
Establishing Accounting Principles

as Invariants of Financial Systems

Naftaly H. Minsky∗

minsky@cs.rutgers.edu
Department of Computer Science

Rutgers University
New Brunswick, NJ, 08903 USA

March 28, 2001

∗Work supported in part by NSF grants No. CCR-9710575 and No. CCR-98-03698

1

Abstract

An enterprise that uses evolving software is susceptible to destructive
and even disastrous effects caused either by inadvertent errors, or by ma-
licious attacks by the programmers employed to maintain this software.
It is my thesis that these perils of evolving software can often be tamed
by ensuring that suitable overarching principles are maintained as invari-
ants of the evolution of a given software system. In particular, it would be
invaluable to ensure that a financial system satisfies the accounting princi-
ple of double-entry bookkeeping, throughout its evolutionary lifetime. We
define a concept of evolution-invariant, discuss its usefulness, and show
how the above mentioned accounting principles can be established as such
invariants.

Keywords: perils of software evolution, evolution-invariants, law-
governed interaction, accounting principles.

2

1 Introduction

The inevitable process of software evolution carries serious perils—particularly
when the software is embedded in some critical enterprise, such as a power plant
or a financial establishment, and when the software evolves in its operational
context. The perils of such an evolution are due to the ease of making changes
in software, combined with the ability of even a small change to cause large
changes in system’s behavior. An enterprise that uses an evolving software
is thus susceptible to destructive, and even disastrous effects caused either by
inadvertent errors, or by malicious attacks by the programmers employed to
maintain this software.

These dangers are becoming progressively more difficult to manage as the
software technology is undergoing a transition from monolithic systems, con-
structed according to a single overall design and managed by a single organiza-
tion, into conglomerates of semi-autonomous, heterogeneous and independently
designed subsystems, constructed with little, if any, knowledge of each other,
and often managed and maintained by different organizations. Such software
conglomerates, a rarity just few years ago, are becoming more common due
to several factors, including: the increased use of COTS, the use of services
available via the internet, and the need to support inherently conglomerate
institutions, such as large global corporations.

It is my thesis that the perils of software evolution can often be tamed—
although not eradicated— by ensuring that some broad principles of a given
system be established as invariants of its evolution. For example, it could be
useful to partition a system into a set of divisions, constructing permanent—i.e.,
evolution-invariant—“firewalls” between them, which will limit the effect that
one division can have on the others.

Consider, in particular, a computerized financial enterprise. It has been
argued by McKeeman in a paper entitled “Mechanizing Banker’ Morality” [6],
that certain broad principles are so critical to the safety and reliability of such
enterprises, that they should not be entrusted to the evolving software running
them, but that they should be “embedded so deeply into the computer, that
their violation is improbable to a degree approaching impossibility”. The critical
principles cited by McKeeman are:

Principle 1 (double entry bookkeeping) Money always flows from one ac-
count to another, but cannot appear from nowhere, or disappear into thin air.

Principle 2 (auditing) Financial activities can be monitored by auditors, with-
out any explicit cooperation with (or the knowledge of) the system being exam-
ined, or its programmers.

It is self evident that for software system to have a property that is invariant
of its own evolution, the software must be subject to some higher authority,
which ensures this particular property. There are two common mechanisms for

3

establishing such an authority over software, which are very effective, but of a
limited range of applicability.

The first such mechanism is the hardware (or firmware) of a computer. Per-
haps the most important case of an hardware-induced invariant is the distinction
between master mode and user mode, which is the basis for the permanent fire-
wall erected in most modern operating system between the kernel and all user
code. Hardware enforcement is also what McKeeman had in mind for mecha-
nizing his “bankers’ morality.”

The second common mechanism for establishing software invariants is the
programming language in which a system is written. Examples of useful language-
induced invariants abound. They include such things as scope rules, strong
typing, and encapsulation. Another case of language induced invariant is the
inability of Java applets to access the file system of the host machine.

But computer hardware and programming languages, as mechanisms for
establishing invariants in software, have several limitations: First, only very few
types of invariants can be built into a given machine, or even into a programming
language. Second, an invariant built into the very fabric of a machine or a
language tends to be rigid, and not easily adaptable to an application at hand.
Finally, these mechanisms are not effective for conglomerate distributed systems,
which may be written in a variety of different languages, and may run on a
variety of different machines.

