
Internet Technology 
02. Network Protocol Layers & Sockets 

 

 

 

Paul Krzyzanowski 

Rutgers University 

Spring 2016 

1 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Protocols 

2 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



What’s in the data? 

• For effective communication 

– same language, same conventions 

 

• For computers: 

– electrical encoding of data 

– where is the start of the packet? 

– which bits contain the length? 

– is there a checksum? where is it? 

how is it computed? 

– what is the format of an address? 

– byte ordering 

 

3 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Protocols 

 

 

 

These instructions & conventions are known as protocols 

 

Protocols encompass data formats, order of messages, responses 

4 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Layering 

To ease software development and maximize flexibility: 

 

– Network protocols are generally organized in layers 

– Replace one layer without replacing surrounding layers 

– Higher-level software does not have to know how to format an 

Ethernet packet 

     … or even know that Ethernet is being used 

 

5 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Protocols 

6 

Exist at different levels 

understand format of address 

and how to compute a checksum 

 

 

 

request web page 

humans vs. whales 

different wavelengths 

 

 

 

French vs. Hungarian 

versus 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Layering 

Most popular model of guiding 

(not specifying) protocol layers is 

 

  OSI reference model 

 

Adopted and created by ISO 

 

7 layers of protocols 

7 

OSI = Open Systems Interconnection 

From the ISO = International Organization for Standardization 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



OSI Reference Model: Layer 1 

Transmits and receives raw data to 

communication medium 

Does not care about contents 

Media, voltage levels, speed, 

connectors 

Physical 1 

Examples: USB, Bluetooth, 802.11 

8 

Deals with representing bits 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Data Link 

OSI Reference Model: Layer 2 

Detects and corrects errors 

Organizes data into frames before 

passing it down. Sequences 

packets (if necessary) 

Accepts acknowledgements from 

immediate receiver 

Physical 1 

2 

Examples: Ethernet MAC, PPP 

9 

Deals with frames 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Network 

Data Link 

OSI Reference Model: Layer 3 

Relay and route information to 

destination 

Manage journey of datagrams and 

figure out intermediate hops (if 

needed) 

Physical 1 

2 

3 

Examples: IP, X.25 

10 

Deals with datagrams 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Transport 

Network 

Data Link 

OSI Reference Model: Layer 4 

Provides an interface for end-to-
end (application-to-application) 
communication: sends & receives 
segments of data. Manages flow 
control. May include end-to-end 
reliability 

Network interface is similar to a 
mailbox 

 

Physical 1 

2 

3 

4 

Examples: TCP, UDP 

11 

Deals with segments 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Session 

Transport 

Network 

Data Link 

OSI Reference Model: Layer 5 

Services to coordinate dialogue 
and manage data exchange 

Software implemented switch 

Manage multiple logical 
connections 

Keep track of who is talking: 
establish & end communications 

Physical 1 

2 

3 

4 

5 

Examples: HTTP 1.1, SSL 

12 

Deals with data streams 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Presentation 

Session 

Transport 

Network 

Data Link 

OSI Reference Model: Layer 6 

Data representation 

Concerned with the meaning of 

data bits 

Convert between machine 

representations 

Physical 1 

2 

3 

4 

5 

6 

Examples: 
 XDR, ASN.1, MIME, XML 

13 

Deals with objects 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Application 

Presentation 

Session 

Transport 

Network 

Data Link 

OSI Reference Model: Layer 7 

Collection of application-specific 
protocols 

Physical 1 

2 

3 

4 

5 

6 

7 

Examples: 
  web (HTTP) 
  email (SMTP, POP, IMAP) 
  file transfer (FTP) 
  directory services (LDAP) 

