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Summary

We study prefixed tableaux for first-order multi-modal logic, provid-
ing proofs for soundness and compl eteness theorems, a Herbrand the-
orem on deductions describing the use of Herbrand or Skolem terms
in place of parameters in proofs, and a lifting theorem describing the
use of variables and constraints to describe instantiation. The general
development applies uniformly across a range of regimes for defining
modal operatorsand relating them to one another; we also consider cer-
tain simplifications that are possible with restricted modal theories and

fragments.
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1 Introduction

Recent years have seen an explosion in research in formalizing inference in
modal logic [Goré 1999, Basinetal., 1998, Fittingand Mendelsohn, 1998]
and in usng moda theories in knowledge representation [Faginet al., 1995,
McCarthy and Buvac, 1994, Stone, 1998]. Unfortunately, research on modal infer-
ence does not link up as directly as could be hoped with proposed modal theories.
This report aimsto help provide such links by providing a set of extremely general
results about first-order multi-modal deduction in terms of analytic tableaux and
a prefix representation of possible worlds. We first provide sound and complete
ground tableau and sequent inference systems, extending and refining those pre-
sented in [Fitting and Mendelsohn, 1998] to the multi-modal case. Then we show
how to apply general proof-theoretic techniques to derive an equivalent calculus
where Herbrand terms streamline proof search [Lincolnand Shankar, 1994].
Finally, we derive alifted multi-modal sequent inference system, which uses unifi-
cation (or constraint-satisfaction) to resolve the values of variables, in the style of
[Voronkov, 1996]. From one point of view, this report can be regarded as the multi-
modal generalization of the results presented for linear logic and first-order modal
logicin[Lincoln and Shankar, 1994, Fitting, 1996, Fitting and Mendel sohn, 1998];
aternatively, it can be seen as recasting into a modal setting the results of
[Stone, 1999b], which investigates first-order intuitionistic logic along similar
lines.

Formal modal logic goes back eighty years [Lewis, 1918,
Lewisand Langford, 1932].  Yet according to McCarthy [McCarthy, 1997],
for example, the modal logic literature still does not offer a formalism with the
intensional expressive power—including fresh modalities defined ad hoc, and
means to describe knowing what by concise and easily manipulated formul as—that
is needed for knowledge representation in Artificial Intelligence. Moreover, typical
results from the modal logic literature do not support the design of specialized
modal inference mechanismsto solve particular knowledge representation tasks.

The approach adopted here is a response to these gaps. We tackle a first-order
multi-modal logic withan arbitrary number of modal operatorsand aflexibleregime
for relating different modal operators to one another—this gets at limitationsin ex-
pressive power. We consider inference in analytic tableaux (or, seen upside-down,
in the cut-free sequent cal culus)—this provides a close grounding with techniques
for implementing deduction. And—in order to suggest and facilitate results about
specialized inference algorithms, such as [Stone, 19993, Stone, 1999c]—we avoid
definitions for logical connectives, we represent worlds using prefix terms, denot-
ing paths of accessibility among possible worlds, and we factor out reasoning about
accessi bility into side conditions on inference rules.

Individualy, these choices are familiar from research on modal logic. For ex-
ample, [Fitting and Mendelsohn, 1998] present a comprehensive treatment of the
first-order modal logic using prefix terms and analytic tableaux. But they treat
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only a single modal operator. [Basin et al., 1998] adopt a proof-theoretic view of
first-order modal logic in which reasoning about accessibility and boolean rea-
soning are clearly distinguished. But they also treat only a single modal opera-
tor, and do so using atomic terms for worlds and natural deduction proof. Mean-
while, [Baldoni et al., 1998] explore afirst-order multi-modal logic with related op-
erators using analytic tableaux—but they also use atoms to refer possible worlds
and now allow reasoning about accessibility to interact with first-order reasoning.
[Nonnengart, 1993] coversafew multi-modal logicsusing aprefix representation of
worlds, but avoids interactions among modal operators and advocates a trandation
method with purely classical reasoning where modal proofs are difficult to study.

Thusthe combination of ideas explored here—acombination that playsacrucial
rolefor applicationsin logic programming and knowledge representation—remains
anovel one. Infact, even today, research in modal |ogic—whether the investigation
ismore mathematical [Goré, 1992, Massacci, 1998b, Massacci, 1998a, Goré, 1999]
or primarily concerns algorithms for proof search [Otten and Kreitz, 1996,
Beckert and Goré, 1997, Schmidt, 1998]—is dominated by the study of the
propositional logic of asingle modal operator (or accessibility relation).

When multiple modal operators are considered, their interpretations and inter-
actions are often predefined. In PDL and terminological logics we have combi-
nations of orthogonal K modal operators [Goldblatt, 1992, Schild, 1991]. In typ-
ical epistemic logics, we have orthogonal combinations of S5 modal operators to
model knowledge[Fagin et a., 1995] or KD45 to model belief [Nonnengart, 1993].
Intenselogics, we have a predefined pair of symmetric operatorsfor past and future
[Prior, 1967].

Other researcherswho haveinvestigated modal logic in afirst-order setting have
tended to jump directly into a discussion of particular theorem-proving strategies,
particularly resolution [Jackson and Reichgelt, 1987, Wallen, 1990, Catach, 1991,
Frisch and Scherl, 1991, Auffray and Enjalbert, 1992, Ohlbach, 1993]. Often the
modal component of the language is trandated away using first-order quanti-
fiers as soon as a semantics for it is provided. Another strategy has been to
study only logic programming proof for multi-modal logic [Farifias del Cerro, 1986,
Baldoni et al., 1993, Baldoni et al., 1996]. For such approaches, it suffices to pro-
vide soundness and completeness proofs for a restricted logical fragment; indeed,
these approaches often avail themselves of specialized proof-theoretic representa-
tionsthat do not generalizeto the full modal language and whose relationship to the
genera proof-theory is left unexplored.

2 Ground First-order Multi-M odal Deduction

These preliminarieshave suggested that thereis both the motivation and the need to
study prefixed tableaux for multi-modal logicsin ageneral way. So let us consider
the syntax, semantics and ground proof theory of a broad multi-modal language.



2.1 Yyntax

Our languageisdefined by asignature ( OP, REL, VAR, CONST ). OPisafinitecol-
lection of modalities, which we shall write using the necessity operators Oy, ..., Oy
and the possibility operators <4, ..., . These modal operators may be subject to
any of anumber of logical conditions, which we explain presently. REL is a count-
able set of relation symbols Ry, . .. each of which is specified for arity; REL should
contain at least one relation but may be finite. VAR isacountably infinite collection
of variablesx, ..., and CONST isa countable collection of constant symbolscy, ...
possibly finite but containing at least one symbol. Thus, we insist on a countable
language here. (Both constants and variableswill be interpreted rigidly.) While OP,
REL and VAR can remain fixed throughout the rest of this report, it will be conve-
nient to consider languages in which a countably infinite number of parameters are
included in the language to supplement the symbolsin CONST. So we write L(C)
to describe the language built over the signature ( OP, REL, VAR, C ). The basic
language is then L(CONST).

Definition 1 (Formulas) Theset of formulasin L(C) isthe smallest set meeting all
of the following criteria. If R isal-ary relation symbol of REL and t,...,t isa
sequence of length | each of whose elementsis some constant ¢; in C or some vari-
ablex; in VAR, then Ri(ty,....,t;) isaformula. T isalso aformula. If Aand B are
formulas and i indexes one of the k modalities of OP, then the formulas also include
-A, (AAB), (AVB), (AD B), DjAand OiA. If Aisaformulaand x isa variable of
VAR, then YxA and 3xA are also formulas.

We appeal to the usual notions of free and bound occurrences of variablesin for-
mulas; we likewise invoke the depth of aformula(the largest number of nested log-
ical connectivesin the formula).

Definition 1is set up so that different formul asare independent, which isconve-
nient if weintend to apply our resultsto restricted logical fragments. An aternative
approachinvitesustotake AV B asan abbreviationfor -(—-AA —B), totake A D Bas
an abbreviationfor —(AA —B), to take ;A as an abbreviation of -0;—A and to take
XA as an abbreviation for =Vx—A. Such abbreviation cuts down the cases we must
consider in the metatheory—an aternative streamlining device is to introduce uni-
form notation as in [ Smullyan, 1968, Smullyan, 1973, Fitting, 1983, Wallen, 1990]
to collapse proof ruleswithout collapsing connectives. From a pedagogical point of
view, not much hinges on this; when analysis of numeroussimilar casesisrequired,
proofs are rarely presented with explicit analysisfor al of them.

2.2 Semantics

Asis standard, we describe the models for the modal language in two steps. The
first step is to set up frames that describe the structure of any model; a full model
can then be obtained by combining a frame with away of assigning interpretations
to formulasin aframe.
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Definition 2 (frame) Afirst-order k-frame (or, here, simply frame) consists of a tu-
ple (G,R ,D) where: G isa non-empty set, whose members are generally called
possible worlds; R names a family of binary relationson G, R ; for i <k, gener-
ally called accessibility relations; and D is a function, called the domain function
mapping members of G to non-empty sets.

Within the frame F, the function D induces a set D (F ), called the domain of
the frame, as U{D(w) | w € G}. In order to simplify the treatment of constant
symbols, it is aso convenient to define a set of objects that all the domains of the
different possible worlds have in common, the common domain of the frame F:
C(F)=n{D(w) |we G}. Weeffectively insist that C (F ) be non-empty as well,
since CONST is non-empty and each symbol in CONST must be interpreted by an
element of C(F ).

The intermediate level of frames is useful in characterizing the meanings of
modal operators and modal quantification. In particular, smply by putting con-
straintsonR j oron D at thelevel of frames, we can obtain representative classes of
modelsin which certain general patterns of inference are validated. The constraints
we will avail ourselves of areintroduced in Definition 3.

Definition 3 Let (G,R ,D) beafirst-order k-frame. We say the frame is:
o reflexiveati if wR ;W for every w e G;
e symmetricat i if wR ;w only if WR ;w for every w,w € G;

e trangitive at i if, for any w,w’ € G, wR ;w’ whenever thereisaw € G such
that wR iV\/ and WR iV\//;

e serid ati if for eachw € G thereissomew € G such that wR ;w/;

e euclideanati if whenever wR ;w andwR ;w’ thenw'R ;w” for anyw,w',w"’ €
G;

e narrowing from j toi if wR ;w' implieswR ;w for all ww € G;
e constant domainif D(w) = D(w) for anyw,w' € G;

e increasing domainif for all w,w' € G, D (w) C D (W) whenever thereis some
accessibility relationship wR ;w'.

Our scheme for using the constraints of Definition 3 depends on establishing
aregime for the k modal operators in the language, describing the inferences that
should relate the modal operators. The regime isdefined as follows.



Definition 4 (Regime) A first-order k-regime (or, here, smply regime) is a tuple
(A N ,Q ), where: A isa function mapping each integer in theinterval [1..k] into
one of the symbols K, KB, K4, K5, K45, KD, KDB, KD4, KD5, KD45, T, B, $4 and
%5; N isa (strict) partial order on theintegersin theinterval [1..k], and Q isone
of constant, increasing, or varying.

The reader will recognize the symbols in the image of A as the classic names for
modal logics of asingle modality. This meaning for these symbols can be enforced
by considering only frames that respect the given regime.

Definition 5 (Respect) Let F = (G,R ,D) be a first-order k-frame, and let S =
(A N ,Q ) beafirst-order k-regime. We say F respects S whenever the following
conditions are met (taking i and j to range over all integersin theinterval [1..K]):

o IfA(i)isT, B, 4, or S5thenR j isreflexive.

e IfA(i) isKB, KDB, or BthenR ; is symmetric.

o IfA(i) isK4, K45, KD4, KD45, A or SbthenR  istransitive.
(

If A(i) isKD, KDB, KD4, KD5 or KD45thenR ; is serial.

If A(i) isK5, K45, KD5, KD45 or Sbthen R  is euclidean.

Ifi < jaccordingtoN then F isnarrowing fromj toi.

If Q isconstant, then F isconstant domain; if Q isincreasing, then F isin-
creasing domain.

From now on, we assume that someregimeS = (A, N ,Q ) isfixed, and restrict
our attention to frames that respect S. Informally, now, amodel consists of aframe
together with an interpretation.

Definition 6 (interpretation) J is an interpretation in a first-order k-frame
(G,R ,D) if J satisfies these two conditions:

1. J assignsto each n-place relation symbol R, and each possible world w € G
some n-place relation on the domain of the frame D (F ).

2. J assigns to each constant symbol ¢ some element of the common domain of
theframe C (F ).

Thus we can define amodel over S thus:

Definition 7 (model) A first-order k-modal model over a regime S is a tuple
(G,R ,D,J) where (G,R ,D) is afirst-order k-frame that respects S and J isan
interpretationin (G,R ,D).
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To definetruthin amodel, we need the usual notion of assignments and variants:

Definition 8 (assignment) Let M = (G,R ,D,J) be a first-order k-modal model
(over some regime S). An assignment in M is a mapping g that assigns to each
variablex some member g(x) of thedomain of theframe of themodel D ((G,R ,D)).

On occasion, wewill be asked to interpret formulasnot just in the ordinary language
L(C) with agiven set of model operators, relations, constants and variables, but in
an expanded language L(CUP) which also includes a set P of first-order parame-
ters; we will want to use the same modelsfor thisinterpretation. Over L(CUP), we
suppose that an assignment in M & so assigns some member g(p) of the domain of
the frame of M to each parameter pin P. This alowsthe model M to provide an
interpretation of formulasin L(CUP), without the interpretationJ of M describing
P.

Definition 9 (variants) Let g and ¢ be two assignments in a model M =
(G,R,D,J); d isanx-variant of g at aworldw € G if g and g agree on all vari-
ables except possibly for x and g'(x) € D (w).

Definition 10 (truthin amodel) Lee M = (G,R ,D,J) be a first-order k-modal
model. Thenthe formula Aistrue at world w of model M on assignment g—written
M, wi—g A—ust in case the clause below selected by syntactic structure of A is
satisfied:

e AisT: Thenalways M ,wi—g A,

e AisRi(t,...,tn): ThenM ,wi—gAjustincase (ey,...en) € J(R,w), where
for eacht;, g isJ(tj) iftj isaconstant and g(t;) if tj isa variable (or a param-
eter).

e Ais—B: ThenM ,wi—gAjustin case M ,wi-¢ B.
e AisBy ABy: ThenM ,wi—gAjustincasebothM ,wi—g By and M, wir—g B.
e AisB;VB,: ThenM ,wigAjustin caseeither M ,wi—g By or M, wir—¢ B;.

e AisOiB: Then M ,wi—g A just in case for every w € G, if wR ;w then
M, W i—g B.

e Ais<iB: ThenM ,wi—g Ajustin casethereissomew € G such that wR ;w/
and M ,w i—g B.

e AisVxB: Then M ,wi—g A just in case for every x-variant g’ of g at w,
M,wi—g B.

e Ais3xB: Then M ,wi—g A just in case there is some x-variant g’ of g at w
such that M, wi—y B.



Where the semantic definition considers variant assignment, the proof systems
must appeal to syntactic substitution. Thus, for soundness, we need to establish an
appropriate rel ationship between assignments and substitutions.

Lemma 1 (Substitution) Suppose M = (G,R ,D,J) is a first-order k-modal
model for thelanguageL (C), w € G, and g; and g, aretwo assignmentsin M for the
language L(CUP). Suppose Aisa formulain L(CUP) in which the symbol x may
have some occurrences and the symbol y either does not occur or isa constant. (\\e
are neutral as to whether x is drawn from VAR or P, and whether y is drawn from
VAR, P or CONST.) Write Aly/x| for the result of replacing all (free) occurrences of
x with occurrences of y. Finally, suppose g; and g, agree on all the parameters and
free variables of A except possibly for x, and either g;(x) = ga(y) or g1(x) = J(y)
(according to the category of y). Then

M, Wi—g, A M ,wi—g, Aly/X]

Proof. By induction on the structure of formulas. The base case has A atomic;
T is obvious, so we just need to show M,w g, Ri(ty,...,tn) & M ,wi—g,
(Ri(ty,...,tn))[y/x]. Thisfollowsbecause the argumentsof R; induce thesametuple
(e1,...,en) inboth cases. Eacht; is either a constant, x, or avariable or parameter
other than x. For constants, t; =t;[y/x] ande = J (tj;) = J (t;[y/x]). Forx, x[y/x] =
and (as appropriate) e = g1(X) = g2(y) or g = g1(x) = J(y). For variables or pa-
rameters other than x, t;[y/x] = t; and g = g1 (tj) = ga(t;).

Now assume the lemmatrue for formulas of depth N or less, and consider afor-
mulaA of depthN+ 1. Weillustratetheargument for representative cases depending
on whether Ais composed by aboolean operation, amodal operator, or aquantifier.

Booleans. SupposeAisB; AB,. TheinductionhypothesisgivesM , wi—g, B; <
M, wi—g, B1[y/x] and M ,wi—g, B, < M ,wi—g, B,[y/X]. It then follows fromthe
truth-definitionfor By A By that M, wir-g, A< M ,wi—g, Aly/X.

Modals. SupposeAis<;iB. Either M ,wi—g, Aor not. If so, thenthereisaw € G
withwR ;w and M ,w i—¢, B. By induction hypothesisM ,w i—g, Bly/x] and hence
M, wi—g, Aly/x]. Otherwisethereisnow € G withwR ;w and M ,w i—¢, B. By
induction hypothesis, then, there cannot beany w € G withwR jw and M ,w/ i—g,
Bly/x]. Soitisalso not the case that M, wirg, Aly/X].

Quantifiers. Suppose A is 3vB. We define B* so that Aly/x| is 3vB*. (Thereare
two cases: x=vand x # v. Inthefirst case, Aly/x| = 3vB and B* = B; in the second,

Aly/x] = 3v(B[y/x]) and B* = BJy/x].) Now, M ,wi—g, Aisequivaent to the con-
dition that thereisav-variant g; of g; withM ,wi— g B. | claim that exactly when
thereissuchag, thereisav-variant of ¢, of gzwnhgz( v) =g (v) andM ,wi— a0 B

From this claim, thelemmafollows. To show the claim for B* = B, observe that g;
and g, agreeon all the parameters and free variables of B¥; theinduction hypothesis
applies (for any substitution of elements neither of which occursin B) to establish
the claim. Alternatively, for B* = Bly/x], the free variables of B are those of A plus
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v, and by construction g} and ¢, agree on v. So the induction hypothesis applies for
the substitution of y for x to establish the claim. ®

By asentencewe mean aformulaof L(CONST) inwhich no variablesoccur free.
For any sentence A, model M and worldw of M, Lemma guaranteesthat M , wi—g
Afor someassignment ginM exactly when M ,wi—g Afor all assignmentsgin M .
In this case, we can write smply M ,wi— A and say that Aistruein M at w.

Definition 11 (Valid) Let A bea sentenceand M = (G,R ,D,J) be a first-order
k-modal model. Aisvalidin M if for every worldw e G, M ,wi— A. Aisvalid (on
theregime (A;N ,Q)) if Aisvalidin any model M that respects the regime.

2.3 Proof theory

The most concise and general systems for modal proof are prefixed tableaux, which
originateinthework of Fitting [Fitting, 1972, Fitting, 1983]. Theideaisto associate
formulasin proofs with concise terms, prefixes, which identify aworld in amode.
Formally, we assume acountable set k of modal parameters, enumerated o, 0o, .. ..
(When theenumeration of K isnot important, | will alsowriteitselementsa, 3, etc.)

Definition 12 (Prefix) A prefix is a finite sequence of modal parameters. | will use
€ to denote the empty prefix and , v, €tc., to denote general prefixes. A prefixed
formulais an expression of the form A* where p is a prefix and A is a formula.

There are departures from Fitting's notation here, but not the essential ideas. We
use modal parameters rather than integers to establish an exact parale with rea-
soning with first-order parameters and substitutions; to fit with proof theory more
generaly, we reserve the symbol o for substitutions and reserve the * prefix’ posi-
tion| onformulas—I A or | : A—for the assocation between formulasin deductions
and proof-termsindicating how those formulas contribute to the deduction (as used
for examplein establishing correspondences between tableau or sequent proofsand
natural deduction proofs; see for example [Gallier, 1993]).
Our proof rules will work with signed prefixed formulas.

Definition 13 (Signed expressions) If E denotes the expressions of some class,
then the signed expressions of that class are expressions of the form te or fe for e
an expression drawn from E. We use u as a metavariable over t and f.

The use of prefixes gives us the need to talk about the language (k) of prefixes
over the signature k of modal parameters, and the language L(C)™*) of prefixed
formulaswith formulasdrawn from L(C) and prefixesdrawn from (k). Infact, as
mentioned earlier, the proof ruleswill also assume a set P of first-order parameters,
so that proofswill contain signed expressions drawn from L(CONSTUP)™(K).

In tandem with signed prefixed formulas, we will aso need typings that specify
which accessibility relations different transitions between prefixes instantiate, and
which possible worlds different individuals exist at.
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Definition 14 (Typing) Atyping (over alanguagelL™) isaset T of statements, each
of which takes one of two forms:

1. p/v:i, where p and v are prefixes (from M) and i is the index of a modal op-
erator (i.e., aninteger intherange [1..K]), indicating that the transition from
world p to world v isin thei-th accessibility relation;

2. t: M, wheret isafirst-order parameter (fromL) and [ is a prefix (from IT),
indicating that the parameter t isin the domain of the world .

We say 2 isatyping for a set or multiset of signed prefixed formulasl™ whenever X
is a finite set that contains an expression t : L for each first-order parameter t that
occursin I and X contains an expression /v : i for each prefix v other than the
empty prefix that occursinT or .