In this paper we employ more flexible and general means for establishing in-
variants of evolving systems. We start, in Section 2, by introducing an abstract
concept of evolving systems that can have explicitly defined invariants. We then
outline two concrete models for implementing this concept, one for monolithic
software, and another for conglomerates. In Section 3 we describe a mecha-
nism, called law-governed interaction (LGI), that can be used for establishing
invariants of conglomerate systems. In Section 4 we show how LGI can be used
to establish McKeeman’s accounting principles as invariants of the evolution of
financial systems. We conclude in Section 5.

2 On the Nature of Evolving Systems

Let us delineate first the type of evolution we have in mind here. It is not
the common phenomenon of Darwinian-like evolution of software, where certain
systems, such as text-editors, evolve through the independent creation of many
variations of existing editors, and through “natural selection” between these
variations in the market place. We limit the discussion in this paper to software
embedded in some long-term enterprise—such as a medical establishment, or a
financial enterprise—which evolves in its operational context. In other words,
we are dealing here with a time-sequence of systems {Si}, operating more or

4

less in the same context1, where each Si is a variant of its predecessor.
One often views such a sequence as a single long-lived system, implicitly

expecting it to behave in some predictable fashion—that is, to exhibit some
invariants. But currently, there is no technical justification for this view, since
there is generally nothing definite that can be stated about the structure or
behavior of the future stages of such a sequence of systems. This is true even
if the enterprise served by a sequence {Si} has an explicit policy P concerning
its structure and behavior over time, and even if the enterprise employs good
managerial practices and programming tools (like those discussed in [3, 11, 13])
for implementing this policy. Because such informal managerial practices are
far from infallible, and the state of art of software development provides for
no formal means for ensuring that any given policy is satisfied by an evolving
sequence {Si}.

To fill this gap, we must (as pointed out in the introduction) subject the
time-sequence of systems {Si} to some kind of “higher authority,” that enforces
a given policy P. This would provide a degree of predictability to {Si}, which
would then deserve to be viewed as a single long-lived evolving-system—to be
called an e-system, for short, and be denoted by S. Such concept is defined
below.

Definition 1 An e-system S is a triple 〈S,L, E〉 , where

1. S is the system, at a given moment in time. (That is, at time t, S is one
of the stages St of the evolving system-sequence.)

2. L, called the law of S, is an explicit collection of rules about the structure
of the system S, about its process of evolution, and about the evolution of
the law itself.

3. E is a mechanism that enforces the law.

Now, if a certain property of an e-system S is entailed by its law L, then this
property is an invariant of the evolution of this system, as long as the law itself
is not changed. The evolution of the law is, therefore, a critical aspect of an
e-system, and needs to be carefully regulated.

So far, we have formulated, and implemented experimentally, two concrete
models for this abstract concept of e-systems: one for monolithic systems, and
the other for conglomerates. They use different enforcement techniques, support
different types of laws, and have different strength and weaknesses. We now
discuss briefly both these models, but then focus on the latter one.

To deal with evolving monolithic systems, we introduced the concept of
Law-Governed Architecture (LGA) [8, 9]. An e-system under LGA2 must be

1We say “more or less,” because the operational context of such along-lived sequence of
systems is itself likely to change, even if relatively slowly.

2In previous publications about LGA we used the term “project” for what is called here
an “e-system”.

5

constructed and maintained within a software development environment that
plays the role of E in the definition above. This environment, whose current
experimental implementation is called Darwin-E, maintains the law L of an e-
system, and its code S; and it enforces the law over the structure of S, over
the evolution of S, and over the evolution of the law itself. The enforcement of
the law over the structure of S is done mostly statically, incurring no run-time
overhead. As currently formulated, LGA can be applied only to object-oriented
systems, and the current implementation of Darwin-E is for systems written in
Eiffel only. One of the disadvantages of LGA is that it require total commitment
to it, and does not lend itself to incremental deployment. This is not the case
for our second mechanism.