14 

Deals with app-specific 

protocols 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



IP vs. OSI stack 

15 

Application 

Transport 

Network 

Data Link 

Physical 

Application 

Presentation 

Session 

Transport 

Network 

Data Link 

Physical 

Internet protocol stack OSI protocol stack 

1 

2 

3 

4 

5 

6 

7 

1 

2 

3 

4 

5 

6 

7 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



A layer communicates with its counterpart 

16 

Application 

Presentation 

Session 

Transport 

Network 

Data Link 

Physical 

Application 

Presentation 

Session 

Transport 

Network 

Data Link 

Physical 1 

2 

3 

4 

5 

6 

7 

Logical View 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



A layer communicates with its counterpart 

17 

Application 

Presentation 

Session 

Transport 

Network 

Data Link 

Physical 

Application 

Presentation 

Session 

Transport 

Network 

Data Link 

Physical 1 

2 

3 

4 

5 

6 

7 

Logical View 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



A layer communicates with its counterpart 

18 

Application 

Presentation 

Session 

Transport 

Network 

Data Link 

Physical 

Application 

Presentation 

Session 

Transport 

Network 

Data Link 

Physical 1 

2 

3 

4 

5 

6 

7 

Logical View 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



A layer communicates with its counterpart 

19 

Application 

Presentation 

Session 

Transport 

Network 

Data Link 

Physical 

Application 

Presentation 

Session 

Transport 

Network 

Data Link 

Physical 1 

2 

3 

4 

5 

6 

7 

Logical View 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



But really traverses the stack 

20 

Application 

Presentation 

Session 

Transport 

Network 

Data Link 

Physical 

Application 

Presentation 

Session 

Transport 

Network 

Data Link 

Physical 1 

2 

3 

4 

5 

6 

7 

What’s really happening 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Encapsulation 

At any layer 

– The higher level protocol headers are just treated like data 

– Lower level protocol headers can be ignored 

February 1, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 21 

Ethernet IP TCP HTTP HTTP message 



The Application Layer 

22 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Writing network applications 

Network applications communicate with each other over a network 

• Regular processes running on computers 

– Any process can access the network 

• Use a network API to communicate 

– The app developer does not have to program the lower layers 

• Speak a well-defined application-layer protocol 

– If the protocol is well-defined, the implementation language does not 

matter 

 E.g., Java on one side, C on the other 

 

February 1, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 23 



Application Architectures 

• Client-server 

 

• Peer-to-peer (P2P) 

 

• Hybrid 

24 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Client-Server architecture 

• Clients send requests to a server 

• The server is always on and processes requests from 

clients 

• Clients do not communicate with other clients 

• Examples: 

– FTP, web, email  

February 1, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 25 

clients 

servers 



Peer-to-Peer (P2P) architecture 

• Little or no reliance on servers 

• One machine talks to another (peers) 

• Peers are not owned by the service provider but by end 

users 

• Self-scalability 

– System can process more workload as more machines join 

• Examples 

– BitTorrent, Skype 

February 1, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 26 

peer 

peer 

peer 
peer 

peer 



Hybrid architecture 

• Many peer-to-peer architectures still rely on a server 

– Look up, track users 

– Track content 

– Coordinate access 

• But traffic-intensive workloads are delegated to peers 

February 1, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 27 

servers 

peer 

peer 

peer 

peer 
peer 



It’s always (mostly) client-server! 

Even for P2P architectures, we may use client-server 

terminology 

– Client: process making a request  

– Server: process fulfilling the request  

28 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Network API 

• App developers need access to the network 

• A Network Application Programming Interface (API) 

provides this 

– Core services provided by the operating system 

• Operating System controls access to resources (the network) 

– Libraries handle the rest 

February 1, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 29 



What do we need as programmers? 