The need for syntactic records of thiskind only becomes evident with multi-modal
logic. With only a single kind of modality, side conditions on modal rules need
only refer to whether or not a transition already appears on a tableau branch. Now
we must not only find the transition on the branch, but make sure that the transi-
tion is of the right kind. Recording syntactic expressions to make this determina-
tion is the most natural move. It alows us to introduce a judgment S, 2> /v i
by which weindicate that the premisesin Z, together with the constraints on modal
operators declared in the modal regime S, together ensure that the transition from
world p to world v is atrangition in the i-th accessibility relation. The differences
among modal logics now trandate into different rules for deriving the judgment
S,Z> /v 1, in auniform way—or what Massacci has called a “modular” way
[Massacci, 1994, Massacci, 1998b]. (In modal logic, | prefer to reserve modular-
ity to describe information-flow in proofs; see [Stone, 19994 .)

Definition 15 (Typings) Assume that % is a typing over a language
L(CONSTUP)(®)—where in particular a base language L(CONST) has been
extended by first-order parameters P for the purposes of proof. Then the set of
derivable typing judgments from X with respect to aregime S = (AN ,Q ) isthe
smallest set including the expressions defined by the following conditions.

o (K). S, Zpp/viiifpu/v:ie.
o (T).S,Zop/p:iif A(i)isT, B, SAor b, and p occursin Z.

o (4). S, Zop/v:iifp/pieZ S, Zop//v i, and A(i) is K4, K45, KD4,
KD45, 4 or $b.

e (5. S, Zpp/viiifp/W:ieZ S,Zop/v i, and A(i) is K5, K45, KD5,
KD45 or Sb.

e (B).S,Zpv/pu:iifS,Zrp/v:iand A(i) isKB, KDB or B.
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e (Inc). S,Z>p/v:jifS,Zep/viiandi < jaccordingto N .
o (V).S,Zpt:pift:pez
e (I).S,Z>t:vifQ isincreasing, S,Z>p/v:i for someiand S, 2t : .

e (C). S,Zrt:vifvoccursinZ andeither Q isconstantandt:pe Zortisa
constant symbol (t € CONST).

We also say that thereis a typing derivation S, >J, or simply that S, > J, when
S,Z>Jisaderivable judgment. We can treat the derivation of a typing judgment
as a syntactic object, and introduce the height of such derivations—the number of
nested rule-applications in the derivation—as a measure to perform induction on
these derivations. For example, such an induction establishes (asis clear from in-
spection of theserules) that S, Z>p/v 1 i only if v and p occur in Z.
Remark. In contrast to Massacci’s rules, the inference rules of Definition 15 freely
access compound transitions. With a single modal operator, it is possible to recast
the inferences of Definition 15 so that any recursive rule checks for a single-step
transition p/pa drawn from Z. In the multi-modal case, the connections among
operators prevents this in general. For example, consider the 2-modal regime S
defined by (A = {0— $4,1+— KB},N = {0< 1},Q = constant), and a typing
2 ={¢/a:0,a/apB:0}. Inthiscase, we must have S, Z>af3/€ : 1. We derive first
g/aB: 0by (4), thene/af : 1 by (Inc), and finally a3/ : 1 by (B). However, no
“single-step” derivation is possible, because thereis no way to derivethat af/e: 1
where the (B) inference accesses only atomic transitionsfrom>. ®

We now describe first the constituents of deductions, and then the deductions
themselves. Our notation and definitions are modeled on [Goré, 1999]; we first in-
troduce the formalism for tableau rules, and then describe the motivation for these
rules—particularly the distinctive features of modal tableau rules.

Definition 16 (Tableau line) A first-order multi-modal prefixed tableau lineis an
expression of theform XTI, where I is a finite multiset of signed prefixed formu-
lasand Z isatyping for I'. A symbol nisnew to atableau lineZT if thereisno
occurrence of nin .

Definition 17 (Tableau rule) A tableau rule consists of a numerator L above the
lineand a (finite) list of denominators D4, . ..Dy below the line, perhaps accompa-
nied by a side condition governing the applicability of the rule. Both the numerators
and the denominators are tableau lines.

For first-order multi-modal logic over a regime S, we will use the following
tableau rules:

1. closure, with A an atomic formula:

ST tAR fAR  SeT fTH
T 1
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. conjunctive:

ST, tAABH ST, fAVBH
ST tAABR AP IBR  SoT,fAVBF, fAF, fBF

. digunctive:
>l fAABH
>, fAABH TAH >, fAABH fBY
>l tAvBH
>l tAVBH tAH >l tAvBH tBY
. negation:
S, t—AH S, f-A"

ST AR TAR 35T, f—AF tAF

. possibility, subject to the side condition that o is new to

>, fOAH ST tOAHR
2, W/pa i T fO AR fAHS 2 p/pa i tO AR ARG

. necessity—subject to the side condition that thereisa typing derivation S, >

M/ i
>l tOAH ST fOAR
SoT IOAR A ol FOAR TAY

. special necessity—subject to the side condition that A (i) is one of KD, KDB,

KD4, KD5 or KD45, that i < j accordingto N and that a isamodal param-
eter new to X:

So [, t0jA So [ FO AN
2, u/pais T O AR ARG 2 p/pais TR0 AR TARY

. extra special necessity—subject to the side conditionsthat A (i) isone of KD,

KDB, KD4, KD5 or KD45, that A(j) is one of K5, K45, KD5, KD45 or 5,
thati < j accordingtoN , that S, Z>p/v: j, and that a isamodal parameter
new to 2
>, uA’
2 U/pa i tTHE uAY

. existential—subject to the side condition that cisa first-order parameter new

to 2
S, tIxAH >, fyxAH
2, c:u> taxAY tAle/XH X c: pue T, FvxAH fA[c/xH
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10. universal—subject to the side condition that thereisa typing derivation S, > >
t:
>, tYxAH >, fIxAH
o tVXAR TATt/XP Zo T, FxAR TAt/XP

Definition 18 (Tableau) A first-order multi-modal tableau for X (over regime S) is
a finite tree in which each node carries a tableau line, and in particular the root
carries the line X, such that when an internal node carries line Y and its children
carrylinesZy,...,Zn,Y/Z;...Zyinstantiatesa tableau rule over S in such away as
any side conditions on the tableau rule are met.

Remark (Rules). A tableau is asyntactic record that describes a systematic search
for amodel in which al formulasfrom I" are satisfied. Such asearch fails at aclo-
sureinference, for no model can simultaneously make the same atomic formulaboth
true and fal se at the same world. Meanwhile, each inference rule decomposes some
formulaaccording to its outermost logical connective, so asto explore the different
ways amodel could satisfy that formula. For example, the conjunctive figure

ST, tAABH
SoT,tAABY, tAF, tBV

indicates that, since both A and B must be true at world 1 for AAB to be true at |,
search for amodel for A A B succeeds only when both A and B are satisfied at .
Conversaly, the digunctive figure

ST, tAVBH
SoT,tAVBR, tAF SoT,tAVBR, tB

indicatesthat, snce AV Bistrueat aworld p aslong aseither Aistrueat i or Bis,
search for amodel to AV B may involves finding a structure which is amodel of A,
or it may involve finding one which is amodel of B.

A tableau proof—a tableau in which every path eventually reaches a closure
inference—then indicates that all possible ways of constructing a model have been
tried, and have failed. If I has the form fE, the tableau then shows that there is no
way to make E false: E must hold in all models.

As with the boolean rules, tableau rules for modal operators and quantifiers can
be viewed as afunction of the semantics of modal formulasand quantified formulas.
In the case of the possibilty and necessity rules, this view isrelatively straightfor-
ward. For possibility, for example, amodel for O;Aat g must satisfy A at someworld
accessible from . The inference rule gives this world an arbitrary name pa, and
continues the search for amodel. At necessity, meanwhile, a model which makes
O;Atrue at aworld p must have A true at any accessible world v in the model; the
inference rule checks that v is acessible from ., and continues the search for the
model assuming also that Aistrueat v.
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Clearly, however, the proof-theoretic treatment of serial modalities—as rep-
resented in the special necessity and extra special necessity inference figures—
involves additional complexity. From the point of view of uniformity, the smplest
treatment of serial modalities would be to introduce a general rule of the following
form—

2ol
S p/pa il

—subject to the side condition that p occursinZ and A (i) isoneof KD, KDB, KD4,
KD5 or KD45. (Infact, since the domains of quantifiers cannot be empty, a smi-
lar rulewould be needed to infer I3xA from VxA—except that since we always have
some constant symbol that we can instantiate the universal statement to, we do not
need a specia rule to introduce a fresh symbol for this purpose.) Observe that the
extra specia necessity ruleisjust an instance of thisrule, except for the addition of
an always true signed prefixed formulain the denominator of the tableau rule. The
special necessity rule, meanwhile, combines an application of this rule with an ap-
plication of the necessity rule to instantiate a formulaat the new prefix pa.

There are a number of advantages to the use of the special necessity rule. The
specia necessity rule encodes the fact that formulas cannot probe paths of accessi-
bility whose length exceeds the modal depth of the formula, an important semantic
generalization about modal logic, cf. [van Benthem, 1983]. At the same time, the
rule makes for a tighter proof system about which stronger results can be proved.
For example, the special necessity rule gives easy decision proceduresfor combina-
tions of KD modal operatorsin the propositional case: withit, tableaux can only in-
troduce prefixeswhose length equal s the modal depth of the formulas being proved.
In multi-modal regimes where the special necessity rule suffices—regimes where
serial operators never narrow euclidean operators—it makes sense to use it. That
motivates its adoption here, where amajor goal—as suggested in section 1 and un-
derscored in section 5—isto lay the groundwork for computational investigation of
particular modal theories and fragments.

Unfortunately, the extra special necessity ruleisindispensible when we do have
serial operators that narrow euclidean operators. In this case there is no local test
that permits us to determine when we may have to look at the witness world for a
serial modality in order to derive a contradiction. An example will give the flavor
of the difficulty. Consider this regime

S=(A={1—KD,2— K5,3—K5},N ={1<2,1<3},Q = constant)
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Then we have a closed tableau

>t<>2D2A, t<>3l:|3—|A
J0: 25 tO,AT, t0305-A O,
a2, /B30 t0,AT t0-AF 3
Ja:2, /B:3,y: 1> tO,AT, tO3—AP tTY extraspecial
Jo:2, /B3,y 1o tAY, tOg AP tTY -2

to
0:2,/B:3,y: 1> tAY, t-AY t TV 3
[a:2, /B3,y : : closure

In displaying this proof, the preservation of principal formulas of tableau rules is
suppressed for readability. The extraspecial necessity rule applies at the third step
to introduceworldy. Thereafter, we can derivea/y: 2and a/y: 3 by (Inc) and (5);
instantiating the necessary formulas there derives a contradiction.

Thereisafinal featurethat makesthe special necessity ruleattractive, and which
motivatesthe difference between the tableau scheme given above and the extra spe-
cia necessity rule. Thisisthat they allow the worlds relevant to satisfying atableau
lineX>T to be determined from the prefixesthat occur in I". This permits shortcuts
in the metatheory, particular in the compl eteness proof. ®

Remark (Structure). Each of the tableau rules of Definition 17 (except clo-
sure) applies at a node in virtue of the presence of a distinguished signed prefixed
formulathat the node carries; we refer to this as the principal expression or smply
the principal of the rule or rule application. (One typically refers to the principal
formula of arule; but in this report the objects in question are not smply formu-
las, but expressions built out of formulas, as well as prefixes, signs, etc.) Similarly,
each of the tableau rules introduces new expressions onto the branch which we re-
fer to asthe side expressions of therule. Typically, theside expressions of aruleare
congtituents (modulo instantiation of termsfor variables and a change in prefix) of
the rule’sprincipal expression—the exception being the extra special necessity rule
(where the side formula serves, as noted above, only to register anew prefix on the
tableau line).

A branch of atableauisapathinthetableaufromtherootto aleaf. Tableaurules
are often written so that each node carries just the new formulas introduced there.
On thisconvention, the closure conditions must check that aformulaand its comple-
ment occur on the same branch of thetableau. A tableau so written may be converted
to atableau using the figures of Definition 17 by relabling each node to include all
formulas higher on any branch through the node. The tableau rules of Definition 17
bear an evident resemblance to the rules of the sequent calculus. Suppose we break
down amultiset of signed prefixed formulasl™ into amultiset of formulas W signed
t and amultiset of formulasA signed f. Then ™ correspondsto the sequent ¥ —- A
and now thetableau figures of Definition 17 may beregarded just as sequent calculus
ruleswritten upside-down. In particular, therulesfollow aconvention of dispensing
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with the structural rules of the sequent cal culus—avoiding the weakening rule by
permitting amultiset I' of “extraneous’ formulas on the closure rule; and avoiding
the contraction rule by automatically preserving all formulas at the application of
logical rules. Finally, we remark that the use of signed expressions meansthat each
rule comes in double; we will refer to an application of the rule to an expression
signed t as a positive one and an application to an expression signed f as a negative
one. ®

A branch is closed just in case the leaf on the branch carries the label L. A
tableau is closed just in case every branch of the tableau is closed.

Definition 19 (Provability) Let " bea set of prefixed formulas and A be a prefixed
formula, and let X be set of typing expressions. Then A follows from I under ¥—
written 2> — Ajust in case thereis a finite multiset 'o C ' and a finite subset
3o C Zsuchthat Zg isatyping for I'g, Aand thereisa closed tableau for Zy>T g, fA.

In proving properties of tableaux and tableau proofs, we have two structural
strategies. The first is based on the natural notion of subproof. Given a tableau—
consisting of atree T whose nodes carry tableau lines—then any subtreeof T’ (with
the same nodes carrying the same lines) isalso atableau; wecancall T’ asubtableau
(orif T isaproof, asubproof) of of T.

The second method is based on viewing tableaux as composed by branch exten-
sion. Two paths (or branches) agree if they contain the same number of nodes and
corresponding nodes carry identical labels; branch b’ extends branch b if b and the
path obtained by removing the leaf from b’ agree. In general, if the leaf of abranch
cariesthelineZ>T, we say the branch endsin 2T .

Thenthetableau T’ extends thetableau T if any branch of T but one, b, agrees
withsomebranchof T/, and every branchof T/ agreeswithabranchof T or extends
b.

24 Soundness

We begin by showing that the proof systemissound: that aformulaisnever provable
unlessit istruein al models, we adapt the arguments presented in [Fitting, 1983,
2.3] and [Fitting and Mendelsohn, 1998, 5.3]. These arguments formalize the intu-
itive motivation for the tableau system as providing a systematic search for amodel
for formulas. To be precise about the kind of model that a tableau should construct,
we first define satisfiability in a model with respect to an assgnment. The main
lemma, Lemma 4, then shows that the search for these models involved in the ap-
plication of the tableau rulesleaves open al possibilities. So, if atableau linehas a
model, there is no way for a tableau proof to report that there is no model for it.

Definition 20 (Satisfiable) Given aregime S, supposeI' isa set of signed prefixed
formulas (over L(CONSTUP)(K)) and X is a set of typing expressionsin the same
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language. We say I is satisfiable against Z inamodel M = (G,R ,D,J) that re-
spects S with respect to an assignment g if there is a map 6 assigning each prefix p
that occursin X to aworld 6(p) € G such that:

1. For any expression /v :iinZ, 8(n)R ;B(v).
2. For any parameter p with an expression p: pinZ, g(p) € D(6(n)).

3. For any signed prefixed formulatA* € ', M, 8(n) i—g A, and for any signed
prefixed formulafA* € ', M, B(1) i--g A

Oncewefind an assignment and function that match X (according to conditions1 and
2 of Definition 20), we thereby ensure respect for all thetyping judgments derivable
from < according to the regimeS.

Lemma 2 Let X be a set of typing expressions, let M = (G,R ,D,J) be a model
that respects theregime S = (A,N ,Q ), and let 6 be a map from the prefixes that
occur in Z toworldsin G such that for all expressions //v' :iinZ, 8(W)R ;8(V').
Thenif S,Z>p/v ;i for prefixes p and v that occur in Z then ()R ;6(v).

Proof. By induction on the height of the derivation of Z>p /v :i.
The base cases are asfollows:

1. p/v:iinZ (K)—so theresult follows by assumption;

2. p=vandA(i)isT, B, S4or S5(T) and p occursin X—so the result follows
because 6 must be defined on p and hence 8(1) = 8(v) and R ; isreflexive.

Suppose the induction true of derivations of height h— 1 or less and consider a
derivation of height h according to the clause which introducesit:

1. (B): weget 1u/v :ibyshowing S,Z>v/p:iinfewer stepswith A(i) one of
KB, KDB or B—so theresult followsbecause by assumption 6(v)R ;6() and
R ; issymmetric

2. (4): weget u/v:ibyp/ € Z and ashorter derivationof S, 2>’ /v :i. By
IH then 6(1)R {6(W’) and B(')R iB(v). Since A(i) isK4, K45, KD4, KD45,
SAor S5,R jistransitive, and 8()R {B(v)

3. (5): wegety'/v:ibyS,Zop/p iand S, Z>p/vii. By IH, 8()R iB(W)
and B(L)R iB(v). Since A(i) isK5, K45, KD5, KD45 or S5, R  iseuclidean
and hence 8(po )R 8(v).

4. (Inc): weget /v : j by showingS,Z>p /v :iwithi < j accordingtoN . But
by IH, 8(u)R ;8(v) and sincethe frameisnarrowingfrom j toi, ()R ;8(v).
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This establishes the result. ®
Not only the modal parameters but also the first-order parameters are treated

properly.

Lemma 3 Let X be a set of typing expressions, let M = (G,R ,D,J) be a model
that respects theregime S = (AN ;Q ), let 6 be a map from prefixes that occur in
> toworlds and let g be an assignment such that for any expression p/v :i € Z then
B(K)R iB(v) and for any parameter pwith an expression p: p e Z,g(p) € D(B(W)).
Thenif S,Z>p: v theng(p) € D(B(v))

Proof. Thejudgment S, p: visderivedin oneof threeways, depending in part on
Q . Inthe base case, the judgment may be derived from p: v € Z, but then g(p) €
D(8(v)) by assumption. Or, if Q isconstant, then we know p: p € Z andv also
occursin Z. Then 6(v) names some possible world, and g(p) € D(8(n)). But since
thisis a constant domain model, D (8(1)) = D(6(v)).

Finally, inductively, if Q isincreasing, the judgment may be derived from a
shorter derivation of S,Z>p: 4 and aderivation that S,Z>p /v :i. By Lemma 2,
B(1)R ;B(v). But then since M respectstheregime, D (6(n)) € D(8(v)). Since by
hypothesisg(p) € D(8(k)), g(p) € D(B(v)). =

A tableau branch is satisfiable it endsin Z>—and I' issatisfiable against X in
some model with respect to some assignment. A tableau issatisfiableif somebranch
in the tableau is satisfiable.

Lemma 4 (Extension) Any extension T’ of a satisfiable tableau T is satisfiable.

Proof. Wesuppose T issatisfiable. By definition, for al thebranchesof T but one,
b, thereisabranch of T’ that agrees. Hence, we need only consider the case where
bistheunique satisfiable branch of T ; wecanrefer tothemodel M = (G,R ,D,J),
the world function 6 and the assignment g which witness the satisfiability of b. In
T', the path b occurs; but now it ends in an internal node which instantiates some
tableau rule. We show that T is satisfiable by case analysis on thisrule.

If theruleisclosure, thereisonebranchb/ in T’ extending b, and sincetheleaf on
b'is L, b’ isnot satisfiable by definition. But for closure to apply, b must end either
inX> tAH fAH orin 2o, fTH. Inthefirst case we must have both M, B(p) 1—g A
and M ,0() -9 A. Thisis absurd. The second case is likewise impossible, as it
requiresM ,B(p) 19 T.

If the rule is conjunctive, the following reasoning for the positive instance is
representative. There is one branch b in T’ extending b; the leaf of b must carry
>>T,tAA B while the leaf of b’ must carry T, tAA BH, tAH, tB*. To show the
satisfiabilty of b it sufficesto show M ,8(p) i—g Aand M, 8() i-¢ B. But thisfol-
lows from the fact that M, B() i—g AA B—which we know from the satisfiability
of b—and the definition of truth in amode.

If the rule is negation, the same reasoning applies mutatis mutandis.



FIRST-ORDER MULTI-MODAL DEDUCTION 19

If theruleisdigunctive, the following reasoning for the positive instance is rep-
resentative. There are two branchesb/ andb” in T/ extending b. The leaf of b must
carry 2>, tAV B while let us say the leaf of b/ carries > T,tAvV BH, tAH, while
that of b” carriesZ>T", tAv B*,tB*. To show oneof b’ and b” satisfiable, it suffices
to show that either M ,8() i—g A or M ,B8() I—g B. Again, this follows from the
fact that M, 8(p) i—g AV B—which we know from the satisfiability of b—and the
definition of truth in amodel.

If the ruleis possibility, the following reasoning for the positive instance is rep-
resentative. There is one branch b in T/ extending b; the leaf of b must carry
2, tO;AH while the leaf of b’ must carry X p/pa i T tO;AR tARY for a new.
Now we know M , 8(p) 1i—g $iA, so there must be aworld w such that ()R jwand
M ,wi—g A — by the definition of truth in amodel. So construct a function &’ ex-
actly like 6 except that & (pa) = w. For p/pa ;i then, 8 (1)R 6/ (pa). Moreover,
since &' coincideswith 6 on the prefixesof Zand T, forany BV inT', M , /(i) i—¢ B
if and only if M ,0'(p) i—g B. For the same reason 8 meets conditions 1 and 2 of
Definition 20 (on Z, with respect to g). It followsthat I, tO;AH tAHY is satisfiable
against Z,u/pa :iin M with respect tog and 6.

