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Last time: Reliable Data Transfer 

• Checksum: so we can determine if the data is damaged 

• ARQ (Automatic Repeat reQuest) protocols 

– Use acknowledgements to request retransmission 

• Acknowledgement (receiver feedback) 

– Retransmit if NAK or corrupt ACK 

• Sequence numbers 

– Allow us identify duplicate segments 

– No need for NAK if we use sequence numbers for ACKs 

• Timeouts 

– Detect segment loss  

– time expiration = assume that a segment was lost 
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Last time: Reliable Data Transfer 

• Stop-and-wait protocol 

– Do not transmit a segment until receipt of the previous one has been acknowledged 

– Leads to extremely poor network utilization 

• Use a pipelining protocol 

– Go-back-N (GBN) 

• Window size W – no more than W unacknowledged segments can be sent 

• Cumulative acknowledgement 

– Receipt of a sequence number n means that all segments up to and including n have been received 

• Timeout: retransmit all unacknowledged segments 

– Selective Repeat (SR) 

• Acknowledge individual segments 

• Sender’s window: N segments starting from the earliest unacknowledged segment 

• Per-segment timer on sender: retransmit only that segment on timeout 

• Receiver’s window: buffer for N segments starting from the first missing segment 

– Receiver must buffer acknowledged out-of-order segments 

– Deliver segments to application in order 
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TCP: Transmission Control Protocol 
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TCP 

• Transport-layer protocol ... like UDP 

• But: 

– Connection-oriented 

– Bidirectional communication channel 

– Reliable data transfer 

– Flow control 

 

• Network stacks on both end systems keep state 

– “Connection” managed only in end systems 

– Routers are not aware of TCP 
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TCP: Connection Setup 

• Connection setup 

– Three way handshake 

– Negotiate parameters 

– Initialize state variables 

 

(more details later!) 
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TCP Data Exchange 

• TCP provides full duplex service 

– If a TCP connection has been established between processes A and B, A 

can send messages to B and B can send messages to A over the same 

connection 

• Outgoing data is placed in TCP’s send buffer 

– TCP takes data from here, creates segments, and sends them out 

– Data grabbed must be ≤ maximum allowable segment size (MSS) 
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Data Link 

Data Link 

TCP Segment Size 
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TCP header 

20+ bytes 

IP header 

20 bytes 

Application Data 

m bytes 

Network Transport Application Data 

Protocol encapsulation: logical view 

Data Link 

14 bytes 

MSS = Maximum Segment Size 
= (IP datagram size - 40 bytes) 

MTU = Maximum Transmission Unit 
1500 bytes for Ethernet v2 (→MSS = 1460 bytes) 

9000 bytes for Jumbo frames in gigabit Ethernet (→MSS = 8960 bytes) 

 

Maximum Segment Size (MSS) is dependent on MTU (=MTU-40) 
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Path MTU Discovery 

• What do we use for MTU? 

– No greater than the link layer’s MTU (typically 1500 or 9000 bytes) 

• Path MTU = Smallest MTU of any of the hops along the path to the destination 

– No easy (foolproof) way of determining this 

• Path MTU Discovery (RFC 1191, 1981) 

– Send ICMP (Internet Control Message Protocol) packets (TCP in later versions) 

– Use MTU of 1st hop and set DF “don’t fragment” bit on the IP packet 

– If the MTU of any hop is smaller, the router will 

• Discard the packet 

• Return “ICMP Destination Unreachable” message with a code indicating “fragmentation needed” 

• Place the MTU of the next hop in a 16-bit field in the ICMP header 

– The source will reduce its MTU and try again until it gets to the destination 

– Repeat the discovery process periodically: default = 10 minutes on Windows & Linux 

• Routers must handle an MTU of at least 576 bytes (512 bytes + headers) 

– Minimum MTU for IPv6 = 1280 bytes 
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Try tracepath on Linux or mturoute on Windows 
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UDP Segment Structure 

• Defined in RFC 768 

• Eight byte header 
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TCP Segment Structure 

• Defined in RFC 1122 (and others) 

• 20-byte header 
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TCP Segment Structure: port numbers 

• Source & Destination port numbers 

– Used for multiplexing & demultiplexing 
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TCP Segment Structure: checksum 

• 16-bit checksum checks for data corruption in transmission 
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TCP Checksum 

• As with UDP, the TCP header contains a 16-bit checksum 

– Checks for data corruption ⇒ same computation as for IP and UDP checksums 

• Checksum is generated by the sender and validated only by the receiver 

• Checksum is a 16-bit one’s complement sum of: 