• Reliable data transfer 

– Reliable delivery of a stream of bytes from one machine to another 

– In-order message delivery 

– Loss-tolerant applications 

• Can handle unreliable data streams 

• Throughput 

– Bandwidth sensitive applications: require a particular bitrate 

– Elastic applications: can adapt to available bitrate 

• Delay & Jitter Control 

– Jitter = variation in delay 

• Security 

– Authentication of endpoints, encryption of content, assured data 

integrity 

 30 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



What IP gives us 

IP give us two transport protocols 

– TCP: Transmission Control Protocol 

• Connection-oriented service 

– Operating system keeps state 

• Full-duplex connection: both sides can send messages over the same link 

• Reliable data transfer: the protocol handles retransmission 

• In-order data transfer: the protocol keeps track of sequence numbers 

– UDP: User Datagram Protocol 

• Connectionless service: lightweight transport layer over IP 

• Data may be lost 

• Data may arrive out of sequence 

• Checksum for corrupt data: operating system drops bad packets 

 

31 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



What IP does not give us 

• Throughput (bandwidth) control 

 

• Delay and jitter control 

 

• Security 

 

32 

We’ll see how these were 

addressed later in the 

course 

Usually addressed at the 

application with protocols such as 

SSL. Stay tuned for VPNs… 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Addressing machines 

(We’ll examine IP addresses in depth later) 

Machine addresses 

– We identify machines with IP addresses: 32-bit numbers 

– Example 

 cs.rutgers.edu = 128.6.4.2 = 0x80060402 

 

February 1, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 33 

0x80 0x06 0x04 0x02 



Addressing applications 

Communication endpoint at the machine 

– Port number: 16-bit value 

– Port number = transport endpoint 

• Allows application-application communication 

• Identifies a specific data stream 

 

– Some services use well-known port numbers (0 – 1023) 

• IANA: Internet Assigned Numbers Authority (www.iana.org) 

• Also see the file /etc/services 

 ftp: 21/TCP ssh: 22/tcp smtp: 25/tcp http: 80/tcp ntp: 123/udp 

– Ports for proprietary apps: 1024 – 49151 

– Dynamic/private ports: 49152 – 65535   

 

 

 
34 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



The Application Layer: 

Sockets 

35 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Sockets 

• Dominant API for transport layer connectivity 

• Created at UC Berkeley for 4.2BSD Unix (1983) 

• Design goals 

– Communication between processes should not depend on whether 

they are on the same machine 

– Communication should be efficient 

– Interface should be compatible with files 

– Support different protocols and naming conventions 

• Sockets is not just for the Internet Protocol family 

 

 

36 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



What is a socket? 

Abstract object from which messages are sent and received 

– Looks like a file descriptor 

 

– Application can select particular style of communication 

• Stream (connection-oriented), datagram (connectionless), 

message-based, in-order delivery 

 

– Unrelated processes should be able to locate communication 

endpoints 

• Sockets can have a name 

• Name should be meaningful in the communications domain 

– E.g., Address & port for IP communications 

 

37 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



How are sockets used? 

38 

Client: web browser Server: web server 

Send HTTP request message 

to get a page 

Receive HTTP request message 

Process HTTP request 

Send HTTP response message 

Receive HTTP response message 

Display a page 

ti
m

e
 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Connection-Oriented (TCP) socket operations 

39 

Create a socket 

Name the socket 

(assign local address, port) 

Connect to the other side 

read / write byte streams 

close the socket 

Create a socket 

Name the socket 

(assign local address, port) 

Set the socket for listening 

Wait for and accept a 

connection; get a socket for 

the connection 

close the socket 

read / write byte streams 

close the listening socket 

Client 
Server 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Connectionless (UDP) socket operations 

40 

Create a socket 

Name the socket 

(assign local address, port) 

Send a message 

Receive a message 

close the socket 

Create a socket 

Name the socket 

(assign local address, port) 

close the socket 

Send a message 

Receive a message 

Client Server 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



The sockets system call interface 

41 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



POSIX system call interface 

42 

System call Function 

socket Create a socket 

bind Associate an address with a socket 

listen Set the socket to listen for connections 

accept Wait for incoming connections 

connect Connect to a socket on the server 

read/write, 

sendto/recvfrom, 

sendmsg/recvmsg 

Exchange data 

close/shutdown Close the connection 

s
e

rv
e

r 
c
lie

n
t 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Step 1 (client & server) 

Create a socket 

int s = socket(domain, type, protocol) 

AF_INET SOCK_STREAM 

SOCK_DGRAM 
useful if some families have 

more than one protocol to 

support a given service. 