If the rule is necessity, again we consider arepresentative positive case. There
isonebranch b’ in T’ extending b; the leaf of b must carry T, t0;A* while the
leaf of b’ must carry 2T, tO; A tAY withZ>p/v :i. SinceZ>p/v @i by Lemmaz2,
B()R i8(v). Moreover, we have M ,8(p) i—g O;A. But then by the definition of
truth, M ,8(v) i—g A. So b is satisfiable.

If the ruleis special necessity, we combine the preceding arguments. We con-
sider anew world w provided by the seriality of modality i and construct avariant &/
of O with &' (pna) = w. The argumentation from the possibilistic case allowsusto re-
duce the satisfiability of the branch with respect to &’ to some condition M , wi—g A
(in apostiverule); thisfollows from the necessity of 0;A asin the necessity case,
thanksto aderivation of p/pa : j from p/pa : i using the fact that i < j according
toN .

If theruleisextra special necessity, it suffices ssimply to consider anew world w
provided by the seridity of modality i and construct avariant 8’ of 8 with &' (pa) =
W.

If the ruleis existential, again we consider arepresentative positive case. There
isonebranch b’ in T’ extending b; the leaf of b must carry T, t3IxA* while the
leaf of b’ must carry Z,c: p> T, t3xAH tAlc/x]*, for some new c. Now we know
M, B() 1—g XA s0 by the definition of truth in amodel there must be some indi-
vidual ue€ D(8(p)) suchthat M ,8(u) -y Afor an x-variant g’ of gwith ¢/ (x) = u.
Now we consider an assignment g” whichisin fact ac-variant of g for the parameter
c, withg”(x) =c. Itisimmediatethat g” satisfies conditions 1 and 2 of Definition 20.
Moreover, sincec doesnot occur inZ or I, we can apply Lemmal—for any variable
z that does not occur in F—to show of any B in T that M , 81—y B; it remainsonly
to show M, 8(l) -4 Alc/x]. But this follows by another application of Lemma 1
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with x and c.

If the ruleisuniversal, we can reason as with the following positive case. There
isonebranch b’ in T’ extending b; the leaf of b must carry =T, tVxA* while the
leaf of b’ must carry =T, tVxAH At /¥, for somet with 2>t : p. Again we know
that M ,8(H) 1i—g VXA. Let u= g(t) if t isaparameter; we know by Lemma 3, that
ue D(B(n)). Otherwise, let u=J(t) (if t isaconstant); because J(t) e C(F ), ue
D(6(u)). In either case, by the definition of truth, M ,8(u) i—g A with ¢ and x-
variant of g with g'(x) = u. Then, againby Lemma1, M ,8(u) g Alt/X], and so b/
issatisfiable. ®

Theorem 1 (Soundness) Suppose there isa closed tableau T for >fAE. Then Ais
valid.

Proof. By contradiction: suppose A isnot valid. Then thereis some model M,
world w and assignment g such that M, wi—g —A. This means that the tableau Ty
consisting of a single node carrying >—A is satisfiable. Hence, by the lemma, so is
any tableau we get from Tq and applying branch extension rules—in particular T is
satisfiable. But T cannot be satisfiable, since T isclosed. Thus A must be valid. ®

25 Completeness

We now turn to the compl eteness theorem, which statesthat if aformulaisvalid then
thereis aproof for it. In fact, we prove the contrapositive: if there is no proof for
the formula, then there isamodel where the formulais false. Again, the argument
behind the completeness theorem can be seen as a formalization of the motivation
for tableaux in systematic search for models. In this case, the ideais that this sys-
tematic search, if carried far enough, will construct a countermodel to aformulaif
a countermodel exists. Otherwise, the search must fail, giving a syntactic proof for
the formula. Now, modal formulas may be satisfied only in infinite models, so the
completeness theorem effectively requires us to consider infinite sequences of ap-
plications of tableau rules. In moving to infinite sets in this way, we must formally
move from tableaux, viewed as syntactic objects, to amore abstract, algebraic char-
acterization of sets of modal formulas. In particular, we will follow [Fitting, 1983]
in developing the completeness argument in terms of analytic consistency proper-
ties for the modal language. The bridge from finite tableaux to infinite consistency
propertiesis mediated by an extended construction—presented in section 2.5.1 with
therunup to Proposition 8—that devel opsacharacterization for an infinite set of for-
mulasin termsof the behavior, on finite subsets of that set, of rewriteruleslikethose
used in the construction of atableau.

In this setting, the systematic, infinite application of tableau rules correspondsto
finding afixed point for the rewriterules. Thisisformalized in section 2.5.2 with
the notion of a downward saturated set: a set which already containsall the formu-
las that might possibly be added along a hypothetical infinite branch in a tableau.
We show there how to start with the kinds of sets for which tableau search failsto
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derive aclosed tableau (characterized algebraically in terms of analytic consistency
properties) and extend them into downward saturated sets—with some care about
the introduction of representative possible worlds and first-order parametersto wit-
ness possible and existential statements. Itisashort step from adownward saturated
set to a corresponding modal model.

The proof of completenessitself isthen presented in section 2.5.3. Itlinksthere-
sultstogether, showing how to concludethat thereisacountermodel for aformulaas
long asthereisno corresponding closed tableau. Because we arereasoningin an ex-
pressive logical language using a proof system without cut, the development of this
completeness proof shouldersarelatively large burden. Much ssmpler completeness
proofsare possiblefor proof systemswith cut, but they then requirea syntactic proof
of cut-elimination to derive a computational proof system for automated reasoning.

25.1 Consstency Properties

Definition 21 (Consistency property) GivenaregimeS = (AN ,Q ), let Z bea
typing over alanguage L(CONSTUP)(¥) and et C be a collection of sets of signed
prefixed formulas from L(CONSTUP)™(K), C isa first-order S-consistency property
for Z if for each set Se C the following conditions are met:

1. every prefix W that occursin Soccurs in Z; and whenever some first order
parameter p € P occursin S p also occursin .

2. there is no atomic formula A and prefix g with tA* € Sand fA* € S nor is
fThes

3. tAABH € S= SU {tA*,tB"} € C. Likewise, fAV B! € S= SU {fAH, fBH] ¢
C.

4. tAVB" € S= either SU{tA"} € Cor SU{tB"} € C. Likewise, f(AAB)! € S
= either SU{fA"} € C or SU{fB"} € C.

5. t-Al € S= SU{fAH} € C. Likewise, f-A* € S= SU{tA*} € C.

6. tvxAH € S= SU {tA[p/X|} € C for every symbol p satisfying either (1)
p €CONST, or (2) pc P, poccursinS andS, 2> p: Y. Likewise, faxAH € S
= SU{fA[p/x]} € C for every symbol p satisfying either (1) p €CONST, or
(2 pe P, poccursinS andS,Z>p: .

7. tIxAH € S= thereissome symbol p €CONSTUP suchthatS,Z>p: pand SU
{tA[p/x]} € C. Likewise, f¥xA* € S=- there is some symbol p cCONSTUP
suchthat S,Z>p: pand SU{fA[p/X} € C.

8. tO;A* € S= SU{tA'} € C for every prefix v € M (k) suchthat S, Z>p /v : i
and thereissome uB" € S. Likewise, fO;A! € S= SU{fA"} € C for every
prefix v € M(k) such that S,Z>p/v ;i and thereissomeuBH € S
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9. Suppose either (1) tO;AH € Sor (2) tOjA* € Sand A(i) isKD, KDB, KD4,
KD5 or KD45 withi < j by N : then SU {tA*®} € C for some prefix pa €
M(k) such that p/pa ;i € Z. Likewise, suppose either (1) fO;A* € Sor (2)
fO;AH € Sand A(i) isKD, KDB, KD4, KD5 or KD45 withi < j by N : then
SU{fAH?} € C for some prefix pa € M(K) such that p/pa ;i € X,

10. If uAY € SwithS,Z>p /v : j for A(j) oneof K5, K45, KD5, KD45 or 5, for
i <jbyN andA(i) oneof KD, KDB, KD4, KD5 or KD45, then SU{tTH} €
C for some a suchthat p/pa :i € Z.

Let C be a first-order S-consistency property for < and let X be a set of formulas
from L(CONST). We call C X-compatibleif, for each S € C and for each A € X,
SU{tAf} € C.

Now, in order to work with consistency properties, we need to place some sen-
sible constraints on typings.

Definition 22 (Fairness) Given a typing 2, denote by >« (W,i) the sat {a €
K|p/pa:iex}. Denoteby Zp(n) {pe P | p:peZ}. Atyping Z isfartoa
countable set of modal parameters Kk and a countable set of first-order parameters
Pif:

e for any a € K, thereisa unique expression p/va @i € £ and g = v;
e for any p € P, thereisa ungiue expression p: € Z;
e for anyp € IN(K) and any modalityi, 2« (1, 1) and Zp(p) are countablyinfinite.

Remark (existence). For any countably infinite setsk and P, we can construct afair
typing. Let o enumerate k and let p; enumerate P. Meanwhile, let (p;, m); be an
enumeration of the pairs of prefixes of (k) and integersindexing modalities with
infinite repetition. We can choose these enumerations such that when any element
aj occursin yj, then j <i. Now use the typing:

{Hi/Wia; :my | foranyintegeri}U{p;: ;| forany integeri}

Moreover, given afair typing X for k and P, we can partition Kk and P into count-
ably many digoint countably infinite setsky... and P;... such that X is still fair
if restricted to typing expressions for prefixes over | J,,.,mKm and parameters over
Un<m Pm. We can ensure at the same timethat Z (1, ) NKm iscountably infinite, as
is2p(H,i) N Pm. (Weappeal to this construction in the proof of Lemma 11.)

To construct K j we assume an operator E (k*,m, j) wherek* isasubset of kK, m
isamodadlity and j isaninteger. E(k*,m, j) isdefined asfollows. Let a; enumerate
{H/pa:me X | pn e N(k*)} and let n; enumerate integers with infinite repetition:
E(K*vmv J) = {Gi|ni = J}
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We construct K; as the union of sets k! using E. k% = 0. k™ =«"U
UmUk<j E (g, m, j). Thepartitionof P proceedssimilarly, by distributing p: ptwith
H e M(k;j) among B with j <i fairly. ®

Lemma5 Let C be an X-compatible first-order S-consistency property for Z. De-
fineC' asSe C' justincasethereisS € C suchthat SC S. (Thus, C’ containsall
subsets of members of C.) Then C’ isalso an X-compatible first-order consistency
property for %, extending C and closed under subsets.

Proof. C’ extends C since for any S€ C, SC Sand hence Sc C'. C isclosed
under subsets because given S€ C' and T C S thereisan S € C with SC S; then
TCSs0TeC. Now,takeSc C'andAc X. ThereisS € CwithSC S; sinceC
is X-consistent S U {tAf} € C; since SU {tA®} C S U {tA%}, SU{tA%} € C'. Thus
C’ isX-compatible.

Finally, the various conditions for being a first-order consistency property for
> must be checked for C’. C’ introduces no prefixes or first order parameters. so
clause 1 issatisfied. To show clause 2, suppose tAH and fAH € Se C'. ThentA* and
fAH € S € C, whichisimpossible.

The reasoning is essentially the same in al the remaining cases: we have Se C’
and need to show SUT < C’ (for appropriate T). This follows since SC S with
S cC,s0SUT e Csince C isaconsistency property, and SUT C SUT. To be
concrete, here are representative cases: for tAABH € S we use this argument with
T = {tA*,tB*}. For tAVB* € S we use thisargument with T chosen as whichever
of {tA*} and {tB"} givesSUT € C (wemust have one). For t—-A* € S we usethis
argument with T = {fA*}. For tvxA" € S we have T = {tA[p/x]"} (for any such
p where the side conditions apply inin S they apply in S because p must occur
in S'if poccursin Sand SC S). We argue similarly for modal universals, such as
t0;A": wehaveT = {tA"} (any v that meetsthe side conditionsin Smeetsthemin S
because SC S). For t3xA*, wecan pick T = {tA[p/x]*} tofind SUT € C. Weargue
similarly for modal existence conditions, such astO;AH: we can pick T = {tA*®}
tofindSuTeC.®

The simple existential way of dealing with Ix and <; in consistency properties
isinsufficient for the rest of the completeness proof. It isconvenient to reformulate
it using anew parameter condition.

Definition 23 (Alternate consistency property) A collection C (of sets of signed
prefixed formulas) meets the new parameter condition for X if the following three
conditions are met for each Se C.

e For eachtaxA! € S SU{tA[c/x*} € C for every first-order parameter ¢ that
does not occur in Sand for which ¢ : p € 2. Likewise, for each fVxAH € S
SU {fAlc/x]*} € C for every parameter c that does not occur in S and for
which Zc: p.
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o Whenever we have either (1) tO;AH € Sor (2) tO;AH with A(i) KD, KDB,
KD4, KD5 or KD45 and withi < j by N, then SU{tA*%} € C for every tran-
sition parameter a such that: p/pa @i € Z, a doesnot occur in S, and further
no parameter p occursin Swith p:v € Z where a occursin v. Likewise,
whenever we have either (1) fO;A* € Sor (2) fO;AH € Swith A(i) KD, KDB,
KD4, KD5 or KD45 and withi < j by N, then SU{fA*%} € C for every tran-
sition parameter a such that: p/pa @i € Z, a doesnot occur in S, and further
no parameter p occursin Swith p:v € Z where a occursinv.

o IfUA’ € SwithS,Z>p/v: | for A(j) oneof K5, K45, KD5, KD45 or b, for
i <jbyN andA(i) oneof KD, KDB, KD4, KD5 or KD45, then SU{tTH} €
C for every transition parameter a which does not occur in Sand for which

H/pa i€ 2

If C satisfies all the conditions for being a first-order S-consistency property for Z,
except for conditions7, 9 and 10 (on existential and possible statements), and C also
satisfiesthe new parameter conditionfor X, wewill call C an alternate S-consistency
property for .

To show that this reformulation is general, we consider parameter substitutions.

Definition24 ¢ is a S-parameter substitution for X (over the language
L(CONSTUP)')) if ¢ = (op,on) where op : P —CONSTUP and
on : M(K) — N(k) satisfying the following properties:

e Op(p) occursinX = poccursin X; o (M) occursin X = P occursin Z;
e forall cand , if S,Z>c: p, then S, Z>0p(c) : o (W);
e foral pandv, ifS,Z>p/v:i, thenS,Z>on (M) /on(v) @ i.

For formula A we can write op(A) for the formula obtained by replacing each oc-
currence of first-order parameter in A by an occurrence of itsimage under op. Then
we can write a(AH) for op(A)°n(W; we extend o to sets of signed prefixed formulas
accordingly.

Notethat aparameter substitution o, unlike asyntactic substitution of valuesto vari-
ables, may haveinfinitely many symbols p for which o(p) differsfrom p.

Lemma6 Let T be a fair typing (with respect to k and P). Suppose C’ is an X-
compatible first-order S-consistency property for =, with C’ closed under subsets.
DefineC” by Se C” justin case o(S) € C’ for some parameter substitution o for 5.
Then C” is an X-compatible alternate S-consistency property for < that extends C’
and is closed under subsets.
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Proof. First, we show that C” is an alternate S-consistency property, condi-
tion by condition. To show clause 1, suppose we have Sc C” in virtue of o; by
consistency of C" any prefix on () or first order parameter op(p) that occurs in
o(S) occursin Z; then by definition of parameter substitution p or p occursin Z.
To show clause 2, suppose tAH € Sand fAH € Sfor Se C”. Thento(A*) € o(S)
andfo(A*) € o(S) for o(S) € C'—impossible since C’ isafirst-order S-consistency
property.

To show the remaining relevant clauses from Definition 21, we again use essen-
tially common reasoning to show, given Sc C”, that SUT < C” for appropriate T.
We get thisby showing that 6(SUT) = o(S)Ua(T) € C'; ineach case thisargument
rests on the observationsthat o(S) € C’ and o(S) triggersthe relevant clause of the
S-consistency set definition.

For example, given tAABY € Se C”, we need SU {tA},tB*} € C”. This
is established by the definition of C” as follows: Since o(tA A B*) = tap(A) A
op(B)°nM) and o(S) is an element of consistency property C’, we obtain o(S) U
{o(tAH),o(tB*)} € C'. Similar reasoning applies for t-A* € Se C”. Next, given
tAVBH € Se C”, weneed SU {tA*} € C” or SU {tB*} € C". But o(S) € C" and
top(A)°n Wy op(B)°n (W ¢ o(S) soeither 6(S)Ua(tAH) e C' or 6(S)Ua(tBH) e C'.

Next, for the universal conditions, suppose tvxA* € Sc C”. We need to show
SU {tA[p/x]*} € C" for paconstant or p € P such that p occursin Sand S, %> p:
K. We know since o is a parameter substitution that either op(p) is a constant or
op(p) occursina(S) and S, Z>0p(p) : on(K). Thusfrom o(tVxAH) € o(S) we get
o(S) U {top(A[p/x])°n(W} e C'. Finaly, for tO;A* € Se C", we consider v that
occursinSwithS,Z>p /v :i. Thenon(v) occursin o(S) and (Since o isaparameter
substitution) S, 20 () /on (V) @ i. Hence o(S) U {tap(A)°n)} e C'.

Now consider the new parameter condition, first clause; for reference we de-
scribethe positive condition. We supposet3xA* € Se C”. Thenta(IxAH) € o(S) €
C’ and for somet suchthat S, 5>t : o(p), o(S) U {ta(A*)} € C'. Now let p beany
first-order parameter that doesnot occur in Swith p: p € Z, and defineo’ = (o, o)
with op, exactly like op except possibly that op(p) =t. We claim ¢’ isa parameter
substitution. Since op(p) =t is the only new assignment, we need only show that
S,Zpp:v=S,Zr0op(p): on(v). We can show this by induction on the height of
the typing derivation for S, 2> p:v. Thebasecasehas p: v € Z, but since X isfair
and p: p € X already, we must havev = p and by construction S, Z>0p(p) : on (H).
The result extends straightforwardly to compound derivations using the fact that o’
agreeswith o on prefixesand thefact that o isaparameter substitution. Since p does
not occur in S o’ (S) = o(S). But now we have o’ (SU {tA[p/x]*}) € C’, so we have
established SU {tA[p/X]*} € C" as needed.

The reasoning for the second and third clauses extends this reasoning. For in-
stance, for tO;AH € Se C” we need to show SUtAM for any parameter a where
H/pa ;i € X and S has occurrences neither of a nor of any pwithp:v e X anda
occursinv.
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Now, because C' isa consistency property, we know o(S) U {ta(A)on(WB} ¢ C/
for somep suchthat o (1) /on (K)B: 1€ Z. Wewill extend ory by establishing acor-
respondence between prefixesinvolving a and prefixes containing 3. In particular,

define
Mo = {pav eM(k) | forsomev}

My ={on(u)Bv € NM(K) | for somev}

Since X isfair, we can construct afunction p : Mo — My such that p(pa) = o(p)B
and such that for any &, € Mo, if §/{:i € Z, p(&)/p(Q) : i € Z. Since a does not
occur in S, no element of Mg occursin S We can define op; by

'<z>={ p(E) if & € Mo

on on (&) otherwise

And we observe that o, agrees with oy on al prefixes that occur in S To obtain
a parameter substitution, we will also adjust op(p) for al pwith p: & € Zfor § €
Mo. Since X isfair, both 2p (&) and Zp(p(§)) are countable sets: let g; : 2p(&) —
2p(p(&)) be any one-to-one onto map. Then define oy, by

, ~J g(p)ifp:&ezand o
Gp(P) = { op(p) otherwise

Again, we can observe that since S contains occurrences of no psuchthat p:v e %
with a inv, oy, agreeswith op on all parameters that occur in S.

We claim that 0’ = (0p,0p;) S0 defined is a parameter substitution. First we
show, by induction, S, 2>/ /V': j = S, Z>0pr (W) /0R(V) 1 .

The base case considers atuple &/ ;i € . Suppose { € Mp. If { = pa then
§ =pandop(K) =o(p) whilea({) =a(p)Bando(p)/o(W)B: i € Z by assumption.
Otherwise& = pav; o (§) = p(xi) andp(§) : p(¢) : i by construction. Otherwisel ¢
Mo. Neitheris € Mo s00R(§) = 0(§) and 01 ({) = 0({) sosince o isaparameter
substitution S, 2>0(§)/a(Q) : i. Theinductive casesfollow straightforwardly (asin
the proof of Lemma 2).

Next we show by induction that S,2>c: ' = S,Z>op(c) : o (M). Herethe
argument mirrorsthe reasoning for the existential case. Thebasecasehasc: ¢ € 3.
Thenif & € Mo thengs (c) : p(&) € Z by congtruction; otherwise thisis acase where
o’ agreeswith parameter substitution a. Theresult extendsto compound derivations
using the fact that op; sends related prefixes to related prefixes.

Moreover, o’ (SU {tAH9}) = o(S) U {ta(A)°(WPBY since of; isidentical to oy on
prefixesin S, and o isidentical to op on first-order parametersin S

Having established that C” isan alternate S-consistency condition, weturntothe
remaining facts. C” extends C’ since thepair (1p, 1) consisting of theidentity map
on first-order parameters and the identity on prefixesis a S-parameter substitution.
C” is X-compatible because C’ is X-compatible and moreover X isaset of sentences
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fromL(CONST) and hence (X) = X for any S-parameter substitution. C” isclosed
under subsets because C’ is closed under subsetsand SC S implieso(S) C o(S). ®

A collection C of setsissaid to be of finite character provided Se C if and only
if every finite subset of Sbelongsto C.