  IP pseudo header, TCP header, and data 
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TCP Segment Structure: sequence numbers 

• 32 bit sequence # and acknowledgement # 

– used for creating a reliable data transfer service 
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TCP Segment Structure: receive window 

• number of bytes the receiver is willing to accept 

– used for flow control 
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Application Data 

Options (if header length > 5) 

TCP Segment Structure: header length 

• 4-bit header length: length of TCP header in 32-bit words 

– This is almost always 5 (20 bytes) 
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TCP Segment Structure: options 

• Variable size options field 

– empty in most segments 

– maximum segment size negotiation, window scaling factor, timestamps, alternate 

checksum, selective acknowledgements 
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TCP Segment Structure: flags 

• ACK: acknowledgement number contains valid data 

• RST, SYN, FIN: used for connection setup/teardown 

• PSH (push): pass data to upper layer immediately 

• URG: application data contains a region of “urgent” data 

– 16-bit urgent data pointer points to last byte of this data 

• NS, CWR, ECE: used for congestion notification 
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TCP sequence numbers 

• TCP views application data as an ordered stream of bytes 

• Sequence numbers count bytes, not segments 

 

20 

Suppose initial sequence # = 0 

and we send a segment with 1000 bytes Sequence 

Number 

0 
1000 bytes 

Send next segment with 1000 bytes 

Sequence 

Number 

1000 
1000 bytes 

Send next segment with 500 bytes 

Sequence 

Number 

2000 
500 bytes 

Initial sequence #. We’re 

using 0 here but it can be 

anything. 

Sending bytes 0 … 999 

Sending bytes 1000 … 1999 

Sending bytes 2000 … 2499 
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TCP acknowledgement numbers 

Acknowledgement number  

– Number of the next byte the host is expecting from the other side 

(starting from the initial sequence number at the start of the connection) 
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Sent bytes 

0…999 
ACK # 0 Seq # 1000 Data: 1000 bytes 

ACK # 1000 Seq # 0 Data: 0 bytes ACK for bytes 

up though 999 

ACK # tells the sender that the 

remote side is expecting 

seq#1000 next 
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Piggybacking acknowledgements 

• If a host has TCP data to transmit on a connection 

– Acknowledgement placed in that TCP header (piggyback) 

– No need to send a separate acknowledgement message 

• If there is no data to transmit 

– Acknowledgement sent with no data 
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Sent bytes 

1000…1999 
ACK # 0 Seq # 1000 Data: 1000 bytes 
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received. It wants a segment starting from #2000 next. 

Data 
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Cumulative & Duplicate acknowledgements 

• TCP uses cumulative acknowledgements 

– Every packet that is received without error is acknowledged 

– The ACK # is the byte number that the receiver wants to see next 

• Let’s assume that we sent 3 TCP segments but one gets lost: we get 2 ACKs  

– The second ACK is a duplicate acknowledgement 
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Sent bytes 

1000…1999 
ACK # 0 Seq # 1000 Data: 1000 bytes 

ACK # 2000 Seq # 0 Data: 0 bytes Received ACK for 

bytes up to #1999 

Sent bytes 

2000…2999 
ACK # 0 Seq # 2000 Data: 1000 bytes 

Sent bytes 

3000…3999 
ACK # 0 Seq # 3000 Data: 1000 bytes 

ACK # 2000 Seq # 0 Data: 0 bytes Received ACK for 

bytes up to #1999 

LOST 

Receiver sends ACK but states that it does not have data at 

seq # 2000.  Same as the last ACK. 

duplicate ACK 
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Out of order data 

• A segment that arrives out of order is not acknowledged 

– Instead, a duplicate ACK is sent asking for the missing sequence 

 

• TCP protocol does not define what happens to the received segment 

• Two options: 

1. Discard it 

2. Hold on to out of order segments and wait for missing data 

• More complex 

   … but much more efficient for the network 

• This is the preferred approach 
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TCP ACK generation 
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Event Receiver action 

Arrival of in-order segment. 

All data up to this sequence # 

has been acknowledged. 

Delayed ACK. Wait up to 500 ms for the 

arrival of another in-order segment. 

Otherwise send ACK. 

Arrival of in-order segment. 

One other in-order segment 

waiting for ACK transmission. 

Send a single cumulative ACK. This 

acknowledges both segments. 

Arrival of out-of-order segment 

with higher sequence #. 

Send duplicate ACK with sequence number 

of next expected byte. 