0: unspecified 

Conceptually similar to open BUT 

- open creates a new reference to a possibly existing object 

- socket creates a new instance of an object 

Address Family: group of 

protocols for communication. 

AF_INET is for IPv4 

AF_INET6 is IPv6 

AF_BTH is Bluetooth 

Type of protocol within the family. 

SOCK_STREAM: reliable, in-order, 2-way. 

TCP/IP 

SOCK_DGRAM: datagrams (UDP/IP) 

SOCK_RAW: “raw” – allows app to modify 

the network layer header 

New socket 

43 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Step 2 (client & server) 

Name the socket (assign address, port) 

int error = bind(s, addr, addrlen) 

socket Address structure 

struct sockaddr* 

length of address 

structure 

The socket from the socket 

system call. 
This is a data structure that 

makes sense for whatever 

address family you selected. 

Naming for an IP socket is the process of assigning our address to the socket. 

The address is the full transport address: the IP address of the network interface 

as well as the UDP or TCP port number 

44 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Step 3a (server) 

Set socket to be able to accept connections 

int error = listen(s, backlog) 

socket queue length for pending 

connections 

The socket from the socket 

system call. 

Number of connections you’ll allow between 

accept system calls 

The socket that the server created with socket is now configured to accept new 

connections. This socket will only be used for accepting connections. Data will 

flow onto another socket. 

45 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Step 3b (server) 

Wait for a connection from client 

int snew = accept(s, clntaddr, &clntalen) 

socket pointer to address structure length of address 

structure 

Block the process until an incoming connection comes in. 

This tells you where the socket 

came from: full transport 

address. 

new socket 

for this communication session 

46 

This is the listening 

socket 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Step 3 (client) 

Connect to server 

int error = connect(s, svraddr, svraddrlen) 

socket address structure 

struct sockaddr* 

length of address 

structure 

The socket from which we’re 

connecting. 
Full transport address of the 

destination: address and port 

number of the service. 

The client can send a connection request to the server once the server did 

a listen and is waiting for accept.  

47 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Step 4. Exchange data 

read/write system calls (same as for file systems) 

 

send/recv system calls 

 int send(int s, void *msg, int len, uint flags); 

 int recv(int s, void *buf, int len, uint flags); 

 

sendto/recvfrom system calls 

 int sendto(int s, void *msg, int len, uint flags, 

  struct sockaddr *to, int tolen); 

 int recvfrom(int s, void *buf, int len, uint flags, 

  struct sockaddr *from, int *fromlen) 

 

sendmsg/recvmsg system calls 

 int sendmsg(int s, struct msghdr *msg, uint flags); 

 int recvmsg(int s, struct msghdr *msg, uint flags); 

 

fo
r 

c
o
n
n
e
c
ti
o
n

-o
ri
e
n
te

d
 

s
e
rv

ic
e

 

Like read and write but these 

support extra flags, such as 

bypassing routing or processing out 

of band data. Not all sockets 

support these. 

If we’re using UDP 

(connectionless), we don’t 

need to do connect, listen, 

accept. These calls allows 

you to specify the 

destination address 

(sendto, sendmsg) to send 

a message and get the 

source address (recvfrom, 

recvmsg) when receiving a 

message. 

48 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Step 5 

Close connection 

shutdown(s, how) 

how: 

SHUT_RD (0): can send but not receive 

SHUT_WR (1): cannot send more data 

SHUT_RDWR (2): cannot send or receive (=0+1) 

You can use the regular close system call too, which does a complete 

shutdown, the same as shutdown(s, SHUT_RDWR). 