Lemma 7 Suppose C” isan alternate S-consistency property that is X-compatible
and closed under subsets. Let C” consist of those sets Sall of whose finite subsets
arein C”. Then C"” isagain an X-compatible alternate S-consistency property that
extends C” and is of finite character.

Proof. First, we show that C” is an alternate S-consistency property, condition by
condition. To show clause 1, suppose tAH € Sand fAH € Sfor Sc C"”. Then § =
{tA* fAH} isafinite subset of S therefore §; € C”, which isimpossible.

For theremaining conditions, for Se C"” weneed toshow SUT € C” (for appro-
priate T). We derive a contradiction from the assumption of somefiniteF C SUT
with F ¢ C” by constructing finite H ¢ Sfor whichHUT € C" andF CHUT.
(Such argument also shows that C"” is X-compatible.)

For example, suppose tAABH € S, For T = {tAH,tB*} we must show SUT €
C"”. Suppose otherwise: then thereisafinite F C SUT with F ¢ C”. But consider
H=(FNSU{tAABH}. HC SandH isfinite, soH € C",soHUT € C". C" is
closed under subsets, and F C (FNS)UT, so F € C”. Thisisacontradiction. (The
same goes for t—-AH € S)

For tvxA* € S we consider p constant or p occursin Swith S, Zop: . If p
occursin Sit occursin some particular expression E € S We want to show SUT €
C” for T = {tA[p/X|"*}. Suppose otherwise: then thereisF C SUT with F ¢ C”.
Wecan now useH = (FNS)U{tvxA* E} toshow F CHUT e C”, acontradiction.
For t3xA*, we apply this reasoning with T = {tA[p/x]*} for S,Z>p: p and p not
occurring in S, we hypoethesize H = (F N S) U {t3xA*} (where surely p does not
occur). These two schemas also extend to the various O; and <; cases.

Finaly, for tAvBH € S let Ty = {tA*} and T, = {tB"}. Assuming neither SU
T € C" nor SUT, € C” givesF, CSUT; and F, € SUT,: wetakeH as (FiNS)U
(R2N9).

We now establish the remaining claims about C"’. The fact that C” is closed
under subsets ensuresthat Sc C” impliesSe C”. C" isof finite character because
C” and C" agree onfinite sets. ®

Lemmas 5, 6 and 7 are summarized in Proposition 8.

Proposition 8 Let = be a fair typing and let C be an X-compatible first-order S-
consistency property for = (where X is a set of sentences of L(CONST)). Then C
may be extended to a collection C* that is an X-compatible alternate S-consistency
property for X of finite character.

It will be convenient to construct certain additional alternateS-consistency prop-
ertiesfrom C*.
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Definition 25 (Sections) Let P’ be a set of first-order parameters and let k' be

a st of modal parameters. The (P, k’)-section of a collection C* is a collec-

tion C* | all members of S are signed expressions over
(CONSI’ UP)N(K)Y,

Lemma 9 (Sections) If C*isan X-compati bleal ternate S-consi aency property of
finite character for L(CONSTUP)™ (), then any C*
nate S-consistency property for L(CONST UP)M(K)—so Iong as P’ CPandk’ Ck.

Proof. The argument here is straightforward. For any Se C*|P'¥, Se C*. So
there can be no tA* € Swith fA* € S The remaining clauses of the aternate S-
consistency property (and X-compatibility) requr re SUT e C*|P'¥
priate T asigned expression of L(CONSTUP' ) but we already have SUT € C*.
Finaly, since C* |s of finite character: Se C* and Saset of signed expression of
L(CONSTUP)™(K) justin caseevery finitesubset F of ShasF € C* and F asigned
expression of L(CONSTUP)()_ But thrsrs equivalent to Se C*|P%' just in case
every finite subset of Sbelongsto C*

25.2 Model Existence

In this subsection, we show that our construction of S-consistency properties gives
us—for any S-consistency property and any set that belongs to the consistency
property—a model in which the set is satisfied. We first establish two facts and a
definition that we will use in the construction.

Proposition 10 In an alternate S-consistency property C* of finite character: the
union of any chain of membersisagain amember; for any Se C* thereisamaximal
S e C*withSC S.

Proof. Let § C S; ... beachain of membersof C*, and let Sbeitsunion. We want
to show Se C*. Suppose not; since C* is of finite character, there must be some
finiteF C SwithF ¢ C*. But since F isfinitethereis some element S, of the chain
such that F C S,. This contradicts the assumption that S, is a member of C*.

We now have that the union of a chain of members of C* extending Sisaso a
member of C* that extends S. Thus, we can apply Zorn'’s Lemmato the set {S €
C* | SC S} to obtain the needed maximal element. ®

Definition 26 (Saturation) Let 2 befair, and suppose C* isan X-compatiblealter-
nate S-consistency property for < (over L(CONSTUP)™ (X)) of finite character. Let S
and T be sets of signed expressions of L(CONSTUP')&) (with P’ C Pand k’ C k).
We say Sis downward S-saturated into T in C*|P%’ just in case the following con-
ditions are met:

1. Ift3xA* € S then tAlc/x* € T for somec e P withS,Z>c: ; likewise if
fyxAt € S then fA[c/x]* € T for somec e P withS,Z>c: .
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2. Ifeither tO;A* € Sor tO;AH € Swith A(i) KD, KDB, KD4, KD5 or KD45 and
withi < jbyN ,thentA*® T for somea € k' withS, Z>p/pa :i; likewiseif
either fO;A* € Sor f<>jAFl € Swith A(i) KD, KDB, KD4, KD5 or KD45 and
withi < j by N, thenfAM® € T for somea € kK’ with S, Z>p/pa : i.

3. If uAY € SwithS,Z>p/v: j for A(j) oneof K5, K45, KD5, KD45 or S, for
i <jbyN andA(i) one of KD, KDB, KD4, KD5 or KD45, thentTH® € T
for some parameter o € k with S, X p/pa : i.

Sisdownward S-saturated in C*
downward S-saturated into S

P& just in case Sis maximal in C*|P and Sis

Lemma 11 Let C* be an X-compatible alternate S-consistency property of finite
character for X (over L(CONSTUP)™(%)): |et Q and R be two disjoint countably in-
finite subsets of P, and let & and ¢ be two digoint countably infinite subsets of K,
such that X isfair to Rand Z. If Se C*|Q¢ then Smay be extended to a set that is
downward S-saturated in C*|QUREUC

Proof. Webegin by definingan operator F . Theinput of F isaset of signed prefixed
formulas T € C*|P*’ for some language L(CONSTUP')™) and countable sets P”
of first-order parametersand k” of modal parametersdigoint from P’ and k’ subject
to two conditionsagainst the typing Z. First, Zisfairto P’ UP” and k' Uk”. Second,
2« (K,i)NK” iscountably infinite, asisZp(W,i)NP”. Theoutput of F, F (T,P’ k")
isaset T’ that is maximal in C*|PVP"<'UK" where T is downward S-saturated into
T/ inC*|P' ¥,

In brief, F addsto T awitness for each existential and possible signed prefixed
formulain T, and extends the result to amaximal set. Let T5 be the signed prefixed
formulasin T of theform t3xAH or fYxAH. Enumerate T5, and assign all expressions
E € T5 auniquefirst-order parameter pg € P” with pg : g € Z. Thisis possible be-
cause 2 meetsthetwo conditionsprovided and T5 iscountable. Now we define S5 to
be {tA[pe /X" | E = t3xA* € T3} U{fA[pg /X" | E = fVxAH" € T5}. Our enumeration
of T3 induces an enumeration of S3; let S5 denote the first n elements of S in this
enumeration.

Similarly, let T, be the signed prefixed formulasin T of one of the five follow-
ing forms: tOxAH; tOxAH for A(i) KD, KDB, KD4, KD5 or KD45 withi < j by
N ; fO;AH; f<>jAFl for A(i) KD, KDB, KD4, KD5 or KD45 withi < j by N ; and
UAY withS,Z>p/v: j for A(j) oneof K5, K45, KD5, KD45 or S5, fori < j by N
and A(i) one of KD, KDB, KD4, KD5 or KD45. Enumerate To,, and assign all ex-
pressions E € T aunique modal parameter ag € K” withp/pa @i € Z. Again, this
is possible because Z meets the two conditions provided and Te is countable. Now
we define S to be {tAH%E | E = tOAM € To or E =tOjA € To} U{fAHYE | E =
fOAM e To or E=fO;AM € ToFU{tTHIE |E =UuA’ € To withS,Z>p/v: j}. Our
enumeration of T, induces an enumeration of Sg; let S, denotethefirst n elements
of Se inthis enumeration.
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We claim that TUS; U S € C*|PUP KUK WwWe know T e C*[PUP"K'UK" o jf
theclaimisfalsetheremust beafirst nsuchthat TUS,, 13U Sy 10 & CF|PUP KUK,
Butwecanget fromTUS,zUSio to TU S, 13U S, 10 by two steps of applying the
new parameter condition for the alternate consistency property C*|PUP"K'UK” This
is a contradiction. Asthe result of F, take a maximal member T’ of C*|P'UP" K'Uk”
that extends TUS U Se.

Asclaimed, it followsfrom this construction that T’ ismaximal in C*|PUP" Kk
and that T isdownward S-saturated into T” in C*

Now we describe an increasing sequence of sets Sl, ...; weconstruct thedesired
set S* as UpS,. We partition R and ¢ into countably many digoint countable sets
Ry,...and{y, ... accordingto Z, using the construction following Definition 22; we
defineRﬁ 8SUm§an and Z;-k] GSUmgan. S |SS|mpIy F (S, Ry, Zl) Given §,, Sn+1 =
F (S, Rn,n). By construction of F, clearly S, isamaximal set inin C*|Rn¢n and
S isdownward S-saturated into S, 1 in C*|Rnén,

S € C*|QUREU py Proposition 10, because S is the union of a chain
in C*|QREUC which is an aternate consistency property of finite character by
Lemma 9.

S must be maximal in C*|QUREYC_ Since C*|QURE jsof finite character, it suf-
fices to show for any E such that S* UE ¢ C*|QUREUZ E € S'. Consider an E that
meets the hypothesis; E isa signed expression of L(CONSTUQU R)™(€Y4) and can
only contain afinite number of parameters; E isthereforeinfact asigned expression
in L(CONSTUQU R%)M(€U%) for some n. It follows that S, U {E} e C*|Q R,
But since S, ismaximal hereby construction, wemust haveE € S, andhenceE € S.

By analogous reasoning, for any existential or possible signed prefixed formula
Ein S, thereisan S, at which E first appears. There is hence a witness for E in
S1andthusinS. ®

Definition 27 (Term Frame) Let S be a downward S-saturated set of signed ex-
pressions of some language L(CONSTUP) (%) for some typing Z. Define the term
frame of Sasatuple (G,R ,D) asfollows:

o G={u|uAte S}

e Ri={{n,v)|neG,veG,S,Zop/v:iU{(u,K) |neG,A(j)isKD, KDB,
KD4, KD5or KD45, j <ibyN andthereisnov € G suchthatS,Z>p/v: j}.

e D(pn) =CONSTU{t |t occursin Sand S, Xt : p}

Lemma 12 (Respect) Let F bethetermframefor S(a downward S-saturated set)
according to 2. Then F respects theregime S.

Proof. We begin with an observation. Suppose thereis aprefix g in Sfor which no
v occursin Swith S,Z>p/v @i with A(i) KD, KDB, KD4, KD5 or KD45. Then
forany j withi < jand A(j) inK5, K45, KD5, KD45 or S5, no v’ occursin Swith
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S,Z>p/V' 1 j. Since Sisdownward S-saturated, if therewas such av’, by saturation
wewould havet TH® € Sfor somemodal parameter a withp/pa : i. Thiscontradicts
our supposition.

Now we can consider the conditionsfor F to respect S case by case.

e A(i)isT, B, S4or S5. Since the consistency property ensures that any world
pocecursin Z, by rule (T) thereisatyping derivation S, /W 1 i. Thus, R
isreflexive.

e A(i)isKB, KDB or B, and uR jv. There aretwo cases: in one casethereisa
derivationS,Z>p/v i soby rule (B) thereisaderivationS,Z>v/p:i: R jis
symmetric; in the other case, we have the obviously symmetric tuplev = .

o A(i)isK4, K45, KD4,KD45, SAor S5. SupposepR ' and 'R jv. Thereare
three cases: in one case, therearederivationsS, Z>-p /W :iand S, 2>/ /v : i,
and so by rule (4) thereisaderivation S, Z>p/v 1 i: R ; istrangtive; in the
other cases, u = |/ or W' = v so transitivity holds by assumption.

e A(i) isKD, KDB, KD4, KD5 or KD45. Then R ; is serial, because either
MR ;v for some prefix v or else by construction uR ;.

e A(i) isK5, K45, KD5, KD45 or S5. Suppose pR i’ and pR jv. There are
three cases. In the first case, there are derivations S, 2> p/p’ @i and S, 2>
K/v i, and so by rule (5) thereis aderivation S, 2> p/v :i. In the second
case, | = M (accessible by construction): then the hypothesis UR ;v is the
conclusion needed for euclideanness. Finaly, thereisthe possibility that v =
M (accessible by construction). But then by our observation, we must have
W = p aswell; the hypothesis UR ;u isthe needed conclusion.

e Supposei < j and R ;v. There aretwo cases. If v = p (accessible by con-
struction) then there must be some modality k with k < i, A(k) one of KD,
KDB, KD5 or KD45, and nov € G such that S,Z>p/v : j. Butsincei < j,
we havek < j by transitivity of N and hence uR ;1 by construction as well.
In the second case, we have aderivation of S, Z>p/v : i; from thiswe derive
the needed relation by (Inc).

e Suppose Q iscongtant. Then S,Z >t : W for any t that occursin S, and any
ne G, thusD(n) = D(v) forany u,v € G. And suppose Q isincreasing.
Obviously we need only consider UR jv with i £ v. But in this case we must
haveS,Z>p/v :i. Nowt € D(p) impliesS, Xt : y; putting the two deriva-
tionstogether by (1) givest € D(v).

This concludes the proof. ®
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Definition 28 (Term Model) Let S be a downward S-saturated set of signed ex-
pressions of some language L(CONSTUP)™(¥) for some typing =. Let (G,R ,D)
be the term frame of S, and define an interpretation J as follows:

1. For each constant c €CONST, J(c) = ¢;

2. For any ty,...,ty €CONSTUP, (ti,...,tn) € J(R) at world p if and only if
tR(ty,....th* €S

ThenM = (G,R ,D,J) isak-modal model, called the term model for S

Lemma 13 (Satisfaction) Lete M = (G,R ,D,J) be the term model for S down-
ward saturated in C*. Let g be an assignment that is the identity on parameters.
Then for each signed prefixed formula tA* € S M ,ui—g A; conversely, for each
signed prefixed formulafA* € S M, pi-g A.

Proof. The proof is by induction on the degree of the formula A. In the base case,
we have uA* with A atomic formula; there arein principlefour possibilities.

e u=t,A=T: ThenadwaysM ,pi—g A

e u=t,A=R(ts,...,tn): ThenM ,pi—gAifandonly ifty,...,the J(R) a p
(since g istheidentity on parametersand J isthe identity on constants). This
holds by construction.

e u="f,A=T: Thisisimpossible, by the definition of aconsistency property.

e u=f,A=R(ty,...,tn): Supposefor contradictionM , pi—g A. Then we must
have tA" € S. Thisisimpossible, since we have fA* € S by the definition of
aconsistency property.

So suppose that the claim holdsfor all signed prefixed formulasuA* with the degree
of Asmaller than h; let E = uA* € Swhere h isthe degree of A. Consider the form
of E.

e E=tBACH. ThenSU{tB",tC*} € C* since C* isaconsistency property. So
tBH € Sand tCH € S since Sisdownward closed, hence maximal. By thein-
duction hypothesis, M , pi—g Band M , pLi—¢ C. ThusM , pi—g BAC. Analo-
gousreasoning goesfor E = fB\ C*—and, for that matter, for t—-B* and f—B*.

e E=tBVCH. Theneither SU{tB" € C* or SU{tC!} € C*. Since Sismaximal
either tB! € Sor tC! € S Then by induction hypothesis, either M , pi—g B or
M, i—g C. Thus we must have M , i i—g BV C. Analogous reasoning goes
for E=fBACH.
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e E =t0O;CH. Consider any v such that pR ;v. Therearein principletwo cases.
Forone, p=v and A(j) isKD, KDB, KD4, KD5 or KD45, j <iby N and
thereisnov € G suchthat S,Z>p/v : j. But since Sis downward saturated,
there must be some pa with S, 2> p/pa : j and tCH* € S Hence there is
someworldv = pa € G such that S,Z>p /v : j. Thisisabsurd. So then we
must have the other case: S,Z> /v @ i. Therefore, since C* is a consistency
property, SU {tC"} € C*. Since Sis maximal, tC" € S’ Then by the induc-
tion hypothesis, M ,vi—¢g C. Since v was arbitrary, we have established that
M, pi—g 0;C. Anaogous reasoning goes for E = fO;CH.

e E =1t{iCH. Since Sis downward saturated, there is some pa such that S, 2>
W/Ha i and tCHY € S We have therefore that PR jua (by definition of R )
and M , pa i—¢ C (by induction hypothesis). Thus M , g <iC. Analogous
reasoning goes for E = fO;CH.

e E =1tVvxCH. Lett be some element of D(u): that meansS, 2>t : g and either
tisaconstant or t occursin S. So by definition of consistency property, SU
{tC[t/x]"} € C*—that is, tC[t/x]" € S Let g be an x-variant of g such that
g(x) =t. If gistheidentity on parameters, soisg (xisavariable). Thus by
induction hypothesis M, i—¢ C[t/x]; by Lemma 1 then M ,ui—y C. This
shows M , pLi—¢ ¥xC. Analogous reasoning goes for E = faxCH.

e E =t3xC". Since Sisdownward saturated, tC[c/x]" € Sfor somecwithS,Z>
c: U Thence D(p); let g be an x-variant of gwith g'(x) = c. By induction
hypothesis M , i Clc/x] and so by Lemmal M, pi—gC. ThusM , i
IxC. Anaogous reasoning goes for E = fvxCH.

The results thusfar are summarized in Proposition 14.

Proposition 14 Let C beafirst-order S-consistency property for X fair (tok and P)
that is X-compatible where X isa set of sentences of L(CONST). Let Se C, where
Sisa set of signed formulas from L(CONST) labeled with the prefix €. Then there
isak-modal model in which Sis satisfiable.

Proof. By Proposition 8, we can extend C to C* an aternate consistency property
of finite character; we still have Se C*. Infact, we can divide P and K into digoint
Q and Rand digoint & and Z with X till fair to Rand Z, so that Se C*|Q€. After
al, Scontains only L(CONST) sentences. Thus by Lemma 11 we can find S € C*
downward saturated with SC S. By Lemma13, S issatisfiableintheterm model for
S on any assignment g that is the identity function on parameters and any function
0 that isthe identity function on prefixes. Thussince SC S, Sisaso satisfiablein
the term model for S with respecttogand 6. ®
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25.3 Completeness Proper
We are now in a position to prove completeness immediately.

Theorem 2 (Completeness) Suppose Aisvalid. Thenthereisa closed tableau for
>fAE.

Proof. We have seen that we can construct afair typing X for P and K. Given a set
[ of signed prefixed sentences of L(CONSTUP)(¥), et 5 be {u/v € | pand v
occurinlfu{p:pe | poccursinTl}; say I istableau-consistent if Zg>T isa
tableau line and there is no closed tableau for Zg>T. Let C be the collection of all
such tableau-consistent sets. We claim C is an first-order S-consistency property.

Supposel” € C. Thenif tA* € ' and fA* € I, we can apply closure to obtain a
closed tableau, contrary to assumption. Likewiseif fTHe T,

Again, for the remaining cases we have common reasoning. We suppose for the
sake of argument that ' € C but " UC ¢ C for appropriateC. That would mean there
was aclosed tableau T for 2 > UC. By applying atableau rule from 2T to
>ruc>T UC, we construct a closed tableau for - > using T . Thisisimpossible.

We consider representative cases. For tAABH € I, suppose not "' = I U
{tA* tB"} ¢ C. Then thereisaclosed tableau T for - >I". Since 2 = Zr we
can construct a closed tableau thus:

Zrbr
Zrbrl
T

We obtain essentially the samefor t—-A* € " (and for fAV BH, T—AH).

For tvxAH € I', we suppose thereissome ' = T U {tA[p/x]*} where pisacon-
stant or poccursin™ and S,Z> p : Y. But under these circumstances, S, 2> p: I,
so the tableau above meets the side conditions on the universal rule.