By its very nature, a conglomerate system cannot be subjected to a single
overarching regime that regulates its structure and evolution. First, because its
sub-systems might be developed and maintained by different organizations; and
second, because different components of such a system might be written in sev-
eral different programming languages, and some of them may be COTS, whose
source code may be unavailable. We opt, therefore, for two relaxations of the
type of regime provided by LGA. First, we attempt to regulate only the interac-
tions between components of a system, treating the components themselves as
black boxes. Second, recognizing that single conglomerate system may involve
many different, and sometimes unrelated, activities, we attempt to regulate dif-
ferent activities separately, under different laws. These two relaxations gave rise
to the concept of law-governed interaction (LGI) [7, 2], briefly presented in the
following section. In Section 4 we will shaw how LGI can be used to establish
some of McKeeman’s accounting principles as evolution-invariants of a financial
system.

3 The Concept of Law-Governed Interaction (LGI)

Broadly speaking, LGI is a message-exchange mechanism that allows an open
group of distributed agents to engage in a mode of interaction governed by
an explicitly specified policy, called the law of the group. The messages thus
exchanged under a given law L are called L-messages, and the group of agents
interacting via L-messages is called a community C, or, more specifically, an
L-community CL.

By the phrase “open group” we mean (a) that the membership of this group
(or, community) can change dynamically, and can be very large; and (b) that
the members of a given community can be heterogeneous. In fact, we make
here no assumptions about the structure and behavior of the agents3 that are
members of a given community CL, which might be software processes, written

3Given the popular usages of the term “agent,” it is important to point out that we do not
imply by it either “intelligence” nor mobility, although neither of these is being ruled out by
this model.

6

in an arbitrary languages, or human beings. All such members are treated
as black boxes by LGI, which deals only with the interaction between them
via L-messages, making sure it conforms to the law of the community. (Note
that members of a community are not prohibited from non-LGI communication
across the Internet, or from participation in other LGI-communities.)

For each agent x in a given community CL, LGI maintains, what is called,
the control-state CSx of this agent. These control-states, which can change
dynamically, subject to law L, enable the law to make distinctions between
agents, and to be sensitive to dynamic changes in their state. The semantics
of control-states for a given community is defined by its law, could represent
such things as the role of an agent in this community, and privileges and tokens
it carries. For example, under law AC to be introduced in Section 4 the term
role(bank) in the control-state of an agent denotes that this agent has been
certified as a bank, and thus would be able to provide other agents with money.

We now elaborate on several aspects of LGI, focusing on (a) its concept of
law, (b) its mechanism for law enforcement, and (c) its treatment of digital
certificates. Due to lack of space, we do not discuss here several important
aspects of LGI, including the interoperability between communities, the concept
of enforced obligation, and the treatment of exceptions. Nor do we discuss here
the expressive power of LGI, its implementation, and its efficiency. For these
issues, and for a more complete presentation of the rest of LGI, the reader is
referred to [10, 14, 1].

3.1 The Concept of Law

Generally speaking, the law of a community C is defined over a certain types
of events occuring at members of C, mandating the effect that any such event
should have—this mandate is called the ruling of the law for a given event.
The events subject to laws, called regulated events, include (among others):
the sending and the arrival of an L-message; the coming due of an obligation
previously imposed on a given object; and the submission of a digital certificate
(more about the latter two kinds of events, later). The operations that can be
included in the ruling of the law for a given regulated event are called primitive
operations. They include, operations on the control-state of the agent where
the event occured (called, the “home agent”); operations on messages, such as
forward and deliver; and the imposition of an obligation on the home agent.

Thus, a law L can regulate the exchange of messages between members of an
L-community, based on the control-state of the participants; and it can mandate
various side effects of the message-exchange, such as modification of the control
states of the sender and/or receiver of a message, and the emission of extra
messages, for monitoring purposes, say.

On The Local Enforceability of Laws: Although the law L of a community
C is global in that it governs the interaction between all members of C, it is

7

enforceable locally at each member of C. This is due to the following properties
of LGI laws:

• L only regulates local events at individual agents,

• the ruling of L for an event e at agent x depends only on e and the local
control-state CSx of x.

• The ruling of L at x can mandate only local operations to be carried out
at x, such as an update of CSx, the forwarding of a message from x to
some other agent, and the imposition of an obligation on x.