Arrival of out-of-order segment 

that fills in a gap 

Send ACK with sequence number of next 

unfilled byte (might be duplicate). 

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 



TCP Timeouts 
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Round-trip time estimation 

• Round trip time: 

– elapsed time from sending a segment to getting an ACK 

• RTT helps us determine a suitable timeout value 

 

• TCP measures RTT for each non-retransmitted segment  

• RTTs fluctuate  

– SRTT = “Smoothed Round Trip Time” = weighted average 

   SRTT = (1 – α) · SRTT + α·RTT 

 α = 0.125 

– Exponential weighted moving average (EWMA) 

– Greater weight on recent measurements 
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Round-trip time variation estimation 

• Compute the average variation in round-trip time from the estimate 

(smoothed average) 

• Another exponential weighted moving average 

 RTTVAR = (1 – β) ·RTTVAR + β·(SRTT – RTT) 

 

 β = 0.25 

 

• RTTVAR = estimate of how much RTT typically deviates from SRTT 
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See RFC 6298 
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Setting the TCP timeout interval 

• Timeout ≥ SRTT 

– Otherwise we’ll time out too early and retransmit too often 

– But don’t want a value that’s too high 

• Because we will introduce excessive delays for retransmission 

• Use SRTT + x 

– x should be large when there is a lot of variation in RTT 

– x should be small when there is little variation in RTT 

– This is what RTTVAR gives us! 

• TCP sets retransmission timeout to: 

   Timeout interval = SRTT + 4 · RTTVAR 

– Initial value of 1 second 

• When timeout occurs, the timeout interval is doubled until the next 

round trip 
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TCP Reliable Data Transfer 
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TCP reliable data transfer 

• TCP uses a single timer 

– Even if there are multiple transmitted unacknowledged segments 

– Less overhead than a timer per segment 

• Timer is associated with oldest unacknowledged segment 

• Receiver sends cumulative acknowledgements 
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If received data from application 

• Create TCP segment 

• Set sequence # 

• Start timer (=timeout interval) 

if not already running 

• Send data to IP layer 

• next sequence # = 

          sequence # + data size 

• Retransmit 

non-acknowledged 

segment with smallest 

sequence # 

• Start timer 

If timeout 

• if (y > SendBase) 

 SendBase = y 

• if any non-acknowledged 

segments remaining, start 

timer 

If receive ACK value y 

unacknowledged acknowledged unsent application 

new data send buffer 

SendBase 

Receiver tells 

us it correctly 

received all 

bytes up to y-1 

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 



Example: Lost ACK 

On timeout, sender retransmits segment with the same sequence # 

32 

ti
m

e
 

Receiver Sender 

Send segment 

& start timer 

Receive and acknowledge 

ACK# = next expected byte # (92+8 = 100) 

Timeout 

Resend segment 

Receive duplicate (we don’t need seq 92) 

Send ACK for next expected byte (100) 

ti
m

e
o

u
t 

March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 



ti
m

e
o

u
t 
in

te
rv

a
l 

Example: Delayed ACKs 

Pipelined transmits; delayed ACKs. What happens? 
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Receive and acknowledge 

ACK# = next expected byte # (100+20 = 120) 

All data up to 

99 received! 

All data up to 

119 received! 

Duplicate ACK 

We already processed ACKs up to seq 119 
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Example: Lost ACK for one segment 

ACKs are cumulative; it’s OK if we miss some 
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Timeouts 

• Timeout interval is normally set to 

   Timeout interval = SRTT + 4 · RTTVAR 

• But if a timeout occurs 

– Retransmit unacknowledged segment with smallest seq # 

– Set timer to 

   Timeout interval = 2 · previous timeout interval 

– If timer expires again, do the same thing: 

• Retransmit & double the timeout 

– This gives us exponentially longer time intervals 

• This is a form of congestion control 

• Any other even that requires a timer reset 

– Set normal time interval (SRTT + 4 · RTTVAR) 

35 March 7, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 



TCP Fast Retransmit 

• TCP uses pipelining 

– Will usually send many segments before receiving ACKs for them 

 

• If a receiver detects a missing sequence # 

– It means out-of-order delivery or a lost segment 

– TCP does not send NAKs 

– Instead, acknowledge every segment with the last in-order seq # 

– Each segment received after a missing one 

will generate replies with duplicate ACKs 
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TCP Fast Retransmit 

• Waiting for timeouts causes a delay in retransmission 

– Increases end-to-end latency 

• But a sender can detect segment loss via duplicate ACKs 

– Duplicate ACK: 

Sender receives an ACK for a segment that was already ACKed 

– That means that a segment was received but not the sequentially next one 

• If a sender receives three duplicate ACKs 

– Sender assumes the next segment was lost 

(it could have been received out of order but we’re guessing that’s unlikely 

since three segments after it have been received) 

– Performs a fast retransmit 

• Sends missing segment before the retransmission timer expires 
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GBN or SR? 