49 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Java provides shortcuts that combine calls 

Example 

 

50 

Socket s = new Socket(“www.rutgers.edu”, 2211) 

int s = socket(AF_INET, SOCK_STREAM, 0); 

struct sockaddr_in myaddr; /* initialize address structure */ 

myaddr.sin_family = AF_INET; 

myaddr.sin_addr.s_addr = htonl(INADDR_ANY); 

myaddr.sin_port = htons(0); 

 

bind(s, (struct sockaddr *)&myaddr, sizeof(myaddr)); 

/* look up the server's address 

struct hostent *hp; /* host information */ 

struct sockaddr_in servaddr;    /* server address */ 

 

memset((char*)&servaddr, 0, sizeof(servaddr)); 

servaddr.sin_family = AF_INET; 

servaddr.sin_port = htons(2211); 

hp = gethostbyname(“www.rutgers.edu”); 

 

if (connect(fd, (struct sockaddr *)&servaddr, sizeof(servaddr)) < 0) { 

 /* connect failed */ 

} 

Java 

C 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Using sockets in Java 

• java.net package 

– Socket class 

• Deals with sockets used for TCP/IP communication 

– ServerSocket class 

• Deals with sockets used for accepting connections 

– DatagramSocket class 

• Deals with datagram packets (UDP/IP) 

 

• Both Socket and ServerSocket rely on the SocketImpl 

class to actually implement sockets 

– But you don’t have to think about that as a programmer 

 

51 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Create a socket for listening: server 

Server: 

– create, name, and listen are combined into one method 

– ServerSocket constructor 

 

 

 

 

 

Several other flavors (see API reference) 

 

52 

ServerSocket svc = new ServerSocket(80, 5); 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 

backlog port 



1. Server: create a socket for listening 

53 

Client: web browser Server: web server 

Send HTTP request message 

to get a page 
Receive HTTP request message 

Process HTTP request 

Send HTTP response message 

Receive HTTP response message 

Display a page 

ti
m

e
 

Server Socket svc = new ServerSocket(80, 5); 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Server: wait for (accept) a connection 

• accept method of ServerSocket 

– block until connection arrives 

– return a Socket 

 

 

 

This is a new socket for this “connection” 

February 1, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 54 

ServerSocket svc = new ServerSocket(80, 5); 

Socket req = svc.accept(); 



2. Server: wait for a connection (blocking) 

55 

Client: web browser Server: web server 

Send HTTP request message 

to get a page 
Receive HTTP request message 

Process HTTP request 

Send HTTP response message 

Receive HTTP response message 

Display a page 

ti
m

e
 

Server Socket svc = new ServerSocket(80); 

Socket req = svc.accept();  

Block until an incoming connection comes in 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Create a socket: client 

Client: 

– create, name, and connect operations are combined into one 

method 

– Socket constructor 

 

 

 

 

 

 

Several other flavors (see API reference) 

 

56 

host port 

Socket s = new Socket(“www.rutgers.edu”, 2211); 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



3. Client: connect to server socket (blocking) 

57 

Client: web browser Server: web server 

ti
m

e
 

Send HTTP request message 

to get a page 

Receive HTTP request message 

Process HTTP request 

Send HTTP response message 
Receive HTTP response message 

Display a page 

Server Socket svc = new ServerSocket(80, 5); 

Blocks until connection is set up 

Socket req = svc.accept();  
Socket s = new Socket(“pk.org”, 80); 

Receive connection request from client 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



3a. Connection accepted 

58 

Client: web browser Server: web server 

Send HTTP request message 

to get a page 

Receive HTTP request message 

Process HTTP request 

Send HTTP response message 
Receive HTTP response message 

Display a page 

ti
m

e
 

Server Socket svc = new ServerSocket(80, 5); 

Socket s = new Socket(“pk.org”, 80); 

Connection is established Connection is accepted 

Socket req = svc.accept();  

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Exchange data 

• Obtain InputStream and OutputStream from Socket 

– layer whatever you need on top of them 

• e.g. DataInputStream, PrintStream, BufferedReader, … 

 

59 

Example: 

 
client 

DataInputStream in = new DataInputStream(s.getInputStream()); 

PrintStream out = new PrintStream(s.getOutputStream()); 

 

server 

DataInputStream in = new BufferedReader( 

  new InputStreamReader(req.getInputStream())); 