The fact that the same law is enforced at all agents of a community gives LGI
its necessary global scope, establishing a common set of ground rules for all
members of C and providing them with the ability to trust each other, in spite
of the heterogeneity of the community. And the locality of law enforcement
enables LGI to scale with community size.

On the Structure and Formulation of Laws: Abstractly speaking, the law
of a community is a function that returns a ruling for any possible regulated
event that might occur at any one of its members. The ruling returned by the
law is a possibly empty sequence of primitive operations, which is to be carried
out locally at the location of the event from which the ruling was derived (called
the home of the event). (By default, an empty ruling implies that the event in
question has no consequences—such an event is effectively ignored.)

Concretely, the law is defined by means of a Prolog-like program4 L which,
when presented with a goal e, representing a regulated-event at a given agent
x, is evaluated in the context of the control-state of this agent, producing the
list of primitive-operations representing the ruling of the law for this event.
In addition to the standard types of Prolog goals, the body of a rule may
contain two distinguished types of goals that have special roles to play in the
interpretation of the law. These are the sensor-goals, which allow the law to
“sense” the control-state of the home agent, and the do-goals that contribute to
the ruling of the law. A sensor-goal has the form t@CS, where t is any Prolog
term. It attempts to unify t with each term in the control-state of the home
agent. A do-goal has the form do(p), where p is one of the above mentioned
primitive-operations. It appends the term p to the ruling of the law.

3.2 The Law-Enforcement Mechanism

We start with an observation about the term “enforcement,” as used here: We
do not propose to coerce any agent to exchange L-messages under any given
law L. The role of enforcement here is merely to ensure that any exchange

4Note, however, that Prolog is incidental to this model, and can, in principle, be replaced
by a different, possibly weaker, language; a restricted version of Prolog is being used here.

8

CSx

deliver

for ward

communication
network

Legend:

a regulated event----------------------

 ------ --------

L

agent x

controller C

L

CSy

L

CSz

L

CSw

a primitive operation

sent

agent w

agent y

agent z

Figure 1: Enforcement of the law.

of L-messages, once undertaken, conforms to law L. More specifically, our
enforcement mechanism is designed to ensure the following properties: (a) the
sending and receiving of L-messages conforms to law L; and (b) a message
received under law L has been sent under the same law (i.e., it is not possible
to forge L-messages).

Since we do not compel anybody to operate under any particular law, or
to use LGI, for that matter, how can we be sure that all movement of funds
would be carried out under law AC designed for them? The answer is that an
agent may be effectively compelled to exchange L-messages, if he needs to use
services provided only under this law, or to interact with agents operating under
it. For instance, if a certain server requires payments for its services only via
AC-messages—which, as we shall see, enforces our accounting principles— then
anybody needing its services would be effectively compelled to operate under
law AC. Conversely, if agents in the given enterprise use AC-messages for their
financial transactions, then servers would be compelled to accept such messages,
if they are to be used.

Distributed Law-Enforcement: Broadly speaking, the law L of commu-
nity C is enforced by a set of trusted agents called controllers, that mediate the
exchange of L-messages between members of C. Every member x of C has a
controller Tx assigned to it (T here stands for “trusted agent”) which maintains
the control-state CSx of its client x. And all these controllers, which are log-
ically placed between the members of C and the communications medium (as
illustrated in Figure 1) carry the same law L. Every exchange between a pair
of agents x and y is thus mediated by their controllers Tx and Ty, so that this
enforcement is inherently decentralized. Although several agents can share a
single controller, if such sharing is desired. (The efficiency of this mechanism,
and its scalability, are discussed in [10].)

Controllers are generic, and can interpret and enforce any well formed law.
A controller operates as an independent process, and it may be placed on any

9

machine, anywhere in the network. We have implemented a controller-service,
which maintains a set of active controllers. To be effective in a widely distributed
enterprise, this set of controllers need to be well dispersed geographically, so
that it would be possible to find controllers that are reasonably close to their
prospective clients.