For tIxA* € I, we suppose that for every cwithS, 2> p: p, FTU{tA[p/x*} £ C.
But since Z isfair and Z > I isatableau line, there must be some such c¢ that does
not occur inZr. Consider ' =T U{tA[c/X|*}: theremust beaclosed tableau T for
this. We derive a contradiction by constructing a new closed tableau:

Zrbr
r,ciunl’
T

The same goes, mutatis mutandis, for the modal cases.
Finaly, fortAvVBH € T, supposeboth I’ =T U{tA*} ¢ Cand " =T U {tB"} ¢
C. Thenwehavetableaux T/ for Zr > and T ” for Zr»>I". AgainZr = = 2o,
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SO we construct
Zr >
Zr >’ Zr >
(We obtain essentially the same for fAABH.)
Having shown that C isaconsistency property, suppose thereisno closed tableau

for>fA®. It followsthat {fAf} € C. Then by Proposition 14, thereisamodel M and
worldwwithM jwi- A ®

3 First-order Multi-Modal Herbrand Deduction
A major drawback to the use of the first-order tableau calculus studied in section 2
istheform of quantifier rules. Ruleslike the existential rule

S, tIxAH
2, c: > I, tIxAH tA[c/xH

have a side condition that requires the parameter ¢ to be new; thisis known as an
eigenvariable condition. Because of the eigenvariable condition, the order in which
inferences are applied intableau proofs matters. In particular, under appropriatecir-
cumstances, it will be possible to construct a closed tableau by applying the follow-
ing inferences:

ST, tIxAH, tyxBH .
2, c: I, taxAH tA[c/x]H, tvxBH (tv)
2, c:u> I, t3IxAH tA[c/XH, tvxBY, tB[c/xH (tV)

However, suppose we construct atree of tableau lines exactly corresponding to that
tableau except that the existential and universal inferences are swapped, as below:

ST, tIXAH, tyxBH o
5T, XAV, tYxB", tB[c/X" <H)
2, c: > T, tIxAH tA[c/xH, tvxBH, tB[c/x! (t3)

Thistreewill not constitute atableau, because the eigenvariable condition isnot met
at theexistential inference. (Asit happens, thetyping side conditionon theuniversal
inference is not met either, but the same problem with the eigenvariable condition
still arises in proof systems where universal inferences do not have such side con-
ditions) This asymmetry means that it may be necessary in proof search with this
system to search not only for the right inferences but the right inferencesin the right
order.
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In this section, we describe a standard method for reformulating quantifier rules
in order to eliminate this asymmetry. This method calls for the use of Herbrand
terms (also known, from another point of view, as Skolem terms) in place of fresh
parametersfor existential rules. Herbrand terms have the form h(X); his asymbol
uniquely associated with some formulaA in the base |language which might serve as
the principal of an existential rule; X isatuple of terms. We refer to aproof system
which callsfor parametersto satisfy the eigenvariable condition as aground tableau
calculus; we refer to a proof system that calls for the use of Herbrand terms as a
Herbrand tableau calculus.

Therationale behind the use of aHerbrand term h(X) at an existential inference
R goeslike this. Regardless of the order in which inferences are applied in aclosed
tableau, there will be some parameters that must occur on the tableau line where R
applies. For example, some parameters must appear on thistableau lineasaresult of
theinstantiationsthat must take place in deriving the principal expression of R. The
terms X which are supplied as an argument to the Herbrand term h(X) identify all
these parametersindirectly. The structure h(X) can therefore serve as a placehol der
for anew parameter that is chosen to be different from each of the termsin X. The
structure h(X) thus packs all the information required to allow the inferencesin the
proof to be reordered and an appropriate parameter chosen so that the inference at
A respects the eigenvariable condition.

In modal deduction, of course, eigenvariable conditions are not only associ-
ated with existential inferences; they are al so associated with inferences of possibil-
ity and the special inference rules for serial modalities. Modal Herbrand inference
therefore requires that we introduce Herbrand terms to describe transitions among
possible worldsand Herbrand prefixesto name possible worlds, in addition to intro-
ducing first-order Herbrand terms to represent first-order parameters. In this case,
the arguments X to Herbrand terms must mix first-order Herbrand terms and Her-
brand prefixes, since logical formulas can encode dependencies among first-order
and modal parameters.

3.1 Formalism

To describe the Herbrand inference system, we rework the definitions of section 2.3.
We begin by assuming two countably infinite sets of symbols: aset H of first-order
Herbrand functions and Y of modal Herbrand functions. By mutual recursion, we
can now define sets Py of first-order Herbrand terms and k- of modal Herbrand
terms:

Definition 29 (Herbrand terms and prefixes) Let ty be a Herbrand prefix and let
t1,...,tn be a sequence (possibly empty), where each t; is either an element of
CONST, afirst-order Herbrand term, or a Herbrand prefix. Thenif hisa first-order
Herbrand functionthen h(tg,ty, . . ., tn) isafirst-order Herbrand term. If n isamodal
Herbrand functionthenn(to,ty, . . ., tn) isamoda Herbrand term. A Herbrand prefix
is any finite sequence of modal Hebrand terms.
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The terms that this definition provides can be named as a class H =CONSTUP U
M(Ky). The basic expressions in proofs will now be prefixed formulas in the lan-
guage L(CONSTUR)™(KY), The formulas continue to be signed; moreover, now
they must also be tracked to indicate the sequence of instantiations that has taken
place in the derivation of an expression.

Definition 30 (Signed, tracked expressions) If E denotes the expressions of some
class, then the signed, tracked expressions of that class are expressions of the form
te or fe where eisan expression of eand | is a finite sequence (possibly empty) of
elements of H.

We say that a signed tracked expression ug tracksatermt justin caset occursasa
subterm of sometermin|.

It is clear that there are countably many first-order Herbrand terms, Herbrand
prefixes, and formulasin L(CONSTURy). We can therefore describe a correspon-
denceasfollows. If Aisaformulaof theformvxB or IxB, we defineacorresponding
first-order Herbrand function hp, so that each first-order Herbrand function is hp for
someA. If Aisaformulaof theform 0O;B or <;B, we define a corresponding modal
Herbrand functionna. If Aisaformulaof theform O;B and j isamodality, we also
defineamodal Herbrand function ng; o). Andif Aisany formula, p isaHerbrand
prefix and j is a modality, we define a modal Herbrand function nej , a)- We in-
sist that the sets {Na}, {N(j,a)} ad {Ne(j ua)} bedigoint and that their unionbe Y.
Now we have:

Definition 31 (Herbrand Typings) A Herbrand typing for a language
L(CONSTURy) (under a correspondence asjust described) isa set > of statements,
each of which takes one of two forms:

1. pu/pun :iwhere: pisaHerbrand prefix and ) isa modal Herbrand term meet-
ing one of the following conditions:

e nisna(y,l)and Ais0;B or <iB.
o Nisng;a (K1)
e isr]e(i,u,A)(l)-
2. t:pwheret isafirst-order Herbrand term of the form h(p, I).
Note that the first bullet under clause 1 does not place any restriction on A beyond
what na already requires, but simply accesses the modality i from A.
A sequence of modal and first-order Herbrand terms X determines a Herbrand
typing =x, consisting of the appropriate p/pun : i for each modal Herbrand termn

that occursin X (possibly asa subterm) and theappropriateh : p for each first-order
Herbrand term h that occursin X (possibly as a subterm).
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A Herbrand typing for a set or multiset ' of signed, tracked expressions of
L(CONSTUPRL)™(KY) whenever X is a finite Herbrand typing that contains an ap-
propriate expression t : p for each first-order Herbrand termthat occursinl or in
2 itself and an appropriate expression p/pn : i for each modal Herbrand termn that
occursinl or in X itsalf.

The definition of derivations of typing judgments carries over from Definition 14 to
Herbrand typings unchanged.

A Herbrand multi-modal tableau lineisan expression of theform Z-I" where
isafinite multiset of signed, tracked expressions of L(CONSTUR, )Y and T isa
finite Herbrand typing. (X need not be atyping for I'.)

Definition 32 (Tableau rule) For first-order multi-modal Herbrand deductions
over aregime S, we will use the following tableau rules:

1. closure—with A an atomic formulaand subject to the side condition that =y C
> and (for the binary rule) =y C %

SelAGTA, ST fTh

1 1
2. conjunctive:
=T, tAABY =>T,fAVBY
o> tAANBY tAL tBY o fAVBY, FAY, fBY
3. digunctive:
=T, fFAABY
=T FANBS, TAY =, FANBY, B
> tAVBY
> tAV By tAY >, tAV B, tBY
4. negation:
ST =AY o1, =AY

SoT AL FAR ST f-AL tAR

5. possibility—where n isna(p, X) for uA the principal of the rule (either 0;A
or OiA):

oI, fOAY o tOAY
X X

NVITOE i>r7fDiA§l(,fA;"Ln Z p/pn: ibr,tQiA;,tA;ilm
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6. necessity—subject to the side condition that there is a typing derivation
S,=x Ny H/v i for asequence N of elements of H:

ST oA ST FOAY
ST AOAL Ay, 2oL FOALTAY vy

7. special necessity—subject to the side condition that A (i) is one of KD, KDB,
KD4, KD5 or KD45, that i < j accordingto N, that n isng; a) (K, X) for uA§l<
the principal of therule:

ST t0 A oI, fO AL

Zp/un s T O A AR /N T RO AL AT

8. extra special necessity—subject to the side conditionsthat A (i) is one of KD,
KDB, KD4, KD5 or KD45, that A(j) is one of K5, K45, KD5, KD45 or S5,
that i < j according to N, that there is a derivation S,=x n> /v : | for a
sequence N of elements of H, that n is e a)(V, X, N):

2, u/un i uAy

Z,0/uN e T UTY 0 s UAY

9. existential—subject to the side condition that his ha(p, X) where uA§‘< isthe
principal of therule:

ST, t13xA) ST, foxAl
ZhiusT XA tAh/XS S heous T fvxal, fATh/x

10. universal—subject to the side condition that there is a typing derivation
S,=x N>t p for a sequence N of elements of H:

ST tyxAl N ENA
o VAL tAlL /XS 20T, FIXAL FATL /XS

Tableaux, branches, agreement and closureremain asin Definition 18 and following.
Remark. Once again the distinction between serial and non-serial modalities
and the presence of euclidean modalities |eads to some surprises in the definitions.
One surprise is the side condition governing typings at the closure rules. This
isrequired to correctly model modal operatorswith accessibility relationsthat may
be empty. With non-serial modalities, it becomes possible to construct a Herbrand
prefix pn for which no corresponding world exists in some model, even though
does correspond to a world in that model. In this case it would be incorrect to rea
son about world pn. Such cases cannot be distinguished from cases where pun does
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correspond to aworld in the model by inspection of atyping =x where X includes
n. Instead, we must check whether the worlds that have been explicitly introduced
by possibility inferences (and special or extra special necessity inferences) include
Hn.

Another surprise is the extension of the terms tracked on universal and neces-
sity tableau rules by aparametric list N of additional elementsof H. The reason for
this, informally, is that we may have situations in which we can only derive p/v : i
by accessing a prefix ' some of whose elements occur neither in p nor in v. For
example, consider aregime S defined by

(A ={0—K,1— K5,2— K5,3— K4},
N ={0<1,0<20<31<32<3},
Q = constant)

Then from /a : 0,/B: 1,y: 2 we can derive 3/y : 3 but without /a : O we cannot
derivethis. (Thederivationfirst shows/a : i viainclusion and euclideanness, then
shows a/y: j viainclusion and euclideanness, and finally 3/y : k viainclusion and
trangitivity.)

Thischaracteristic of typing derivationstransatesinto corresponding factsabout
closed Herbrand tableaux. For example we have that the set {1030, O2—q} isS-
consistent, but the set {Ogp, 1030, $»—q} isnot. The derivation of inconsistency
is obtained by introducing transitions /a : 0, /B : 1,y: 2 corresponding to the three
possibility statements, then instantiating O3g° to show . In this case, any further
use of g¥ in fact depends on having introduced world a aready. So were we to
rewrite this proof using Herbrand terms, we must encode this by creating atracked
formulaas q‘é oy Thisaccountsfor the tracking of new termsfor typing derivations
on universal tableau rules. ®

Definition 33 (Proof) A Herbrand proof is a closed Herbrand tableau for >T.

The Herbrand calculus is also a sound and complete characterization of first-
order modal models. In contrast to the semantic methods we used in section 2, we
will establish this correctness result by syntactic methods, which relate Herbrand
proofsto closed ground tableaux. Supposel” contains sentencesof L(CONST) (pre-
fixed by €). Then the soundness theorem saysthat if thereisaHerbrand proof of >I",
then thereisaclosed first-order tableau for >I". The completeness theorem says that
if there is a closed first-order tableau for >I", then there is a Herbrand proof of oI".
In addition to the syntactic formulation of these theorems, thereis another major re-
versal fromour earlier results: now soundnessisthe difficult thing to show, whereas
completenessisrelatively straightforward. Section 3.3 presentsthe soundnessresult
drawing on background introduced in Section 3.2. Finally, Section 3.4 proves com-
pleteness.
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3.2 Background

Our syntactic methods for reasoning about tableaux exploit permutability of infer-
ence in the Herbrand tableau calculus. To develop the notion of permutability of
inference, we need to make some observations about the tableau rules of Defini-
tion 32. We begin with those observations that are common to tableau calculi in
general. Here as earlier, we can distinguish the principal and side expressions of
each tableau inference (except closure). 1n each denominator tableau line, the occur-
rence of the principal expression and the side expression all derive from—or aswe
shall say, originate in—theoccurrence of the principal inthe numerator tableau line.
Similarly, each of the remaining expressions in the denominator tableau line origi-
nate in an occurrence of the same expression in the numerator tableau line. (Here,
asin [Kleene, 1951], we are assuming an analysis of each inference to specify this
correspondence in the case where the same expression occurs multipletimesin the
numerator or denominator tableau line.)

Consider then two distinct tableau lines on the same branch b of atableau. We
will identify the line O closer to the root of the tableau as the original line and the
the line further from the root of the tableau line as the derivative line, or the deriva-
tivelineto O. Applying the notion orginatestransitively to expressions separated by
multiple steps of inference along a branch, we can say that each expression occur-
rencein the derivativeline originatesin aunique expression occurrence in the orig-
inal line. By extension, when an inference L applies at the derivative line (meaning
that the line is the numerator of L), and so the principal formula of L originatesin
some expression E of the original line, we say that L itself originatesin E. Call the
inferencethat appliesat theoriginal line O; inthe more specific casethat L originates
in aside expression of the denominator of O on the branch b, we say that inference
L originatesin inference O.

Now, in the case of the Herbrand tableau calculus in particular, we distinguish
the possibility, special necessity, extra special necessity and existential rulesasHer-
brand rules, since any occurrence of these inferencesin atableau is associated with
some Herbrand term x that is introduced there. Conversely, we distinguish the ne-
cessity, extra special necessity and universal rules as general rules where there is
the possibility of introducing ageneral term x either asthe valuefor avariable or as
an element of a sequence N of terms introduced for the purposes of typing.

The form of general rulesissuch that at a general inference L, any side expres-
sion of L tracksthe term x that L introduces. We extend the terminology of tracking
to describe inferences. when a side expression of an inference L tracks x, we say
that L tracks x. In the case of a closure inference from f T4, we say the inference
trackst just in caset occurs as a subterm in some termin X; for aclosure inference
from tEx and fEy, the inference trackst just in case t occurs as a subterm in some
termin X orinY. Aswe consider the tracking of termsin tableaux morebroadly, we
discover that if inference L originatesin inference O, and O tracks x, then L tracks
x—This follows from a simple induction on the length of the path from O to L and
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the observation that tracked terms on principal expressions are always preserved on
Side expressions.

Interchanges of inference are transformationson proofs. They appeal to the two
basic operations of contraction and weakening, which must be cast as transforma-
tions on proofsin this framework. (In other proof systems, contraction and weak-
ening are introduced as explicit structural rules.)

Lemma 15 (Weakening (by formulas)) Let T beaHerbrand tableau and let A be
a finite multiset of signed, tracked prefixed formulas (in the same language as T ).
Denote by T + A a structure with nodes and edges exactly like T, but where any
nodein T carries Zi>T, the corresponding nodein T + A carries Z>T, A; other-
wise corresponding nodesin T and T +Abothcarry L. ThenT +AisaHerbrand
tableauand T +Aisclosed justincase T isclosed.

Lemma 16 (Weakening (by typings)) Let T be a Herbrand tableau and let ® be
afinite Herbrand typing (in the same languageas T ). Denoteby T + & a structure
with nodes and edges exactly like T , but where any nodein T carries 2T, the
corresponding nodein T + @ carriesZ, d>I"; otherwise corresponding nodesin T

and T +®bothcarry L. Then T + ®isaHerbrand tableauand T + @ is closed
justincase T isclosed.

Lemma 17 (Contraction) Let T be a Herbrand tableau whose root carries X >
I, E, E. Thenwe can congtruct atableau T’ whoseroot carries>>T, E, where T/ is
closedifandonlyif T is, wheretheheight of T’ isat most theheight of T and where
thereisa one-to-onecorrespondence (also preserving order of inferences) that takes
any inference of T’ to an inference with the same principal and side expressionsin
T.

These lemmas follow from straightforward induction on the structure of tableaux.
To define interchanges of inference, consider two inferences O and D on the
samebranchinatableau T , with O the original and D the derivative. We say that O
and D are adjacent when the numerator of D isin fact adenominator of O. Suppose
O and D are adjacent, and D does not originatein O; thenrootedat Oin T we have
the following scenario (although of course D may apply to any denominator of O):

2ol o
LIJ D Tzo...Tno
T]_D...TmD

Thenthetableau T’ interchangesOand DinT if T’ isexactly like T except that the
order of O and D along the branch has changed. Explicitly, sucha T’ must consist
of T without the subtreerooted at O; in place of thissubtree, T’ must include anew
subtree rooted with an instance of D, with adjacent instances of O below, and for the
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subtrees bel ow copies (possibly weakened) of T1p, ..., Tmp and Tog, ..., Tho. Since
theleavesof T’ arethen just theleavesof T, T/ isclosed if andonly if T is.

We can now present the basic result about inferencein classical Herbrand infer-
ence systems.

Lemma 18 (Interchange) SupposeT isaHerbrand tableauand O and D areadja-
cent inferencesin T neither of which originatesin the other. Thenthereisa tableau
T/ that interchangesOandD in T .

Proof. The proof consists of asmple analysis of the possible cases. The common
reasoning behind these many cases shows how interchanges can be accomplished
according to afew general schemas that describe how expressions should be prop-
agated through tableau lines. We illustrate these schemas here with a case study of
the positive tableau rulesfor v and —; the schemas can also be presented in abstract
generdlity, asin [Kleene, 1951], in a more rigorous (but perhaps less perspecuous)
style.

First, we consider the interchange of two positive (—) inferences, we start with
the following configuration:

o[ t-AL, t-BY
So T, t-AY TAY T-BY
2ol tﬂA;'l(, fA;l(, t—|B\¢, fB‘?
T

Interchanging the inferences can be accomplished by adjusting the intermediate
tableau lineto carry fBY—the side expression of the former derivativeinference—in
place of fAf(—the side expression of the former original inference:

o, t-AL t-BY
ZDF,'[ﬁAi,'[ﬁB‘%fB‘?
2> F,t—nA§‘<,fA§‘<,t—| v, fBY
T

Next, suppose we start with an original positive (—) inference and a derivative pos-
itive (V), thus:

ST, t-AL BV CY
2o, t-AL FAL BV CY
2T, t-AL FAL BV CY, tBY 2oL t-AL FAL BV CYL tCY
T/ T//
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The tableau that interchanges these inferencesis:

S, t-AL BV CY

>, t-AL BV CY, tBY 2T, t-AL BV CY, tCY
oL t-AL FAL BV CY, tBY oL t-AL FAL BV CY, tCY
T/ T//

Now suppose we start with an original positive (V) inference and a derivative pos-
itive (—), thus:
ST, t-AL BV CY

>, t-AL BV CY, tBY 2T, t-AL BV CY, tCY
oL t-AL FAL BV CY, tBY T”
T/

Interchanging these inferences for the first time calls for weakening:

ST, t-AL tBVCY
oL t-AL FAL BV CY
oL t-AL FAL BV CY, tBY oL t-AL FAL BV CY,tCY
K T+ 1Ay

In the case where the unary ruleis a Herbrand rule, the schema aso calls for weak-

ening T” by any new typings that the rule introduces.
A fina representative is provided by the interchange of two positive V infer-

ences. Initialy, then, we have:
T, tAVBY, tCV DY

>, tAVBY,tA), tCV DY

e[, tAVBY,tA), tCV D, tCy T, tAVBY,tAY, tCv DY, tDY
T/ T//

Z>T,tAVBY,tB),tCv D}
T///

This interchange requires not only weakening but aso the copying of the tableau
T ///:
ol tAVBY,tCV DY

T, tAVBY, tCV DY, tDY

T, tAVBY,tCV DY tCy

o tAVBY,tAY, ol tAVBY,tBY, ol tAVBY, tAY, ol tAVBY,tBY,
tCv D&, tC, tCv Dy, tCh tCv DY, tDY tCv DY, tDY
T/ T”’—I—tC; T// TW—I—IDEJ(

Given these schemas for interchanges—which classify interchanges based on the
number of denominatorsin the two inferences to be exchanged—any particular in-
terchange can be established by showing that any side conditions on the application
of theinference rule continue to hold in the transformed proof. But, asiseasily ver-
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ified by ingpection of Definition 32, the side conditions on Herbrand tableau rules
depend only on the form of the principa and side expressions, the modal regime S
and sometyping =s. Andthe principal and side expressionsof theinference, thetyp-
ing =s, and of course the modal regime S are unchanged from the original tableau
to the transformed tableau. ®

3.3 Soundness

The idea behind the soundness of any Herbrand tableau calculus is that the struc-
ture of Herbrand terms provides enough information to reconfigure atableau (by an
inductive process of interchanges of inference) so that equivalents of the eigenvari-
able conditions are enforced. For the modal Herbrand tableau calculus of Defini-
tion 32, it is easiest to perform this reconfiguration in steps. The first step ensures
that no branch contains a general inference for any term x that occurs closer to the
root than a Herbrand inference that introduces x. The next step ssimplifies the proof
to eliminate duplicate Herbrand inferences and extraneous general inferences from
any branch. Finally, werewritethe simplified reordered proof in termsof thetableau
rules of the first-order tableau calculus.