String line = in.readLine(); 

DataOutputStream out = new DataOutputStream( 

    req.getOutputStream()); 

out.writeBytes(mystring + ’\n’) 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



4. Perform I/O (read, write) 

60 

Client: web browser Server: web server 

Send HTTP request message 

to get a page 

Receive HTTP request message 

Process HTTP request 

Send HTTP response message 
Receive HTTP response message 

Display a page 

ti
m

e
 

Server Socket svc = new ServerSocket(80, 5); 

Socket s = new Socket(“pk.org”, 80); 
Socket req = svc.accept();  

InputStream s_in = s.getInputStream(); 

OutputStream s_out = s.getOutputStream(); 

InputStream r_in = req.getInputStream(); 

OutputStream r_out = req.getOutputStream(); 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Close the sockets 

Close input and output streams first, then the socket 

 

61 

client: 
 

try { 

 out.close(); 

 in.close(); 

 s.close(); 

} catch (IOException e) {} 

 

server: 
 

try { 

 out.close(); 

 in.close(); 

 req.close();    // close connection socket 

 svc.close();    // close ServerSocket 

} catch (IOException e) {} 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



TCP vs. UDP sockets 

• TCP (“stream sockets”) 

– Requires a connection (connection-oriented) 

– Dedicated socket for accepting connections 

– Communication socket provides a bi-directional link 

– Byte-stream: no message boundaries 

 

• UDP (“datagram sockets”) 

– Connectionless: you can just send a message 

– Data send in discrete packets (messages) 

 

62 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



UDP workflow 

63 

Client Server 

Send request packet 

Wait for request packet 

Process request 

Send response packet 

Receive response packet 

ti
m

e
 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Send a packet 

64 

/* read a line from the user */ 

BufferedReader user_input = new BufferedReader(new InputStreamReader(System.in)); 

String line = user_input.readLine(); 

 

/* convert it to an array of bytes */ 

byte[] out_data = line.getBytes(); 

 

/* create a datagram socket */ 

DatagramSocket s = new DatagramSocket(); 

 

InetAddress addr = InetAddress.getByName(“test.pk.org”);  /* look up IP address */ 

int port = 1234;  /* port number */ 

 

/* construct the packet */ 

DatagramPacket out_packet = new DatagramPacket(data, data.length, addr, port); 

 

/* send it out on the socket */ 

s.send(out_packet); 

 

 
CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Receive a packet 

65 

byte in_buf[] new byte[1500]; 

int port = 4321;    /* port  number on which we want to receive data */ 

 

/* create a datagram socket */ 

DatagramSocket s = new DatagramSocket(port); 

 

/* create the packet for receiving the data*/ 

DatagramPacket in_packet = new DatagramPacket(in_buf, in_buf.length); 

 

/* get the packet from the socket*/ 

s.receive(in_packet); 

 

System.out.println( 

 “received data [” + new String(in_packet.getData(), 0, in_packet.getLength()) + “]” + 

 “ from address: “ + in_packet.getAddress() +  

 “ port: “ + in_packet.getPort(); 

 

 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Concurrency & Threads 

66 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Threads 

• Designed to support multiple flows of execution 

in one process 

• Each thread is scheduled by the operating system’s 

scheduler 

• Each thread has its own stack 

– Local variables are local to each thread 

• Shared heap 

– Global and static variables and allocated memory are shared 

• Multi-core processors make threading attractive 

– Two or more threads can run at the same time 

67 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Appeal of threads 

• One process can handle multiple requests at the same time 

– Some threads may be blocked 

– Does not affect the threads that have work to do 

 

• User interactivity possible even if certain events block 

– Examples: 

• disk reads 

• wait for network messages 

• count words 

• justify text 

• check spelling 

 

February 1, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 68 



Java Threads 

• Create a class that extends Thread or  

implements Runnable 

• Instantiate this class or a Thread to run this Runnable 

• When the run method is invoked, it starts a new thread of 

execution 

– After the caller returns, the run method is still running … as a 

separate thread 

– Call join to wait for the run method to terminate (return) 