On the basis for trust between members of a community: For a mem-
bers of an L-community to trust its interlocutors to observe the same law, one
needs the following assurances: (a) that the exchange of L-messages is mediated
by controllers interpreting the same law L; and (b) that all these controllers are
correctly implemented. If these two conditions are satisfied, then it follows that
if y receives an L-message from some x, this message must have been sent as an
L-message; in other words, that L-messages cannot be forged.

To ensure that a message forwarded by a controller Tx under law L would be
handled by another controller Ty operating under the same law, Tx appends a
one-way hash [12] H of law L to the message it forwards to Ty. Ty would accept
this as a valid L-message under L if and only if H is identical to the hash of its
own law.

With respect to the correctness of the controllers, if an agent is not con-
cerned with malicious violations, then it can trust a controller provided by our
controller-naming service, or a controller provided by the operating system – just
like we often trust various standard services on the Internet, such as TCP/IP
protocols. When malicious violations are a concern, however, the validity of
controllers and of the host on which they operate needs to be certified. In this
case, the controller-naming service needs to operate as a certification authority
for controllers. Furthermore, messages sent across the network must be digi-
tally signed by the sending controller, and the signature must be verified by the
receiving controller, allowing the two controllers to trust each other.

3.3 The Treatment of Certificates under LGI

Under LGI, all agents are made equal at the time they join an L-community.
This is because the control-state of all new members is identical—and control-
states provide the only means for a law to make distinctions between agents.
We now explain how an agent can acquire extra privileges, thus becoming more
equal than others (with apologies to George Orwell), by submitting appropriate
certificates.

The submission by an agent x, operating under law L, of a certificate Cert
to its controller, has the following effect: An attempt is made to confirm that
Cert is a valid certificate, duly signed by an authority that is acceptable to
law L, i.e., an authority that is represented by one of the authority-clauses
in the preamble to the law (See Figure 2 for an example). If this attempt is

10

successful5, then a certified-event is triggered. This event, which is one of the
regulated-events under LGI, has as its argument the following representation of
the submitted certificate:

[issuer(I), subject(S), attributes(A)].

Here I and S are internal representations of the public-keys of the CA that
issued this certificate, and of its subject, respectively; and A is what is being
certified about the subject. Structurally, A is a list of attribute(value) terms.
For example, the attributes of a certificate might be [role(bank)], asserting
that the subject in question is allowed to function as a bank in this community.
Additional components of the attributes field include the expiration time of
the certificate, the URL of the server that maintains CRLs for this type of
certificates, a certificate id (used to identify it in CRLs), etc. (Currently we
support SPKI format of certificates [5]).

What happens when the certified event is triggered depends, of course, on
the law. In the case of law AC of Figure 2, for example, the term role(bank)
is set in the control-state of the agent that presents this certificate.

4 Establishing Accounting Principles as Laws of
a Financial Enterprise

Consider now a conglomerate financial enterprise, viewed as collection of dis-
tributed agents interacting via messages. We do not presume any knowledge
of, or control over, the internals of these agents, but we wish to ensure that all
messages that carry money between agents comply with the principles of double
entry bookkeeping and of auditing. This is done via law AC (for “accounting”)
displayed in in Figure 2. The law is composed of a preamble, and a set of rules.
Each rule is followed by a comment (in italic), which, together with the expla-
nation bellow, should be understandable even for a reader not well versed in the
LGI language of laws (which is based on Prolog). We start our discussion of
this law with some preliminary observation about its effect, to be justified later.

Each agent operating under lawAC would have a term cash(c) in its control-
state, which represents the amount of cash currently held by this agent (initially
zero, for all agents). Money can be moved from one agent to another by means
of AC-messages that contain the term cash(c)—they are called cash-carrying
messages, and they conform to the principle of double entry accounting. Also,
the movement of large amount of cash (thousand dollars or more, in this case) is
being monitored, in conformance to the auditing principle. The source of money
in this system are agents authorized as banks, by the CA called “admin.” Such
agents would have the term role(bank) in their control-state.

5If the the certificate is found invalid then an exception-event is triggered.