• TCP looks like a Go-Back-N protocol 

– Sender only keeps track of smallest sequence # that was 

transmitted but not acknowledged 

 

• But not completely… 

– GBN will retransmit all segments in the window on timeout 

– TCP will retransmit at most one segment (lowest #) 

– TCP will retransmit no segments if it gets ACKs for higher-

numbered segments before a timeout 

– Most TCP receivers will hold out-of-order segments in a buffer 

 

• We can call it a modified Go-Back-N 
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SACK: Selective Acknowledgements 

• Enhancement to TCP to make it be a Selective Repeat 

protocol 

 

• RFC 2018: TCP Selective Acknowledgement Options 

 

• When receiving an out-of-order segment: 

– Send duplicate ACK segment (as before) 

– But append TCP option field containing range of data received 

• List of (start byte, end byte) values 

– Negotiated between hosts at the start of a connection 

• SACK may be used if both hosts support it 
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Flow Control 
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Flow control 

• Incoming data goes to receive buffer 

• What if it comes in faster than the process reads it? 

• We don’t want overflow! 

 

• Flow control: match transmission rate with rate at which 

the app is reading data 
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Flow control 

Receive window 

Sender’s idea of how much free buffer space is available at receiver 

 

 

• Receiver sends window size 

to sender in reply segments 

• If the receiver has no messages 

for the sender and the buffer was full, 

the sender won’t know that the 

buffer is being emptied! 

• Probing 

– If the sender sees the receive window = 0, it will periodically send messages with 1 byte 

of data 

– Receiver will not accept them if the window size is really 0 

– Eventually one of them will cause an ACK reporting a non-zero window 
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Connection Management 
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Connection setup: Three-way handshake 
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Server Client 

Create SYN segment 

Allocate TCP buffers & variables 

Create SYN-ACK segment 

• SYN=1 

• Random initial seq # (client_isn) 

• No data 

• SYN=1 

• ACK = client_isn + 1 

• server_isn = random # 

• No data 

Allocate TCP buffers & variables 

Create ACK segment 

• SYN = 0 

• ACK = server_isn + 1 

• Data optional 

Server knows the client has the sequence # 

Connection is established! 
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SYN Flooding 

• An OS will allocate only a finite # of TCP buffers 

• SYN Flooding attack 

– Send lots of SYN segments but never complete the handshake 

– The OS will not be able to accept connections until those time out 

• SYN Cookies: Dealing with SYN flooding attacks 

– Do not allocate buffers & state when a SYN segment is received 

– Create initial sequence # =  

 hash(src_addr, dest_addr, src_port, dest_port, SECRET) 

– When an ACK comes back, validate the ACK # 

 Compute the hash as before & add 1 

– If valid, then allocate resources necessary for the connection & socket 
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MSS Announcement 

• Remember the Maximum Segment Size (MSS)? 

• For direct-attached networks 

– MSS = MTU of network interface – protocol headers 

• Ethernet MTU of 1500 bytes yields MSS of 1460 (1500-20-20) 

• For destinations beyond the LAN (routing needed) 

– Use TCP Options field to set Maximum Segment Size 

• Set MSS in SYN segment 

– MSS may be obtained from PATH MTU discovery 

• Other side receives this and records it as MSS for sent messages.  

• It can respond with the MSS it wants to use for incoming messages in 

the SYN-ACK message 

– All IP routers must support MSS ≥ 536 bytes 
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Special cases 

• What if the host receives a TCP segment where the port 

numbers or source address do not match any connection? 