We begin by describing arelation < on inferencesin any Herbrand tableau T .

Definition 34 Let Rand R betwoinferencesinaHerbrandtableauT . ThenR< R
if

1. Risdistinct fromR, and R originatesin R
2. RisaHerbrand ruleintroducing x, and R is a general rule with instance x

3. Thereisaninference R’ withR< R’ and R’ < R.
Lemma 19 < isatrandtive, asymmetric relation.

Proof. Clause 3 directly ensures that < is transitive. It remains to show that we
never havebothR< R and R < R. Firgt, observethat if R< R and R tracks x then
R tracks x. Thisfollowsinductively from the definition of <. If R originatesin R
then R must track x by preservation. If RisaHerbrand inference, then every term x
that Rtracksisasubterm of the Herbrand term h that Rintroduces. SinceR tracksh,
R tracksx. Then the transitive case is derived by applying theinduction hypothesis
toR’ andthen R. Thus, if R< R and R < Rthen Rtracksx justin case R tracksx.

Now, we claim that if R < R and R tracks x just in case R tracks x, then R
orginatesin Rand R# R. We show thisinductively from the definition of <. The
first caseistrivia: the caseisjust that R originatesin Rand R # R. Next, suppose
RisaHerbrandinferenceintroducing hand R isageneral inferencewith instanceh.
Then R tracks h but R cannot track h because h contains as a proper subterm every
term that R tracks. So this case isimpossible. Then the transitive case follows by
induction hypothesis and the transitivity of the originatesrelation.
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If R< R andR < R, wehaveR < Rby transitivity, and certainly Rtracksx if and
only if Rtracksx. Therefore by the previousargument R=# R. Thisisimpossible. ®

Lemma 20 (Introduction) Any Herbrand proof T may be transformed into an-
other Herbrand proof T’ by interchanges of inference with the following property:
for any pair of inferencesRand R onabranchinT’,if R< R thenRistheoriginal
inference and R is the derivative inference.

Proof. Given aHerbrand tableau T , say aninference R is misplaced if thereis an-
other inferenceRwithR< R, where R istheorigina inference and Risthe deriva-
tive inference. With thisterminology, the tableau T’ we want is ssmply a Herbrand
proof with no misplaced inferences. We will show that T can be transformed by
interchanges of inference in such away as to eliminate misplaced inferences. The
argument is by induction on the number of misplaced inferences in the proof; we
show how to transform T with n+ 1 misplaced inferencesinto T/ with n misplaced
inferences.

Since T isfinite, it must contain a misplaced inference M with the property that
no other misplaced inference appliesto a tableau line derivativefrom M. Let Ty, be
the subproof of T rooted at M; we will construct a subproof Ty, without misplaced
inferences from Ty, by interchanges of inference. The tableau T " with n misplaced
inferencesthat we need isthen obtained from T by replacing Ty with Ty,. The proof
of the lemmais thereby reduced to the proof of the following proposition.

Proposition 21 Let Tyy be a Herbrand tableau in which only the root inference is
misplaced. Ty can be transformed into a Herbrand tableau T, without misplaced
inferences by interchanges of inference.

We will call a Herbrand tableau in which only the root inference is misplaced a
penultimate tableau. By the height of an inference G in Ty, we mean the number
of inferences that intervene on the branch from the root to G. Let the degree of a
penultimate tableau Ty, rooted with inference M be the sum of the heights of thein-
ferencesL in Ty for whichL < M. SinceM £ M, a penultimate Herbrand tableau of
degree zero has no misplaced inferences. Now we assume the proposition true for
all penultimate Herbrand tableaux of degree d or less, and consider a penultimate
tableau Ty, of degreed + 1 rooted in inference M. At least one subproof rooted at a
denominator of M must contain an inference L with L < M. Call the adjacent infer-
ence to M in this subproof D.

Observe that D cannot originatein M. For if it did, we would have M < D, and
hence by transitivity L < D, and by asymmetry L £ D. But since L and D are on
a common branch that means D is misplaced, contradicting our assumption on M.
Thismeansthat we can interchange M and D according to the schemas of Lemma18.
After the interchange, the new subproofs rooted at M continue to have only M mis-
placed, but now must have lower degree, since the height of each inference above
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D has been reduced by one. Anillustration will make this point obvious,; say M and
D are binary inferences:

®
q)/ T n M
T T17P
We interchange M and D as follows:
®
q)// q)/// D
M M

T/ T///+ T// T///+
The subproofsrooted at M will consist of inferencesfrom T ”” whose height remains
the same plusinferencesfrom T’ or T ” whose height is reduced by one. Thus we
can apply the induction hypothesis to obtain new subproofs. We obtain TZ by re-
combining the new subproofs using the D inference.

This compl etes the proof of the proposition and the lemma. ®

The next step is to ensure that the Herbrand inferences that apply along any
branch do not have identical principal expressions.

Lemma 22 A Herbrand proof T may be transformed into another Herbrand proof
T " with two properties: thereisa one-to-one correspondence (also preserving order
of inferences) that takes any inference of T’ to an inference with the same principal
and sideexpressionsin T ; and if Rand R are two Herbrand inferences on the same
branchin T’ then the side expressions of Rand R’ are distinct.

Proof. By induction on the number of pairs of Herbrand inferences R and R that
apply on acommon branch with identical side expressions. If thereisno such pair,
wecanuseT asT’. Sosupposetheclaimtruefor tableaux withn pairsor fewer, and
consider a proof with n+ 1 pairs. Consider any pair Rand R’; let R be the original
and R thederivative, and consider the tableau line that serves as the denominator of
R. Thislinemust taketheform =T, E, E where E isthe side expression of R; one
E derivesfrom R and given the preservation of formulasin tableau lines, another E
must derive from the side expression of R. Therefore we can apply the contraction
lemmato the subproof Tp rooted at the denominator of R to obtain atableau whose
root carries >, E. But thisisthe line to which R applies; therefore we can use
Tp in place of the original subproof rooted at R. The result contains at most n bad
pairs. ®

Asweshall see, theselemmas are enough to guarantee that whenaHerbrand rule
applies, the term h that it introduces is new to the sequent. We still need to ensure,
however, that Herbrand terms are only used after being introduced; this requires a
final tranformation on proofs.

Definition 35 (essential) Let T beaHerbrand proof with T; asa subproof, and let
>>T bethelinethat theroot of T, carries. An expression occurrence E inT ises
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sentia if thereisaclosureinferencein T, that tracks everyt that E tracks. Likewise,
atyping statement p/un :iin Z isessentia if thereisa closure instancein T that
tracks n and a typing statement h: i in Z is essentia if there is a closure instance
in T, that tracks h.

Given atableau T, rooted with T, we introduce the following notation:

2 for {E € £ | E isessentia }
e for {E €I | Eisessentid }

Lemma 23 (essential) Suppose T is a Herbrand proof. Then T may be trans-
formed into another Herbrand proof T’ with two properties: there is a one-to-one
correspondence (also preserving order of inferences) that takes any inference of T’
to an inference with the same principal and side expressionsin T ; and whenever an
inference L appliesin T , in some denomator of L either the side expression of L or
the typing introduced by L is essential.

Proof. We describe T’ as required by induction on the structure of tableaux; we
construct T/ so that if theroot of T carriesZ>T, every typing in Z and expression
inT isessentiad—thisisthe sametableau lineas g > E.

Suppose T consists of an application of the closure rule

o AL A
I

Clearly tAY and fA} are essential here: any term they track, they track. So it suf-
fices to show the side conditions are met, namely =y C g and =y C 2g. Take =x;
by definition, it consists of the appropriatet/un : i for each modal Herbrand termn
that occursin X (possibly as asubterm) and the appropriate h : p for each first-order
Herbrand term h that occursin X (possibly as a subterm). Each such expression oc-
cursin %, sincewe start from aclosure inference, and is clearly essential intheline.
In sum, then, we construct the closure inference:

Sep T, tA TAY
T

The same reasoning goes for the T closure inference.

Suppose the hypothesis holds for closed tableaux of height h, and consider a
tableau of height h+ 1. We can construct a revised tableau T’ by case analysis on
the inference that applies at the root of T. The case for positive V illustrates the
complexitiesinvolved in any of these cases. We start from

oI tAVBY
o tAV B tAY o tAV B, tBY
Ty Tz
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We apply the induction hypothesis to the two subproofs, to obtain a derivation T/
for Z;e > 1 and aderivation T, for 2o > og. (Thesetableau lines need not agree,
not just because of the side formulas but also because the different closures in the
two subproofsinduce different essential expressions.) If one of these subderivations
doesnot contain aside formulaof theroot inference (or generally anew typing intro-
duced by therule), we simply use that subderivation as our resulting T /. Otherwise,
we weaken the two subderivations and construct the new proof. Explicitly, letting
21N be 2o\ 21g, 2oy be Z1e\2og, M1y be Mo\l 1e together with an occurrence of
the principal expression of the root inference if necessary, and Iy be '\ IMog to-
gether with an occurrence of the principal expression of the root inference if neces-
sary, we get:

2> tAV BY
> >TtAV By, tAY > >T7 tAV B, tBY
T/ +Zin+ TN To+3on+Ton

>’ isthus Z1g U 2ok, while I’ contains the expression occurrences (other than the
principal expression) either commonto I' g and Mo, or presentin "y orinl . TO
show that the new tableau only contains essential inferences, it suffices to consider
the new inference at the root. It is essential because one of the side expressionsis
essential. Likewise, we know that all elements of 2’ and ' are essential because
each is essential in some subderivation. Finally, since the side expression tracks all
the terms the principal expression tracks, the principal expression isessentia. This
shows that the constructed derivation hasthe required properties. The reasoning for
the other casesissimilar. ®
We are now ready to prove the main result.

Theorem 3 (Herbrand soundness) Suppose I' contains sentences of L(CONST)
(prefixed by €). Then if thereis a Herbrand proof of >I" then there isa closed first-
order ground tableau for >I".

Proof. Let T be aHerbrand proof of >I". By Lemma 20, we construct a Herbrand
proof T’ that respects the < ordering on inferences. We then apply Lemma 22 to
T’ obtain a Herbrand proof T ” which respects < and where a given Herbrand rule
applies at most once on each branch. We then apply Lemma23to T ” to obtain a
Herbrand proof T " which respects <, where a given Herbrand rule applies at most
once on each branch, and every inferenceis essential. At this point we can weaken
T as necessary o that the end-sequent is again >I"; call the result T *. We will
construct a closed first-order ground tableau by induction from T *.

Place the first-order Hebrand terms h; in one-to-one correspondence with first-
order parameters a;, and likewise place the modal Herbrand terms n; in one-to-one
correspondence with parametersa;. If uey isasigned, tracked prefixed formula, let
ue denote the result of replacing each top-level first-order Herbrand term h;j in ue
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by a and each top-level modal Herbrand term n; by a;. By I denote the multiset
consisting of uefor each uex inT". Similarly, let p/un; ;i andt : p be the results of
replacing each top-level modal and first-order Herbrand term by the corresponding
modal and first-order parameters, and extend the notation to 2.

We are given aHerbrand proof T * whose root carries > I, such that:

1. no Herbrand term that occursin I' is introduced by a Herbrand inference in
T%

2. ZisaHerbrand typingfor I';
3. theside expression of any inferencelL in T * isessential in some denominator;

4. no genera inference L with instance x and no Herbrand rule H introducing x
lies on a path from the root to a Herbrand rule introducing x.

We construct by induction a first-order ground proof of Zi>I". Since the proof T *
given by the application of these lemmas meetsthese conditions (insofar as Z empty
isaHerbrand typing for asequent I containing no Herbrand terms), thisconstruction
will complete the proof of the theorem.

The base case isthe closure rule; it sufficesto observe that if I contains a com-
plementary pair of literals so doesI.

Assuming the claim truefor proofsof height n or less, consider aproof of height
n+ 1. For boolean inferences, we apply the induction hypothesis to immediate sub-
derivations and recombine, exploiting that Ac B = Ao B.

Suppose T * endsin agenera rule other than extraspecial necessity. We cantake
apositive necessity rule as arepresentative case. Then T * looks thus:

ST t0 A,
2oL tOAL TAY N
TT b b

Wewill apply theinduction hypothesisto theimmediatesubderivation T T. We need
to show first that no Herbrand term in the sequence N, v isintroduced by aHerbrand
inferencein T T. We know this because by assumption, in T *, no general inference
L with instance x lies on a path from the root to a Herbrand rule introducing x. We
also need that X is a Herbrand typing for tA‘;’N’V. Now, by hypothesis the infer-
enceis essential; therefore some closure inference above hastheform =’ > where
=x Ny € 2. Inparticular then ¥’ contains a typing for each Herbrand term in the
sequence N,v. But we have seen that this typing cannot derive from an inference
inTT. Therefore X also contains a typing for each Herbrand term in the sequence
N,v and since X is a Herbrand typing X too must contain =x ny. T T inherits the
remaining prerequisitesfrom T *.
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We apply the induction hypothesis to obtain a closed first-order tableau T © and
apply the first-order necessity rule to obtain our result:

s toAH
Z>£7 tDiAuv t'A‘\))(’N’\)
To°

Sincewe have established that S, 2> /v : i we verify the needed side condition that
S, Zep/vi:i.

Alternatively, suppose T * ends in a Herbrand rule other than extra special ne-
cessity. We can take a positive possibility rule as a representative case. Then T *
looks thus:

2ol t<>I
S,u/un il t<>I Aqu
Tt

We will again apply the induction hypothesis to the immediate subderivation T T.
Again, we show first that n is not introduced by a Herbrand inferencein T 1. We
know this because by assumption, in T *, no Herbrand inference L introducing x
lies on a path from the root to another Herbrand rule introducing x. We aso need
that =, u/un : i isaHerbrand typing for tA“” But n isthe only new Hebrand term
here and the new typing specifies an approprlate expression for it. So the induction
hypothesis applies and the resulting proof T © can be straightforwardly recombined
with the appropriate rule to yield the desired result:

2oL tOAR
p/un ic L tOA AT
T (0}

Finally, for the extra special necessity case, we simply combine the two pieces
of reasoning to show that even with both the general and the Herbrand instantiation,
theinduction hypothesis extends to the subderivation and thefirst-order tableau rule
can bereapplied to the result. ®

34 Completeness
The completeness proof for Herbrand proofs is straightforward by comparison; in
fact, the ideas involved are implicit in the preceding discussion. We can smply
rewrite a closed first-order tableau using the rules of the Herbrand tableau calculus.
Let > T be afirst-order tableau line. Let op be a map from the first-order pa-
rameters to first-order Herbrand terms, let ok be a map from the modal parameters
to modal Herbrand terms, and let ox be a function taking occurrences of formulas
in " to sequences of Herbrand terms. Say 0 = (op, 0k, 0x)—Wwe call o a Herbran-
dization. For an expression e = uA* in " we can introduce the notation o(uA*) to
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denote uop(A)gz((;) and indicate by o(I") the multiset {o(e) | ec I'}. Likewise, we
can defineo(Z) as.

{op(t) :ox(W)(=o(t: W) [trpue 2} U{ok(W)/ok(v) i(=o(p/v:i)) [u/v:ie 2}

Theorem 4 (Completeness) Let " bea set of formulas of L(CONST) prefixed by €.
If thereisa closed first-order ground tableau for >I" thereisa Herbrand proof of >T.

Proof. We prove by induction on the height of tableaux that we can construct aHer-
brand proof whose root carries o(Z)>a(I") from aclosed first-order ground tableau
T whose root carries 2> I" and a Herbrandization o for which o(Z) is a Herbrand
typing for o(I"). Thiswill establish the result, because for the empty typing, o() re-
mains the empty typing, which is a Herbrand typing for any multiset containing no
first-order or modal parameters.

The base case is the closure rule; first we observe that if ' contains a comple-
mentary pair of literalsor theinconsistent literal so doesa(I"). Moreover, sinceo(%)
isaHerbrand typing for a(I"), certainly =x C a(Z) for X = ox(e) (for therequisite
expression occurrences ). So the Herbrand closure rule appliesto o(Z)>o(I").

Assuming the claim truefor proofsof height n or less, consider aproof of height
n+ 1. For boolean inferences, we apply the induction hypothesis to immediate sub-
derivations and recombine, exploiting that Ao B = cAo oB.

Suppose T * endsin agenera rule other than extraspecial necessity. We cantake
apositive necessity rule as arepresentative case. Then T looks thus:

S, tOAH
So T, 1O AR tAY
T/

From the side condition on instantiation in first-order tableaux, we know that S, > >
M/v:i. ThereforeS,o(Z)>o(p)/o(v) :i. Itfollowsthat therearetermsN, o(v) that
we can add to X = ox(t0;AM) such that S, =x Ny > 0(p)/0(V) : i. Hence we define
o}, exactly like oy except o} (tA”) = X, N, v. We apply theinduction hypothesisto T’
using o’ = (0op, Ok, 0;) and recombine using the Herbrand positive necessity rule.

Alternatively, suppose T endsin aHerbrand rule other than extraspecia neces-
sity. We can take a positive possibility rule as arepresentative case. Then T looks
thus:

ST tO;AR
2 u/po i O AR tARD
T/

We will again apply the induction hypothesis to the immediate subderivation T’ us-
ing anew Hebrandization ¢’. To do this, we construct a; exactly like ok except that
if the principal expressionise, oy (a) =n = na(ox(e),ox(K)). We define g} to be
exactly like oy except o} (tA*Y) = ox(e),n. Weuse ¢’ = (op, 0y, Oy). Since a does
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notoccurinl or Z,0'(X) =0(X) and ¢’'(I') = o(I"). Moreover, o’(Z, 4/pa : i) must
beaHerbrandtypingfor o’ (I, e, tA*Y) given theintroduction of the appropriate Her-
brand termn).

To obtain the needed Herbrand proof, we apply the positive Herbrand possibility
rule to the resulting subderivation.

Finally, for the extra special necessity case, we simply combine the two pieces
of reasoning to show that even with both the general and the Herbrand instantiation,
theinduction hypothesis extends to the subderivation and thefirst-order tableau rule
can bereapplied to the result. ®

4 Lifted Deduction

The Herbrand tableau calculus affords flexible search for the structure of proofs,
because of its permutabilities of inference. However, proof search in the Herbrand
tableau calculus still suffers from nondeterminism at modal and quantifier rules,
where a bound variable can be instantiated by an arbitrary concrete term. To de-
scribe computational proof search strategies precisely, we must find an alternative
presentation of inference which lacks this nondeterminism. We will derive this cal-
culus by the lifting constructions described in this section.

Lifting isastrategy that allowsthe choice of termsfor instantiation at modal and
guantifier rules to be delayed until sufficient information is available from the form
of the proof to determinethevaluethat isneeded. Rulesthat requireinstantiation are
reformulatedto introduceageneric variable, called alogic variable, asaplaceholder
for the specific term which must ultimately be provided. Inference figures such as
the closure rule which require terms to match introduce constraints on the values
of logic variables. When inference figures have side conditions, the values of logic
variables must be chosen in such away that the side conditions are met; hence, side
conditions are also reformulated to introduce appropriate constraints.

These various constraints are accumulated from a derivation in the lifted cal cu-
lus. A constraint-satisfaction step is then required to obtain an ordinary derivation
from the lifted derivation. In this step, we must construct a substitution of values
to logic variables under which all of the constraints are satisfied. 1f we find such a
substitution, we can apply the substitution to the lifted derivation to obtain a corre-
sponding ordinary derivation. However, if thereis no such substitution, no ordinary
derivation corresponds to the lifted derivation.

In alifted calculus, then, the nondeterminism of the choice of term for instan-
tiation is factored from statement of the proof rules to the algorithm for constraint-
satisfaction. But the constraint-satisfaction step, when analyzed in its own right, of -
ten turnsout to have sharply delineated complexity. For example, inthe case of first-
order logic (without equality), a linear time unification algorithm suffices to solve
the constraints associated with a deduction—see [Martelli and Montanari, 1982].
Hence the lifted calculus is useful not only for carrying out proof search in prac-
tice, but also, in many cases, for establishing theoretical bounds on the com-
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plexity of proof search problemsin logical fragments [Lincoln and Shankar, 1994,
Voronkov, 1996, McAllister and Rosenblitt, 1991].

This lifting strategy can be applied to any proof system; here, for example, we
can use it for the ground proof system of section 2 or the Herbrand proof system
of section 3. We treat the Herbrand proof system first in full detail, since this has
the most direct relevance for practical proof search. Then we sketch how an analo-
gous construction can be devel oped for the ground proof system. Our presentation
of lifting in terms of constraint-satisfaction follows[Voronkov, 1996] most closely.

4.1 Formalism

We begin the construction of the lifted calculus by assuming a countable set X of
logic variables digoint from any of the symbols we have already considered. The
ordinary logic will describe some set of terms T by which bound variables can be
instantiated for the purposes of proof; in the lifted calculus we will smply uselogic
variablesfrom X as placeholders. Thus, wherethe ordinary proof system dealswith
some function of expressionsin alanguage parameterized by T—®(T)—we set up
arelated set of expressions ®(X) to work with in the lifted calculus.