11

The preamble to this law has several clauses: The first is an authority
clause, which define a certification authorities acceptable to this community,
to be used for the certification of banks. Each authority clause provides the
public-key of a certification authority, and assign it a local name–“admin”. Sec-
ond, an initialCS clause that defines the initial control-state of all agents
in this community, which consists of the term cash(0) in this case. Finally,
there is a alias clause assigning the local name “monitor” to the address
auditTrail@enterprise.com, presumably of the audit-trail server used by this
enterprise. We now examine the rules of this law in detail, showing their various
effects.

The Flow of Cash: Rules R2 and R3 of this law regulate the exchange of
cash-carrying messages between agents. By Rule R2, if a non-bank agent x
sends such a message, it will be forwarded to its destination only if x itself
holds sufficient amount of cash, and only after the cash of x is reduced by c. By
Rule R3, when such a message arrived at its destination y, it causes the cash
of y to increase by c. The message itself is then delivered to y itself..

Thus, cash flows between non-bank agents in the system via cash-carrying
messages in full compliance with the principle of double-entry bookkeeping.
Note that this law is silent on the structure of cash-carrying messages (except
that they need to have a cash-term) and on their effect on anything but the cash
balance of the sender and the receiver. So a cash carrying message might be a
payment for a previous service, a cash-carrying order, or just a grant of money
to the receiver of the message. The specific form and effect of such messages is
left to the agents themselves.

The Role of Banks: To play the role of a bank under this law, an agent
needs to present a certificate signed by by the CA we call here “admin,” with
the term role(bank) in its attributes. By Rule R1, the presentation of such a
certificate would add the term role(bank) to the control-state of the presenter,
which we will call simply “banks” from now on.

The function of banks under this law is to provide agents with cash (with-
out banks in this system there would be no cash to move around, because all
agents start with zero balance), and to accepts deposits of cash from agents.
By Rule R2, a bank is able to inject arbitrary amount of cash into the system
simply by sending it in a cash-carrying message to some agent y, even if its own
cash-balance is negative.

Presumably, such a grant of cash to an agent y would generally be made
in response to some kind of withdrawal request from y, and only if y has some
kind of account with this bank, with sufficient balance. But such considerations
are orthogonal to the principle of double-entry bookkeeping, and are, therefore,
intentionally not covered by this law. Note also that agents may deposit some
of their cash in a bank, via some kind of cash-carrying message to it. Thus, the

12

Preamble:

authority(admin,publicKey).
initialCS([cash(0)]).
alias(monitor, “auditorTrail@enterprise.com”).

R1. certified([issuer(admin),subject(Self),attributes(A)]) :-

role(bank)@A, do(+role(bank)).

Claiming the role of a bank, via certificate issued by the designated CA called
admin.

R2. sent(X,M,Y) :-

cash(C1)@M, C1>0, cash(C)@CS,

(C>C1 | role(bank)@CS),

do(dcr(cash(C)),C1),

do(forward),

audit(sent,X,M,Y).

An If a message carrying C1 dollars (in a “cash” field) is sent by an agent
X with C dollars in its own cash account, this message is forwarded if X has
enough cash on hand (i.e., C>C1) or if X is a bank. In either case, the cash of
X is decremented by C1 and the message is forwarded. Finally, the audit-rule
is invoked.

R3. arrived(X,M,Y) :-

cash(C1)@M,

do(incr(cash(C)),C1),

do(deliver),

audit(arrived,X,M,Y).

A message carrying C1 dollars (in a “cash” field) that arrives at an agent Y

causes the cash possessed by Y to be incremented by C1. This message is then
delivered, and the audit-rule is invoked.

R4. audit(Event,X,M,Y) :-

Event=arrived,

cash(C1)@M, C1>1000,

do(forward(X,[Event,Time,X,M,Y], monitor).

The arrival of any message that carries more than 100 dollars is recorded, by

sending to monitor all relevant information.

Figure 2: The Accounting-Law AC

13

balance of cash in a bank is always the sum of deposits in, minus the sum of
withdrawals; and it could be negative.

Auditing: The audit rule (R4) is invoked by every sent or arrived events
(as specified by Rules R2 and R3). This rule causes the time-stamped record
of this event to be forwarded to a distinguished agent monitor—thus recording
it—provided that the conditions specified in this rule are satisfied. The specific
condition for recording an event built into RuleR4, are such that only the arrival
of messages that carry at least $1000 is being monitored. But it is obviously
possible to write audit rules that monitors different subsets of event, and that
forwards records of such events to different monitors.