– Host sends back a “reset” segment (RST = 1) 

“I don’t have a socket for this” 

 

• For UDP messages to non-receiving ports 

– Send back an ICMP message to the sending host 
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Connection teardown 

• Either side can end a connection 

• Buffers & state variables need to be freed 

• Both sides agree to send no more messages 

 

To close: 

1. Send a TCP segment with the FIN bit set (FIN = Finish) 

• You are saying “I will not send any more data on this connection” 

2. Other side acknowledges this 

3. Other side then agrees to close the connection 

• Sends a TCP segment with the FIN bit set 

4. You acknowledge receipt of this 

• Then wait (TIME_WAIT state) to ensure that your ACK had time to get to the 

other side and that any stray segments for the connection have been received 

– Wait time = 2 × maximum segment lifetime (timeout interval × 2) 

– Opportunity to resend final ACK in case it is lost 
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Connection teardown 
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Host B Host A 

Receive ACK to the close request 

Set the TIMEWAIT timer 

FIN=1 

FIN_WAIT_1 state ACK 

CLOSE_WAIT state 

Receive close request 

Host requests to close the connection 

LAST_ACK state Receive ACK to the close request 

TIME_WAIT state 

FIN_WAIT_2 state 

Wait until we’re sure the 

remote side received the final ACK 

ACK 

CLOSED state 

Final ACK 

CLOSED state 

(B may still send data) 
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TCP Congestion Control 
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Congestion control 

• Congestion control goal 

Limit rate at which a sender sends traffic based on congestion in the network 

 

(Flow control goal was: limit traffic based on remote side’s ability to process) 

 

• Must use end-to-end mechanisms 

– The network gives us no information 

– We need to infer that the network is congested 

– Generally, more packet loss = more congestion 
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Regulating Rate: Congestion Window 

• Window size = # bytes we can send without waiting for ACKs 

• Receive Window (rwnd) – flow control request from receiver 

– # bytes that a receiver is willing to receive (reported in header) 

• Congestion Window (cwnd) – rate control by sender 

– Window size to limit the rate at which TCP sender will transmit 

• TCP will use window size = min(rwnd, cwnd) 

– These are per-connection values! 

 

• How does a window regulate transmission rate? 

– If we ignore loss and delays, we transmit cwnd bytes before waiting 

– The time we wait is the round-trip time (RTT) 

 Transmission rate ≈ cwnd / RTT bytes/second 
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 Basic mechanisms 

• Timeout or three duplicate ACKs 

– Assume segment loss → decrease cwnd = decrease sending rate 

 

• Sender receives expected ACKs 

– Assume no congestion → increase cwnd = increase sending rate 

 

• ACKs pace the transmission of segments 

– ACKs trigger increase in cwnd size 

– If ACKs arrive slowly (slow network) → cwnd increases slowly 

– TCP is self-clocking 

• Bandwidth probing 

– Increase rate in response to arriving ACKs  

– … until loss occurs; then back off and start probing (increasing rate) again 
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Basic Principle: Additive Increase (AI) 

If we feel we have extra network capacity 

 

– Increase window by 1 segment each RTT 

• If we successfully send cwnd bytes, increase window by 1 MSS 

• That means increase window fractionally for each ACK 

   cwnd = cwnd + [ MSS ÷ (cwnd/MSS) ] 

 

– This is Additive (linear) Increase 
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Basic Principle: Multiplicative Decrease (MD) 

If we feel we have congestion (timeout due to lost segment) 

 

– Decrease cwnd by halving it 

   cwnd = cwnd ÷ 2 

– This is Multiplicative decrease 

 

Additive Increase / Multiplicative Decrease (AIMD) 

 

AIMD is a necessary condition for TCP congestion control to be stable 
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TCP Congestion Control 

Three Parts: 

1. Slow Start 

2. Congestion Avoidance 

3. Fast Recovery  

56 

REQUIRED 

RECOMMENDED 

REQUIRED 
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Speeding things up at the start 

AIMD gives us linear ramps 

– Transmission follows a sawtooth pattern 

 

 

 

 

 

 

 

– But it can take a long time to ramp up the transmission speed  
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TCP Slow Start 

• Prevent the slow ramp at startup 

• Start with an initial exponential increase in cwnd size 

 

 

 

 

 

 

This is what TCP Slow Start is about … it’s actually an accelerated start 

– Avoid the slow start of a linear ramp 

– … but it’s still slower than just sending the rwnd # of bytes 

–   … but doing so might cause congestion and we won’t know the threshold 
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TCP Slow Start 

• Sender-based flow control 

• Rate of acknowledgements determines rate of transmission 

• For a new connection, initial cwnd = 1 MSS 

Example: 

 

 

• Increase cwnd by 1 MSS for each acknowledged segment 
Start with 1 MSS (get 1 ACK) 

– Then cwnd = 2 MSS (get 2 ACKs) 

– Then cwnd = 4 MSS (get 4 ACKs) 

– Then cwnd = 8 MSS … 

• Transmission rate grows exponentially 

– Doubles every RTT 
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Two events bring us to this state: 

1. Cold start (start of connection) 

2. Timeout  

 

If MSS = 1460 bytes and RTT = 90 ms 

Transmission rate ≈ 130 kbps 

This is stop-and-wait 

performance! 
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TCP Slow Start 

• “Slow Start” actually grows quickly! 

