avoidance

• Start with Slow Start

• On timeout, save ssthresh; restart Slow Start

• If ssthresh is reached, switch to Congestion Avoidance

62

time

c
w

n
d

timeout at cwnd = 32

set ssthresh = 32/2 = 16

Slow Start Slow Start

ssthresh reached

Switch to Congestion Avoidance

Slow Start Slow Start Congestion Avoidance

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Congestion Avoidance

• When do we stop increasing cwnd?

• When we get a timeout

– Set ssthresh to ½ cwnd when the loss occurred

– Set cwnd set to 1 MSS and do a Slow Start

• When we receive 3 duplicate ACKs

– We’re guessing segment loss BUT the network is delivering segments

– Otherwise the receiver would not send ACKs

– ssthresh = cwnd / 2

– cwnd = ssthresh + (3 · MSS)

– We essentially ½ our transmission rate

– Enter Fast Recovery state

63

(3 · MSS) accounts for the three duplicate ACKs

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Fast Recovery

• Fast Retransmit was used when duplicate ACKs received

– Avoid waiting for a timeout

• Duplicate ACKs means data is flowing to the receiver

– ACKs are generated only when a segment is received

• Might indicate that we don’t have congestion and the loss

was a rare event.

• Don’t reduce flow abruptly by going into Slow Start

– Adjust cwnd = cwnd / 2

64

Fast Recovery

• Increase cwnd by 1 MSS for each duplicate ACK received

– Increase transmission rate exponentially – just like slow start

– Each ACK means that the receiver received a segment … data is flowing!

• When ACK arrives for the missing segment (non-duplicate ACK)

– Reset cwnd to ssthresh (back to where it was)

– Enter Congestion Avoidance state

• Resumes transmission with linear growth of the window

• If timeout occurs

– ssthresh = cwnd / 2

– cwnd = 1

– Do a Slow Start

65 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Why the name?

• Why do we call it Fast Recovery?

– Prior to its use, TCP would set cwnd = 1 and enter Slow Start for

both timeouts as well as triple duplicate ACKs

• We try to distinguish casual packet loss from packet loss

due to congestion

66 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

TCP congestion control state summary

67

Fast

Recovery

Congestion

Avoidance
Slow Start

Multiplicative increase Additive increase

Multiplicative increase

(Temporary)

Timeouts should be rare: we expect most segment losses to be detected by triple ACKs

TCP is effectively an Additive Increase / Multiplicative Decrease (AIMD) form of

congestion control

Triple duplicate ACK

Multiplicative Decrease

Triple duplicate ACK

Multiplicative Decrease

Timeout: restart cwnd = 1

Timeout: restart cwnd = 1

ssthresh reached

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

ssthresh = cwnd / 2

cwnd = ssthresh + 3∙MSS

ssthresh = cwnd / 2

cwnd = ssthresh + 3∙MSS

The end

68 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