 

69 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Java Threads example 

February 1, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 70 

/* Worker defines the threads that we’ll create */ 

Class Worker extends Thread { 

Worker(...) {   // constructor 

} 

public void run() { 

/* thread’s work goes here */ 

/* thread exits when run() is done */ 

} 

} 

 

/* other code to start thread */ 

Worker T = new Worker();  // constructor 

 

T.start();   // start new thread in run method 

   // original thread keeps running … 

 

T.join();    // wait for T’s thread to finish. 



Java Threads 

71 

Wait for the thread to exit 

Continue with code after the T.join() 

ti
m

e
 

T= new Worker(…) 

T.start() 

Work… 

T.join() 

new object created 

run() 

Thread work… 

Thread terminates           return; 

Main thread New thread 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Example of threads in a server 

• Main thread 

– Waits for new requests from clients 

– After an accept, create a worker thread to handle the socket 

connection for that client 

• Worker thread handles the request for the client 

– Returns when done – thread disappears 

February 1, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 72 



Example of threads in a server 

February 1, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 73 

for (;;) { 

 Socket r = ss.accept(…)     /* wait for a new connection */ 

 doWork worker = new doWork(r); /* create the object */ 

 Thread t = new Thread(worker); /* create the thread */ 

 t.start();      /* start running it */ 

}        /* … and loop back to wait for the next connection */ 

 

public class doWork implements Runnable { 

 private Socket sock; 

  

 doWork(Socket sock) { 

  this.sock = sock; 

 } 

 

 public void run() { /* here’s where the work is done */ 

  DataInputStream in = new DataInputStream(sock.getInputStream()); 

  PrintStream out = new PrintStream(server.getOutputStream()); 

  /* do the work */ 

  sock.close(); 

 } 

} 

This example shows threads with “implements Runnable” 



Threads allow concurrent access 

• Threads allow shared access to shared data 

• If two threads access the the same data at the same time, 

results can be undefined 

February 1, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 74 



Race conditions 

A race condition is a bug: 

– The outcome of concurrent threads is unexpectedly dependent on 

a specific sequence of events 

Example 

– Your current bank balance is $1,000 

– Withdraw $500 from an ATM machine while a $5,000 direct deposit 

is coming in 

 

75 

Withdrawal 

• Read account balance 

• Subtract $500 

• Write account balance 

Deposit 

• Read account balance 

• Add $5,000 

• Write account balance 

Possible outcomes: 

Total balance = $5500 (✓), $500 (X), $6000 (X) 

CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 



Synchronization 

• Synchronization: techniques to avoid race conditions 

– Prevent concurrent access 

• Operating systems may give us: 

– Semaphores, messages, condition variables, event counters 

• Synchronization in Java 

– Add the keyword synchronized to a method 

• JVM ensures that at most one thread can execute that method at a time 

February 1, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 76 

Account { 

 double total; 

 public synchronized void withdraw(double amount) { 

  this.total -= amount; 

 } 

 public synchronized void deposit(double amount) { 

  this.total += amount; 

 } 

} 

These two methods will 

never execute concurrently 

if they’re in the same object 



Finer-grain synchronization: blocks 

• The synchronized keyword provides method-level mutual 

exclusion 

– Among all methods that are synchronized, only 1 can execute at a time 

• Synchronized block: create a mutex for a region 

February 1, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 77 

Account { 

 double total; 

 public void withdraw(double amount) { 

  synchronized(this.total) { 

   this.total -= amount; 

  } 

 } 

 public void deposit(double amount) { 

  synchronized(this.total) { 

   this.total += amount; 

  } 

 } 

} 

These two blocks 

will never execute 

concurrently 

this.total becomes 

a monitor object. 

 

Only one thread 

can execute in a 

block synchronized 

on the same 

monitor object 



The end 

78 CS 352 © 2013-2016 Paul Krzyzanowski February 1, 2016 