• When do we stop going faster? 

– On timeout (we assume this is due to congestion) 

• Sender sets cwnd=1 and restarts Slow Start process 

• Set slow start threshold, ssthresh = cwnd/2 

– When cwnd ≥ ssthresh 

• switch to Congestion Avoidance mode (slow the ramp) 

• This is not set at cold start; we will time out 

– When three duplicate ACKs received 

(following a normal ACK for a segment) 

• Perform Fast Retransmit of segment 

• Enter Fast Recovery State 
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Congestion Avoidance 

• cwnd  is ½ of the size when we saw congestion 

– We think that’s safe 

– … it worked before but doubling it gave a timeout – so we’re close 

 

• Increase rate additively: 1 MSS each RTT 

– # segments in window = cwnd/MSS 

• E.g., if MSS = 1460 bytes & cwnd= 23360 bytes, cwnd/MSS =16  

 

– Each ACK means we increase cwnd by MSS/(cwnd/MSS) 

• E.g., after 16 ACKs, cwnd increased by 1 MSS 

= increase cwnd by 1/16 MSS (~91 bytes) for each received ACK 

 

• Now we have a linear growth in transmission speed 
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Slow Start + Congestion Avoidance 

• Start with Slow Start 

• On timeout, save ssthresh; restart Slow Start 

• If ssthresh is reached, switch to Congestion Avoidance 
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timeout at cwnd = 32 

set ssthresh = 32/2 = 16 

Slow Start Slow Start 

ssthresh reached 

Switch to Congestion Avoidance 

Slow Start Slow Start Congestion Avoidance 
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Congestion Avoidance 

• When do we stop increasing cwnd? 

• When we get a timeout 

– Set ssthresh to ½ cwnd when the loss occurred 

– Set cwnd set to 1 MSS and do a Slow Start 

 

• When we receive 3 duplicate ACKs 

– We’re guessing segment loss BUT the network is delivering segments 

– Otherwise the receiver would not send ACKs 

– ssthresh = cwnd / 2 

– cwnd = ssthresh + (3 · MSS) 

– We essentially ½ our transmission rate 

– Enter Fast Recovery state 

63 

(3 · MSS) accounts for the three duplicate ACKs 
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Fast Recovery 

• Fast Retransmit was used when duplicate ACKs received 

– Avoid waiting for a timeout 

• Duplicate ACKs means data is flowing to the receiver 

– ACKs are generated only when a segment is received 

• Might indicate that we don’t have congestion and the loss 

was a rare event. 

• Don’t reduce flow abruptly by going into Slow Start 

– Adjust cwnd = cwnd / 2 
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Fast Recovery 

• Increase cwnd by 1 MSS for each duplicate ACK received 

– Increase transmission rate exponentially – just like slow start 

– Each ACK means that the receiver received a segment … data is flowing! 

 

• When ACK arrives for the missing segment (non-duplicate ACK) 

– Reset cwnd to ssthresh (back to where it was) 

– Enter Congestion Avoidance state 

• Resumes transmission with linear growth of the window 

 

• If timeout occurs 

– ssthresh = cwnd / 2 

– cwnd = 1 

– Do a Slow Start 
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Why the name? 

• Why do we call it Fast Recovery? 

 

– Prior to its use, TCP would set cwnd = 1 and enter Slow Start for 

both timeouts as well as triple duplicate ACKs 

 

• We try to distinguish casual packet loss from packet loss 

due to congestion 
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TCP congestion control state summary 
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Fast 

Recovery 

Congestion 

Avoidance 
Slow Start 

Multiplicative increase Additive increase 

Multiplicative increase 

(Temporary) 

Timeouts should be rare: we expect most segment losses to be detected by triple ACKs 

TCP is effectively an Additive Increase / Multiplicative Decrease (AIMD) form of 

congestion control 

Triple duplicate ACK 

Multiplicative Decrease  

Triple duplicate ACK 

Multiplicative Decrease  

Timeout: restart cwnd = 1 

Timeout: restart cwnd = 1 

ssthresh reached 
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ssthresh = cwnd / 2 

cwnd = ssthresh + 3∙MSS 

ssthresh = cwnd / 2 

cwnd = ssthresh + 3∙MSS 



The end 
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