Considering for examplethe Herbrand inference system, the ordinary termscon-
sist of the two sets introduced in Definition 29: the set CONSTUPR, describing con-
stants and first-order Herbrand terms, and the set M(ky) of Herbrand prefixes. It
is convenient to partition X into countable sets Xp and X to abstract these different
kinds of terms. The basic expressionsin Herbrand tableaux are prefixed formulasin
the language L(CONSTUR, )(KY), Accordingly, lifted Herbrand tableaux appeal to
prefixed formulasin the language L(CONSTUXp )*x; the formulas are then signed
and tracked by variablesin X:

Definition 36 (Parameterized signed, tracked expressions) If E denotes the ex-
pressions of some class, then the parameterized signed, tracked expressions of that
class are expressions of the formte or fe where eisan expression of eand | isa
finite sequence (possibly empty) of elements of X.

The general correspondence between the logic variablesin a proof, and the or-
dinary termsfrom T that the logic variables are meant to represent, is mediated by
a substitution.

Definition 37 (Substitution) A substitution 8 isa partial mapping: X — T, where
B(x) is defined for only finitely many variables x.

A substitution can be represented as a finite set of ordered pairs 6 =
{(x1,t1),...(Xn,tn) }, Where x; are distinct variables and t; are terms from T.
For lifted Herbrand tableaux, we restrict our attention to substitutions which send
variablesin Xp to termsin CONSTUPR, and which send variablesin X to prefixes
inTl (Ky).
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Suppose ¢ isan expression in d(X) inwhich logic variables Z occur, and that 6
isdefined for al thelogic variablesin Z. By extension, we can apply 6 to ¢ to give
an expression 8(¢) in ®(T) by replacing each occurrence of alogic variablexin ¢
with an occurrence of 8(x).

Substitutions may be subject to constraints; for a lifted derivation, a constraint
expresses the conditions on a substitution that are required to obtain a corresponding
ground proof. If a substitution 8 meets the conditions provided by the constraint C,
we say that 0 satisfies C, written 8 |= C. The formulation of constraints depends on
the conditions imposed by the tableau rules of a particular ordinary proof system;
we now describe the constraints required for lifted Herbrand tableaux.

Let T C X and let 6 be asubstitution defined on all the elementsof T. We define
a Herbrand typing g1y consisting of an appropriate expression p/un : i for each
Herbrand prefix pn € 6(T); and an appropriate expression t : p for each first-order
Herbrand termt € 8(T). We continue to use =q(r) to describe the Herbrand typing
for Herbrand terms that occur in 6(T) (possibly as a subterm of atermin 6(T)).

Definition 38 (Atomic Herbrand constraints) The atomic constraints for lifted
Herbrand tableaux take the following forms and impose the following conditions
on substitutions:

e If X and T are lists of logic variables, then D(X; T) is an atomic constraint.
60 = D(X;T) exactly when Zg(x) C ZgT).

e Ifxandy arelogic variablesor constants, then x =y is an atomic constraint.
0 = x =y exactly when 8(x) = 6(y).

e If mand n are logic variables, A is a formula of L(CONSTUXp) and X isa
sequence of logic variables, then Pp(n, A,m; X) is an atomic constraint. 6 =
Pn(n, A, m; X) exactly when 8(n) = 8(m) nga)(6(m), 6(X)).

e If mand n arelogic variables, i indexes a modality, and X is a sequence of
logic variables, then Np(m, n,i; X) is an atomic constraint. 8 = N(m, n,i; X)
justin case there is a typing derivation S, Zgx,>0(m)/8(n) : .

e If mand n are logic variables, A is a formula of L(CONSTUXp), i indexes
a modality and X is a sequence of logic variables, then SNy(n,A,i,m; X)
is an atomic constraint. 0 |= SNpj(n,Aji,m; X) just in case B(n) =
B(m) Ng(i e(a)) (B(M), B(X)).

e Ifm, nando arelogic variables, Aisaformula of L(CONSTUXp), i indexes
amodality and X is a sequence of logic variables, then ESNy(0, A, i,m, n; X)
is an atomic constraint. 6 = ESN(0,A,i,mn;X) just in case B(0) =
0(m) N o(m).o(a)) (B(N),8(X)).
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e Ift and mare logic variables, A isa formula of L(CONSTUXp), and X isa
sequence of logic variables, then Ep(t, A,m; X) is an atomic constraint. 6 =
En(t, A,m;X) justin case 6(t) = hg(a)(6(m),8(X)).

e Ift andmarelogicvariablesand X isa set of logic variables, then Uy (t, m; X)
isan atomic congtraint. 6 = U (t, m; X) just in case there isa typing deriva-
tion S,Ee(x)be(t) : O(m)

Constraints are assembled in proofs using two inductive constructions. conjunction
and existential quantification:

Definition 39 (Herbrand constraints) The Herbrand constraints include the
atomic Herbrand constraints, together with constraints defined as follows:

e |fCisaHerbrand constraint and D is a Herbrand constraint thenCAD isa
Herbrand constraint; 8 =CAD justincase 8 =Cand 6 |=D.

e If CisaHerbrand constraint and y is a logic variable, then JyC is a con-
straint. 8 = 3yC just in case there is some substitution 6’ exactly like 6, ex-
cept possibly in that 6 may assign a new valuetoy, suchthat & =C. If Nis
a finite sequence of logic variablesys, ..., yn, we will use INC to abbreviate
Jy1...3ynC.

We can now describe the construction of lifted tableaux. In general, alinein
a lifted tableau must pair a constraint with a specification from which an ordinary
tableau line can be derived by substitution. For lifted Herbrand tableaux, we use as
tableaux lines expressions of the form:

Tol-C

T isafinitesequenceof logicvariables, I' isafinitemultiset of parameterized signed,
tracked expressions of L(CONSTUXp)*, and C is a Herbrand constraint. Our in-
tention is that, on a substitution 8 satisfying C, such an expression will correspond
to the ordinary Herbrand tableau line Zg(1)>6(I"). We say alogic variable is used
inalifted tableau lineif it occursin T or if it occursin . In general, we will write
tableau ruleswhere any logic variable introduced in a denominator of atableau rule
cannot be used in the numerator. Thisis indicated by the parenthetical—v new—
accompanying the specifications of the tableau rules.

Definition 40 (Tableau rule) For lifted first-order multi-modal Herbrand deduc-
tionsover aregime S, we will use the following tableau rules:

1. closure:

ToltR(S -, S)% R, - )Y - DOGT)AD(Y; T) AU =VAS =t1A...S =1y
1
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Tl T -D(X;T)
1

. conjunctive:

T>T,tAABY -C Tl fAVBY -C
ToANBY AL tBY - C T fAVBE, FAY B - C

. digunctive:

T fAABY -CAD
ToT,fANBY,TAR-C To>T,fANBY,TBY D

T>T,tAVBY -CAD
T>T tAVB, tAL - C T>TtAVB;,tBY D

. negation:
Tolt-A - C Tol, A - C
Tol t-ALfAL - C Tol, f-ALtAL -C

. possibility (n new):

T, fOAY - In(CAPL(n, DA, 1; X))
T,no T, fOAL TAY | -C

T, tOAL - In(CA PR (N, OiA, 1 X))
T,ne T tOALL AL | -C

. necessity (n, N new):

T, tOAL - 3nIN(C AN (I, n,i5 X, N, n))
Tl tO AL tAD - C

T, fOAL - ININ(CANR(I, n,i; X, N, n))
To T fOALTAR \ i C

. special necessity—subject to the side condition that A (i) is one of KD, KDB,
KD4, KD5 or KD45, that i < j accordingto N (n new):

T, t0AL - 3In(CASNR(N, OA I, 1 X))
T,no T, t0AL tAD -C

T, fO;AL -3N(CASNR (N, TjA i, Y; X))
T,noT O AL FAD -C
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8. extra special necessity—subject to the side conditionsthat A (i) is one of KD,
KDB, KD4, KD5 or KD45, that A(j) is one of K5, K45, KD5, KD45 or S5,
thati < j accordingto N (m, o, N new):

T, uAy - IM3o3IN(CAESNy (0, A i,m,v; X,N))
T,00T,tT§ N o  UAY -C

9. existential (h new):

T, t3xAL - In(CAEp(h, 3xA, ;X))
T,h> T, t3xAH tATh/x]5 , -C

T, fyxAL - In(CAEp(h, VXA, U; X))
T,he T, foxAb  fATh/X% | -C

10. universal (z, N new):

To T, tyxAy - IZN(CA Uy (z 1 X, N, 2))
To T, (VXA tAZ/Xy - C

To T, f3xAL - IZN(CA Up(z 1 X, N, 2))
To T, f3xAL fAZ/XS . C

Once more, tableaux, branches, agreement and closure remain as in Definition 18
and following.

Definition 41 (Lifted Herbrand proof) A lifted Herbrand proof consists of a
closed, lifted Herbrand tableau for >I" - C together with a substitution 8 such that
6 =C.

Thelifted cal culus providesyet another sound and complete characterization of first-
order modal models. To show this, we will prove the correspondence lifted Her-
brand tableaux and ordinary Herbrand tableaux. In fact, we will set up adirect in-
ductive correspondence between derivationsin the two systems. This argument is
presented in section 4.2.

4.2 Correctness
In this section, we prove the following theorem.

Theorem 5 (Correctness) Let T be a (finite) sequence of logic variables, let I be
a finite multiset of parameterized signed, tracked expressions of L(CONSTUXp)*«,
and let 8 be a substitution defined on all logic variablesthat occur in T and I". Then
the following conditions are equival ent:
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1. Thereisa closed Herbrand tableau for Zg)>6(I").

2. Thereisaconstraint C and a closed lifted Herbrand tableau for T - C with
6 =C.

Proof (1 =- 2). By induction on the structure of closed Herbrand tabl eaux.
The base case isaHerbrand tableau that consists of a closureinference; wetake
the binary closure as representative:

0 0
Zo(r)>B(1), 18(A1)glk) TO(A2)gry)
1

Now, since A; isan atomic formula, it takestheformR(s;, ..., S); andsince Ay isan
atomicformulawith8(A;) = 6(A), A, takestheformR(ty, . . ., tn). Indeed, we must
have 8(s) = O(t;) for each i; since prefixes must match, we also have 8(1) = 6(v).
Moreover, because thisis aHerbrand tableau, the side conditions =gy C Zg(1) and
Zg(v) € Zg(1) hold. Thereforewe have 6 [=D(X;T), 6 =D(Y;T), and8 =5 =t
for eachii.

Thus it follows not just that the following is a closed lifted Herbrand tableau:

TotR(S, -, S)%G R, 1)V - DOGT)AD(Y; T)AL=VAS =t1A.. .5 =1y

L

but also that 6 satisfies the associated constraint.

Now, assuming the hypothesis holdsfor closed Herbrand tableaux of height h or
less, consider aclosed Herbrand tableau T of height h+ 1. We construct the corre-
sponding closed lifted Herbrand tableau by case analysison theinference at the root
of T.

As arepresentative Boolean inference (the other cases are similar), we consider
T of theform

Zorr)>8(7),TO(A) A B(B)g) (A Zo(r)>60(T),f8(A) AB(B)g k. TB(B);

T/ T// ()

Thisanalysisof T exploitsthe fact that 6(AAB) is8(A) AB(B). Application of the
induction hypothesisto T’ and T” yields closed lifted Herbrand tableaux T,” and
T/
ToT,fAABY, fAL -C Tl fAABY,fBY D
T/ T/

Italsoyieldsthat 6 =Cand 8 = D. Thuswe can recombine T, and T by the same
inference figure, to obtain the needed closed lifted Herbrand tableau (schematized

(
(

m
X

)

)
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below) with aconstraint C A D that 0 satisfies:

T>T,fAABY -CAD
T/ T/

Suppose T endsin a possibility inference, for (a representative) example thus:

Zo(m)>0(M), O O(A)SE%

1) 8(1)/8(1)nB(7), tOiB(A)g) (AR o
T/

Let usintroduce afresh variable n for which 8 is undefined (thereby working to sat-
isfy the lifted tableau novelty condition). Then we can define 8 which agrees with
8 everywhere 6 is defined, and where moreover 8 (n) = 6(p) n. Under these condi-
tions®' = Pp(n, OiA, ; X)), reflecting the side condition on the choice of n for the
(ordinary) Herbrand possibility inference.

Now theroot of T’ carries atableau line which may be written

Tomem >0 (0,108 (Ag % 1 (NG o
We can therefore apply the induction hypothesis to obtain a closed lifted Herbrand
tableau T/, and construct:

T TtOA) - IN(C AP (N, OiA, 1 X))
T,no T O AR tAY - C
T/

Now by induction &' |= C. It follows from the definition of 6’ and our earlier ob-
servation that 8 = In(C A Pr(n, OiA, 1; X) )—hence the constructed derivation suf-
fices. Special necessity and existential inferencesrequiresimilar reasoning—thein-
troduction of Herbrand terms for special necessity and existential inferences allow
the application for those inference figures of the strategy for proof transformation
illustrated here for the possiblity inference.

Next, suppose T ends in a necessity inference, for (a representative) example
thus:

Zorr)>8(I), t5) e( Aok,

Zo(m)>0(I"), t0i6( ) (A)‘é

T/

( ),Lvo

We introduce a fresh variable ng to correspond to v and a variable n; for each term
li in L (thereby working to satisfy the lifted tableau novelty condition); by N de-
note the sequence ny, ..., n,. We introduce a substitution 8 which extends 6 such
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that 6(ng) = v and such that 8(n;) = I;; thus 6(N) = L. Again, we now have ' =
Nnh(, n,i; X, N,n), because of the side condition on the (ordinary) Herbrand neces-
sity inference.

Heretheroot of T’ carries atableau line which may be written

=

S 1) >0 (1), ti6/ (A%

¢ (n)
)18 (A)

' (X),0/(N),&/(n)
We can therefore apply the induction hypothesisto T/ to obtain a closed lifted Her-
brand tableau T,, and construct:

T oMo A, - InIN(C A Np (i, n,i; X, N, n))
To T tOAL AL - C
T/

Again by induction® |= C, and hence 6 = 3naN(C A Nu (U, n,i; X,N,n)). Universa
inferences can be handled by similar reasoning; indeed, despite the double condition
involved, so can extra special necessity inferences.
Proof (2= 1). By induction on the structure of closed lifted Herbrand tableaux.
The base case is alifted Herbrand tableau that consists of a closure inference;
again, we take the binary closure as representative:

ToT RS, -, S)%G R, - )Y - DOGT)AD(Y; T) AU =VAS =t1A...S =1y
1

By assumption, we have a substitution 6 with
B=DXT)ADY;T)ALH=VAS =t A...Sh =1y
Now, we construct

Zo(r) > B(),tRB(s1), .., B(sn) g k), FRO(M), -, B(tn) ioy)

We must show that this has the form required for an ordinary Herbrand closure in-
ference. The satisfaction of the constraint guarantees this. In particular, we have
R(6(s1),...,0(sn))®W =R(6(t1),...,0(tn))®V), thanksto the equalitieswhich 6 sat-
isfies. Moreover, we have =qx) C Zg(1) and =g(y) C Zg(T) in virtue of the con-
graintsD(X; T) and D(Y; T) that O satisfies.

Now, assuming the hypothesis holds for closed lifted Herbrand tableaux of
height h or less, consider a closed lifted Herbrand tableau T of height h+ 1. We
construct the corresponding closed ordinary Herbrand tableau by case analysis on
the inference at the root of T . Again, the flavor for the reasoning required in each
caseisprovided by the example cases of aboolean inference, a possibility inference
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and a necessity inference.
First, then, consider as T :

T>T,fAABY -CAD
T>r,fAAT|§;,fA§‘<.C T>r,fAAT|%§‘<,fB;.D

By assumption, we have a substitution 6 such that 6 = CAD. Hence 6 = C and
0 |= D; thus the induction hypothesis appliesto T’ and T ”. We combine the result-
ing derivations T4 and TS into the following closed ordinary Herbrand tableau, as
needed:

So(r)>0(T), TO(A) A e(B)gg?) , fO(A)gE% So(r)>0(T), fB(A) A e(B)gg?) , fO(B)gE%
T4 T

We exploit again the fact that 6(AAB) is6(A) A8(B).
Next, consider T constructed by a possibility inference:

T, tOAL - In(C A PR (N, OiA, 1 X))
T,no T tO AL tAY |-C
T/

By assumptionwe have 8 = 3n(CA P, (n, OjA, 1; X)); thereforethereissome®' that
differsfrom@ onlyinnsuchthat 8 =Cand &' = Py(n, OiA, W; X). Moreover, since
nisnot used in the root tableau line, 6(I") = 6'(M") and 6(T) = '(T).

Apply the induction hypothesisto T’ and &, to obtain T/3; | claim that this per-
mits the construction of a closed ordinary Herbrand tableau thus:

ZG(T) > O(F), to; O(A)

Zo(m),B()/B()N 1 1> 6(T), tOi6(A)
To

It sufficestojustify theanalysisof theroot of T 4. Start withthetyping: theinduction
hypothesisgives Zg (1) g (n), Which isZg 1y, Zg (ny. Now since 8’ [= P (n, OiA, i; X),
6'(n) = 6'(1)n where n = Ny (a)(&'(K), '(X)). Again since n is new that means
0'(n) = B(K) Ng(a) (B(K), 8(X)), and hence the added typing isindeed 8(u)/8(u) N :
i. Likewise, the remainder of thetableau lineisjustified because &' (n) = 6() n and,
with n new, B agrees elsewhere with ©'.
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Finaly, consider T constructed by a necessity inference:

T, tOAY - InIN(CA N, (R, N, i; X, N, n))
To oA AR ([ C
T/

Again, by assumption, we have 8 = InaN(C A Nu(H, n,i; X, N, n)); therefore there

issome &' that differsfrom 6 only in new n and N such that 6 modelsC and &' |=

Nh (i, n,i; X;N,n). Use®(n) =v and & (N) = L. Again, we apply theinduction hy-

pothesisto T " and €', to obtain T4 and construct a closed ordinary Herbrand tabl eau:
o7 >0(I), t0;0(A) 2

8(T) T 8(X)
B
Tor) > B(), tB(A)g ) tO(A)S
To

)’L’V

Here we rewrite Zg 1) as 2Zg(1) and &'(I") as 6(I") straightforwardly since 6" and ©
agree on variables used in theroot. So we require only that thereis atyping deriva
tion S, Zg(x),L.y>0(K)/v :i. Thisfollowsfromthefact that ' = Np(l, n,i; X, N, n).
|

4.3 Discussion and Extensions

The argument of Theorem 5 in fact showsthat alifted proof and a corresponding or-
dinary proof consist of corresponding inferencesapplied in the same order. Herewe
will suggest informally some consequences of this property. In [Voronkov, 1996],
the property isformalized, using the notion of a skeleton of a derivation; the skele-
ton of a derivation is a tree that encodes the identity of inferences performed but
abstracts out from instantiations made at quantifier (or modal) inferences. With this
abstraction, Voronkov shows that the lifted proof and the ordinary proof put in cor-
respondence in his correctness theorem share the same skeleton; the result would
carry over straightforwardly in the case of Theorem 5.

Now, in section 3, we introduced Herbrand tableaux over ground tableaux in or-
der to eliminate the impermutability of inference associated with eigenvariable con-
ditionson ground quantifier rules, which requirethe use of new parameters. Then, in
lifting Herbrand tableaux, we reintroduced similar conditions by requiring the use of
new logic variablesin the lifted quantifier rules. Nevertheless, from the correspon-
dence between lifted tableaux and Herbrand tableaux, the lifted tableaux must retain
free permutabilities of inference. That is, the argument of Theorem 5 can be used
to accomplish the interchange of any two inferencesin alifted tableau, by first find-
ing the corresponding ordinary Herbrand tableau, interchanging the corresponding
inferences in the Herbrand tableau, and rederiving a corresponding lifted tableau.

The reason lifted tableaux retain free interchange of inferences despite the nov-
elty condition on logic variables is because all instantiation inferences in lifted
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tableaux involve fresh logic variables. In the ground calculus, inferences with uni-
versal force may be locked into a constrained position in a tableau because of the
term selected for instantiation; there are no figuresin lifted tableaux that range over
logic variables with a corresponding universal force and hence no inferences to be
locked in by the novelty condition on logic variables.

In fact, we can generally rewrite lifted Herbrand tableaux to strengthen the nov-
elty of logic variables, without affecting provability; thisresult allows constraintsto
be simplified for algorithmic purposes.

Definition 42 (Pure variabletableaux) An inferencein a lifted tableau is a pure
variable inference if each logic variable introduced at that rule is used only in the
subtableau rooted at that inference. (Recall xisused in T>T - Conly if x occursin
TorinTl.) Apurevariablelifted tableau is one in which every inference is a pure
variable inference.

The purevariable property strengthensthe novelty condition onlogic variablesfrom
alocal property of the sequent at which an inference appliesto aglobal property of
the tableau in which the inference applies. Yet any closed lifted Herbrand tableau
whose root carries T > T - C can be transformed into a pure-variable closed lifted
Herbrand tableau whose root carries T>T - C' where 8 = C just incase 6 = C.
To accomplish this transformation, it suffices to rename variables appropriately
throughout the proof; theargument isa strai ghtforward application of argumentsthat
yield pure variable proofs for sequent systems for classical logic—see for example
[Gallier, 1986, pp 274-276]. Thusthe constraint C' that resultsis an al phabetic vari-
ant of C, but each quantifier 3x in C’' binds adistinct variable x.

To seetheagorithmic simplification thisaffords, consider apure-variableclosed
lifted Herbrand tableau T whoseroot carriesI™ - C, wherel” isamultiset of formulas
from L(CONST) labeled with the empty prefix. The conditionson T are character-
istic of problems of modal deduction; that is, the problem statement is formul ated
without recourse to terms used for the purposes of proof. In particular, nologic vari-
ablesoccur inT; 6(I") =T for any substitution.