Thus, as required by the principle of auditing, somebody who can change
the law AC can specify the type of events to be audited, and to actually carry
it out, without the cooperation or knowledge of the system being audited or its
programmers.

Discussion: It is quite remarkable that it is so easy to formulate our two
accounting principle by a law that consists of merely four rules. Particularly that
this is not just a specification of these principles, but their implementation—
because the law is actually enforced under LGI. But this formulation of these
principles is oversimplified, particularly as it does not take into account possible
faults of the system, such as communication failures. It is possible to make this
law fault tolerant, to a significant extend, but it takes at least twice as many
rules to do so, and it is beyond the scope of this paper.

5 Conclusion

The propensity of software for rapid evolution, poses serious dangers to the
integrity of any enterprise it is embedded in. We have argued in this paper that
these dangers can be tamed by ensuring that some of the architectural principles
of a given system are enforced, and thus established as evolution-invariants of
the system.

We have used a financial enterprise as an example, showing how two impor-
tant accounting principles can be established as invariants. And we believe that
there are many other accounting principles, and business rules [4], that can be
treated similarly.

References

[1] X. Ao, N. Minsky, T. Nguyen, and V. Ungureanu. Law-governed commu-
nities 0ver the internet. In Proc. of Fourth International Conference on

14

Coordination Models and Languages; Limassol, Cyprus; LNCS 1906, pages
133–147, September 2000.

[2] X. Ao, N. Minsky, and V. Ungureanu. Formal treatment of certificate
revocation under communal access control. In Proc. of the 2001 IEEE
Symposium on Security and Privacy, May 2001, Oakland California (to be
published), May 2001.

[3] C. K. Duby, S. Meyers, and S. P. Reiss. CCEL: A metalanguage for C++.
In USENIX C++ Conference, August 1992.

[4] D. Ehnebuske, B. McKee, I. Rouvellou, and I. Simmonds. Business objects
and business rules. In OOPSLA’97: Business Object Workshop, 1997.

[5] C. Ellison. The nature of a usable pki. Computer Networks, (31):823–830,
November 1999.

[6] W.M. McKeeman. Mechanizing bankers’ morality. Computer Languages,
1:73–82, 1 1975.

[7] N.H. Minsky. The imposition of protocols over open distributed systems.
IEEE Transactions on Software Engineering, February 1991.

[8] N.H. Minsky. Law-governed regularities in object systems; part 1: An
abstract model. Theory and Practice of Object Systems (TAPOS), 2(1),
1996.

[9] N.H. Minsky. Toward continuously auditable systems. In Proceedings of the
First Conference on Integrity and Internal Control in Information Systems.
IFIP, December 1997p.

[10] N.H. Minsky and V. Ungureanu. Law-governed interaction: a coordination
and control mechanism for heterogeneous distributed systems. TOSEM,
ACM Transactions on Software Engineering and Methodology, 9(3):273–
305, July 2000.

[11] G.C. Murphy, D. Notkin, and K. Sullivan. Software reflection models:
Bridging the gap between source and high level models. In Proceedings
of the Third ACM Symposium on the Foundation of Software Engineering,
1995.

[12] B. Schneier. Applied Cryptography. John Wiley and Sons, 1996.

[13] M. Sefica, A Sane, and R.H. Campbell. Monitoring complience of a soft-
ware system with its high-level design model. In Proceedings of the 18th
International Conference on Software Engineering (ICSE), March 1996.

15

[14] V. Ungureanu and N.H. Minsky. Establishing business rules for inter-
enterprise electronic commerce. In Proc. of the 14th International Sympo-
sium on DIStributed Computing (DISC 2000); Toledo, Spain; LNCS 1914,
pages 179–193, October 2000.

16

Contents

1 Introduction 3

2 On the Nature of Evolving Systems 4

3 The Concept of Law-Governed Interaction (LGI) 6
3.1 The Concept of Law . 7
3.2 The Law-Enforcement Mechanism 8
3.3 The Treatment of Certificates under LGI 10

4 Establishing Accounting Principles as Laws of a Financial En-
terprise 11

5 Conclusion 14

17