Meanwhile, with these conditionson T, it is straightforward to reformulate C
into the form C' = 3VA where A is a conjunction of atomic constraints, with 8 =C
justin case 8 = C'. We simply lift the existential quantifiersin C (each of which
binds a distinct variable) into prenex position. We can therefore conclude (thanks
to Theorems 3 and 5) that thereis a closed ground tableau >I" just in case thereisa
substitution 6 satisfying each of the atomic constraintsin A.

We thus arrive at a general perspective on the selection of terms in lifted
deduction as constructing a substitution to satisfy certain equalities and certain
other primitive constraints (governing the types of values for variables and the
occurrence of values of variables as subterms of other terms). This perspective
is assumed in agorithmic characterizations of instantiation, both for classi-
cal inference (e.g., in work on unification [Martelli and Montanari, 1982]) and
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for equational or constrained reasoning in moda inference [Wallen, 1990,
Frisch and Scherl, 1991, Auffray and Enjalbert, 1992, Ohlbach, 1993,
Otten and Kreitz, 1996, Schmidt, 1998, Stone, 1999c].

The opening of sections4 and 4.1 indicated that thelifting construction appliesin
asimilar manner across proof systems. Itisthusno surprisethat the results outlined
herefor lifted modal Herbrand deduction mesh are of a piecewith many related sys-
tems. To underscore the point, we close this section by sketching a parallel lifting
construction for ground first-order modal tableaux with parameters and eigenvari-
able conditions. Lifted ground tableaux will not be appropriate for general modal
inference; as we shall see, they (like any lifted system) retain the permutabilities
and impermutabilities of ordinary ground tableaux. However, they may provide a
useful technique for deduction in logical fragments where the impermutabilitiesare
not an issue (such as the simple fragmentsthat are “interpreted” by proof search in
the design of logic programming languages).

The lifting construction again begins with the definition of constraints, parallel
to the definition of constraintsin Definition 38. For the ground cal culus, these must
be designed to enforce any side conditionsfrom the ground inferencefigures of Def-
inition 17. For example, we need these constraints for possibility and necessity in-
ferences:

Definition 43 (Atomic constraints) The atomic constraints for lifted ground
tableaux include:

e If nand mare logic variables and T is a sequence of logic variables, then
Pg(n,m; T) is an atomic constraint. 8 = Pg(n,m; T) just in case 8(n) takes
the form 6(m) a for some modal parameter a and a does not occur in 6(T).

e If nand m are logic variables, X is a typing (containing logic variables),
and i indexes a modality, then Ng(n,m,i;Z) is an atomic constraint. 6 =
Ng(n,m,i; %) just in case thereisa typing derivation S, 6(X)>6(m)/6(n) : i.

Of course, the genera constraints of equality, conjunction and existential quantifi-
cations continue to be needed.

The lifting construction continues by the adaptation of tableau rules to manipu-
late constrained sequents; these will taketheform XTI - C. (Since Z will abstract a
typing, we will want to use Vs to designate the logic variables that occur in Z.) As
before, boolean rulesgenerally decompose the principal formulain the numerator of
the tableau rule while conjoining constraints from all the denominatorsof the rules.
Now the rulesthat require specific instantiationsin the ground cal culus require spe-
cial reformulation; each revised inference introduces some new logic variables, and
(using an existential quantifier) constrainsthese variablesappropriately to match any
side conditions on the application of the ordinary rule. Again, we limit ourselvesto
examples:
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Definition 44 (Lifted Tableau Rule) The lifted version of the ground modal de-
ductions (over aregime S) include:

1. possibility (n new):

2> tO AR - IN(CAPy(N, 1; Vs))
. m/n:i>T tOARTAN.C

2. necessity (n new):

2> t0AR - In(CANg(n,mi; Z))
SoT,tO0AR tAT-C

Finally, we establish a correctness theorem:

Theorem 6 (Correctness) Let 2 be a typing containing variables, let I be a finite
multiset of parameterized signed expressions (in an appropriate language), and let
0 be a substitution defined on all logic variables that occur in Z and I, such that
0() isatyping for 6(I"). Then the following conditions are equivalent:

1. Thereisa closed ground tableau for 6(%)>0(I").
2. Thereisa constraint C and a lifted tableau for T - C with 6 |=C.

The proof again consists of an induction on the structure of ordinary tableaux and
an induction on the structure of lifted tableaux. Indeed, the arguments can be es-
sentially preserved from the proof of Theorem 5. For (1 = 2), the form of the ordi-
nary tableau, in meeting any side conditionson theinferences, guaranteesthat a sec-
ondary substitution can be constructed from 8 so asto allow theinduction hypothesis
to be applied and the resulting derivation(s) to be (re)assembled into an overall lifted
tableau, with the resulting overall constraint satisfied by 6. For (2= 1), thefact that
6 meets the constraint and the use of fresh variables ensures that the the induction
hypothesis can be applied and that the resulting derivations(s) can be (re)assembled
into an overall ground tableau. ®

We can observe from this proof strategy that since ground proofs do not enjoy
free interchange of inference, lifted proofs cannot enjoy free interchange of infer-
ence either. Itisof course possible in this case to understand these impermutabil -
ities directly from the lifted calculus itself (much as we did earlier in this section).
In this case, the lifted rules are not permutable because the constraint derived for
alifted tableau T need not be equivalent to the constraint derived from a tableau
resulting from the interchange of inferencesin T . So one constraint may not be sat-
isfiable while the other is; hence one lifted tableau may not represent alifted proof
while the other does.
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5 Specialized Systems

Thus far, we have considered just the general problem of inference in first-order
multi-modal logic. We have allowed for an arbitrary number of modalities, subject
to accessihility relations that could be any of serid, reflexive, transitive, euclidean,
or narrowing (to another modality); we have treated a full complement of boolean,
first-order and modal connectives.

In knowledge representation, domains may invite a more constrained inven-
tory of modal operators or connectives—for example by motivating an S4 model
of agents' knowledge rather than an S5 model (or vice versa), or by suggesting ax-
iomatic theoriesthat are naturally formulated as modal Horn clauses (or some other
logical fragment). The results we have presented are compatible with such restric-
tions. Because the results are parameterized by the modal regime, they can be ap-
plied for smpler theories of modalities, right down to the smplest modal logic of a
single K operator. And because all the results are formulated without referenceto a
cut inferencerule, inference calculi for logical fragments can be obtained simply by
omitting the inference figures for connectives excluded from the fragment.

However, while some complexities of theinference system—take the special ne-
cessity inferenceof ordinary Herbrand tabl eaux as an example—comeclearly linked
with the complexities of the modal regime and the logical language which motivate
their use, not all complexities of the inference system do. This section concentrates
on two such features of ordinary Herbrand tableaux: the side conditions on typings
for closure inferences, and the introduction of auxiliary tracking terms as a side-
effect of instantiation. Both of these are indirect reflections of the expressive power
of our general framework for first-order multi-modal logic, and can be eiminated
for arange of smpler deduction tasks.

The justification of the simplifications derive from elaborations of the Herbrand
soundnesstheorem, Theorem 3. Recall that thetheoremis proved by first transform-
ing any closed Herbrand tableau T into a revised closed Herbrand tableau T * by
interchange and omission of inferences. Inthis T *, the natural ordering < on in-
ferences is respected, a given Herbrand rule applies at most once on each branch,
and every inferenceis essential. An induction—the chief obligation of which isto
ensure that the local typing conditions imposed by the ground inference figures are
met—converts T * toaground proof. Thus, thesimplificationswe consider herepro-
vide ways of establishing additional properties of the revised proof T *, and thereby
rewriting T * using ground inference figures by aternative means.

5.1 Terminology and a basic lemma
To accomplish these transformations, we will be working with relaxed Herbrand
tableaux. The relaxed Herbrand closure rules are given by the figures

SolAGTA, ST fTh
I I
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for Aanatomicformula. A relaxed Herbrand tableau isatableau built in accordance
with the relaxed Herbrand closure rules and the recursive tableau rules of Defini-
tion 32.

Suppose @(Z, E) isaproperty of Herbrand typings and signed, tracked prefixed
formulas (in a language with Herbrand terms). Then we say a relaxed Herbrand
tableau T satisfies ® just in case for each binary closure inferencein T :

oA TAY
I

both ®(Z,tAY) and @(Z, fAY) hold, and for each unary closure inferencein T :

oL fTY
I

®(2,fTY) holds. For example, consider ®(Z, uA}) defined as=yx C 3. Thenare-
laxed Herbrand tableau satisfying ® isinfact aHerbrand tableau. One can therefore
imaginetransforming arelaxed Herbrand tableau so asto satisfy increasingly strong
®, until what we haveisinfact aHerbrand tableau. In essence, that is exactly what
we will do.

Any defect of arelaxed Herbrand tableau comesin how symbols are introduced
in the proof. Let us say that occurrence of a symbol t in aterm is unchecked in a
closureinferencewith typing Z if t occursin aprincipa expression of the inference
and=; ¢ 3. Then arelaxed Herbrandtableaux failsto beaHerbrandtableau invirtue
of itsunchecked symbol occurrences.

The transformationsthat remedy such defects consequently require usto replace
one symbol for another. For example, we might have a case in arelaxed Herbrand
tableau where afirst-order Herbrand term h which is not properly introduced isin-
stantiated for xinageneral inference (for exampleto reason withauniversal formula
V¥xA). Then occurrences of h may be unchecked el sewhere in the tableau. But infor-
mally, because h is not introduced by a rule which precisaly requiresit, we should
be able to replace h with another symbol whose corresponding occurrences will not
be unchecked, such as a constant c. Likewise, we might have a case in arelaxed
Herbrand tableau where amodal Herbrand term n whichis not properly introduced
appears in the transition taken in a general modal inference (say to anecessary for-
mula 0O;A); occurrences of N may be unchecked elsewhere in the tableau. In this
case we might rewrite the inference to use a specia necessity inference and hence
introduce adifferent modal Herbrand term n’ whose corresponding occurrenceswill
not be unchecked.

Our reasoning about relaxed Herbrand tableaux therefore require results show-
ing that we can systematically vary the choice of certain kinds of symbols in
the proof. Such results resemble the pure variable result of the previous section.
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However, with relaxed Herbrand tableaux the replacement involves repercussions
throughout the proof in the structure of Herbrand terms; it is not surprising that the
such changes are possible, but the exact transformation required takes some techni-
cal effort to spell out precisely.

Accordingly, we need somefurther definitions. Say that aHerbrand term or Her-
brand prefix pisimplicated in an expression E if p occursin E or if some Herbrand
function fa depending on aformulaA occursin E and pisimplicatedin A. Say qis
independent of pif pisnotimplicateding. Say qistype-compatiblewith pif when-
ever thereisaderivation of S, =x >J then thereis aderivation of S, =y, > J[a/ pl.

Definition 45 (renaming) Let o be a map taking finitely many Herbrand terms h
into a corresponding Herbrand termao(h). Use o(E) to describe theresult of replac-
ing any top-level Herbrand termhin E for which a(h) isdefinedby o(h). Wesayais
asaferenaming from ptoqjustin case qistype-compatiblewith p, g isindependent
of p, andif fa isaHerbrand function which depends on theassociated formula A and
o(fa(X)) isdefined, then pisimplicatedin Aand a(fa(X)) = fo(aiq/p)) (0(X[a/p]))-

Observethat if o safely renamesfrom ptoq, then sinceqisindependent of p, a(q) =
d. Moreover since q istype compatible with p, =x >J implies =5g(x),>(6(J)).

Lemma 24 (possibility of renaming) We are given a closed relaxed Herbrand
tableau, T , whoseroot carriestheline L, such that no Herbrand termthat occursin
L isintroduced by aHerbrand inferencein T and no general inference with instance
x and no Herbrand ruleintroducing x lieson a path fromtheroot to a Herbrand rule
introducing x. Suppose T has a unary inference R at the root which appliesto prin-
cipal expression E to yield a side expression E':

Zobro,E
— = R
S >To,E E
T/

Suppose some Herbrand termor Herbrand prefix p occursin E' but isnot implicated
intheline Xy, E. Now let q be type-compatible with p, independent of p, and
such that the figure:
ZO > ro, E
Zola/pl,AxTo,E.E'a/p]

instantiates a tableau inference figure for principal expression E. Then we can con-
struct from T a new closed relaxed Herbrand tableau T, with the sameroot as T ,
containing corresponding inferencesin a corresponding order to T , but inwhich p
does not occur. Any unchecked symbol occurrencesin T, correspond to unchecked
symbol occurrencesinT , but if =4 C '[q/ p|, A then there are no unchecked occur-
rencesof qinT..

R

The proof is by induction on the structure of closed relaxed Herbrand tableaux. For
the induction hypothesis, we assume that if we have a subtableau of T of height
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h whose root carries Z > T with Z3[g/p],A C X and we have a safe renaming o
from p to g, then we can construct a corresponding subtableau whose root carries
o(Z[q/p])>o(l'[g/p]). The base case, for a closure inference, is straightforward:
complementary formulas remain complementary under substitutions, so the infer-
ence remains a correct closure; since X5(q/p],A C Z, if =q C 2'[q/p], A, there are
no unchecked occurrences of g in the closure.

So we assume a subtableau of height h+ 1 and consider case analysis on the
inference at the root. Trandation of boolean inference isimmediate. For a general
inference, such as necessity—

ST oA,
2oL tOAL LAY N
T/

—we obtain the revised proof T,/ by hypothesis and construct

o(=[a/p]) >o(C[a/p]), o((tDiAY)[a/p])

o(Z[a/p])>o(Ma/ p]),o((tDTifté)[q/ pl), o((tAY ny)[a/P])

We need only that thereis aderivation of S, =g (x n.v)g/p) > (1[a/P))/O(V][a/p]) :
i; this follows from the side condition on the untransformed general inference and
the fact that o is a safe renaming.

Finally, consider a Herbrand inference such as possibility:

Zo T tOAL
.7 T
S,U/HN ID?EOiA;’tA;,Iun

There are two cases. If pisnot implicated in A, then o(A[g/p]) = A and we can
construct

a(2[a/p)>o(r[a/p)), (LA [a/p))
o((Z, u/un :i)[a/p])>o(T[a/p), o((tOiAY)[a/p)), o (LA, )[a/Pl)
T/

(Weuse T, obtained by the induction hypothesis.) Otherwise, pisimplicatedin A;
hencen takestheformna(...); weconsider o’ exactly like o except o’ (Na(M, X)) =
No(a)(0’(1[a/pl),0’(X[a/p]))). By assumption on the form of the overall deriva-
tion T, na(, X) does not occur in the root; hence ¢’ remains a safe renaming. We
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can apply the induction hypothesis and construct:

a(2[a/pl)>o(r [a/p)), o((tiA) [/ p))
o'((Z,1/un :)[a/p))>0'(Ta/p)), o' (A )[a/pl), o (EAL,,)[a/p)
T/

5.2 Specialized Closure Conditions for Modalities
We can now reformulate closure conditions for restricted modal logics, using
Lemma 24 as atool for rewriting symbolsin relaxed Herbrand proofs.

First we observe, as hinted in section 5.1, that unchecked occurrences of first-
order termsare not aproblem. Defineacondition ®g (£, uAl) truejustin case =x \Z
isaset of statements of theformt : p. Then in arelaxed Herbrand tableau that sat-
isfies g, all unchecked occurrences of terms are occurrences of first-order terms.

Lemma25 Let T bearelaxed Herbrand tableau that satisfies ®g, with a root that
carries no Herbrand terms and with the ordering property that no general inference
with instance x and no Herbrand rule introducing x lieson a path fromthe root to a
Herbrand rule introducing x. Then we can transform T into a corresponding Her-
brand tableau T, by substitutions of symbols.

Proof. By induction on the number of unchecked occurrencesof first-order symbols
inT . If there are none, we in fact have a Herbrand tableau. Suppose the claim is
true for T with n occurrences or fewer, and consider T with n+ 1. Consider any
such symbol h, and consider an inference which introduces h on abranch containing
unchecked occurrences of h, such that there are no other inferences which introduce
h closer to theroot. This must be a general inference; call it R and schematize it as
in Lemma 24:

ZO > ro, E

S oTo,EE N
T /

The conditionson T and R ensure that h is not implicated in the line 2> g, E—h
could beimplicated here only if somerule closer to the root introduced h or if hwas
implicated in the root itself. So consider any constant symbol from the language c.
c istype-compatible with h (since c is defined at al worlds); ¢ isindependent of h
(since ¢ contains no Herbrand symbols); and the figure below is a correct tableau
inference:

ZO > ro, E =

[C/ p] Zé)vAD r07 E7 E' [C/ p]

The conditionsof Lemma24 apply to giveanew proof with strictly fewer unchecked
occurrences of first-order symbols. ®
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Second, we observe that unchecked occurrences of modal terms are not a
problem—provided that all modalities are serial (or reflexive). Define a condition
Pg(Z,uAl) truejust in case =x \ T isa set of statements of the form p/pn : i.

Lemma 26 Consider a regime where no modalities are assigned non-serial types
K, KB, K4, K5or K45. Let T bearelaxed Herbrand tableau that satisfies dswith a
root that carries no Herbrand terms and with the ordering property that no general
inference with instance x and no Herbrand ruleintroducing x lieson a path fromthe
root to a Herbrand ruleintroducing x. Then we cantransform T into a correspond-
ing Herbrand tableau T, by substitutions of symbols.

Proof. By induction on the number of unchecked occurrences of modal Herbrand
symbolsin T . If there are none, we in fact have a Herbrand tableau. Suppose the
clamistruefor T with n occurrences or fewer, and consider T with n+ 1. There
must be some symbol n on a branch that contains unchecked occurrences of n with
the property that no other such symbol occurs closer to the root of the tableau than
n. Consider theclosest inferenceto theroot on this branch which introducesn. This
must be ageneral inference; call it Rand schematize it asin Lemma 24:

Zobro,E
— = R
S>To,E E

T/

Theconditionson T and R ensurethat n isnot implicated in theline o>, E—n
could beimplicated hereonly if somerule closer to theroot introducedn or if n was
implicated in the root itself. The typing missing for | is some statement p/un : i;
the conditionson T and R also ensure that =, C % as per the proof of Theorem 3.
We consider two cases, depending on whether i isserial or reflexive. If i isserial, we
can introduce an appropriaten’ here so that the figure below instantiates the special
necessity inference:
ZO > ro, E
Zon’/nl, &> To,E,E'IN'/N]

n’ istype-compatible with n; n’ is independent of n since it is constructed from a
different Herbrand function from and arguments that are independent of n.

Otherwisg, if i isreflexive, we can smply replace the prefix pun by the prefix y,
and retain a general inference. pn istype-compatible with i, since p/p @ i is deriv-
able; p isindependent of n as guaranteed by the structure of T and the choice of R.
For the same reason, =, C 3.

In either case, the conditions of Lemma 24 now apply to give anew proof with
strictly fewer unchecked occurrences of modal Herbrand terms. ®

R
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5.3 Streamlining Tracking Terms
The final optimizations depend on an observation about typing for modalities that
are neither euclidean nor symmetric.

Lemma 27 (Prefix typing) Consider a regime in which no euclidean or symmetric
modalities (of classes KB, K5, K45, KD5, KD45 B or S5) occur. Thenif =x>p/v ;i
then =, >p/v :iand pisa prefix of v.

Proof. Observethat if pisaprefix of v then g occursin =, and =, C =,. The base
cases aretheinferencefigures (K) and (T): theclaimfollowsdirectly fromtheform
of thejudgmentsinvolved p/pn : i (wherep must beasubtermof n) and p/p:i. The
inductive cases are the (Inc) and (4) inference figures. (Inc) follows immediately
from the induction hypopethesis. For (4), we have =x > p/p @i and =x >/ /v : i.
We apply theinduction hypothesisto the second; weobtain =, >’ /v : i plusthefact
that W’ occursin=,. Thismeans =, C =, so by applying theinduction hypothesisto
the first component typing derivation, we get =, > /|’ ;i and 1 occursin =,. Since
nisaprefix of W and Y’ isaprefix of v, pisaprefix of v. ®

In regimeswhere no modalitiesare euclidean or symmetric, we now observethat
we can use restricted general inference figures which do not permit free choice of
tracking terms. For example, in place of the necessity figure:

S0Py
2oL tOP P

we can now use the restricted necessity figure:

>, t0Py
ol tOP tRY

That is, the only changeisthe elimination of the choice of tracking termsN system-
atically in the necessity, extra special necessity and universal inferences.

Since the new inferences are restrictions of the usual Herbrand inferences, the
Herbrand soundness theorem continues to apply; we need only adapt the Herbrand
completeness theorem, Theorem 4, to show that ground proofs can be transformed
into Herbrand proofs using these inferences.

Recall that the inductive hypothesis of the proof of Theorem 4 isthat the typing
> on each tableau lineisrewritten to aHerbrand typing o(Z) for theline. In rewrit-
ing genera inferences, we have from the ground proof that any typing conditions
are met—for example in the case of a necessity inferenceS,Z>p/v :i. Therefore
S,0(Z)>0(p)/o(v) :i. By Lemma27, it followsthat S, =5,y >0(p)/0(v) @i and
hence the restricted tracking of side formulasin the Herbrand proof suffices. ®
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5.4 Specialized Closure Conditions for Fragments

We can also exploit the prefix result to obtain an analogue of Lemma 2 of
[Stone, 1999b], when no modalities are euclidean or symmetric and when no log-
ical statements contain negation or possibility.

Lemma 28 (Irrelevance) Let T bearelaxed Herbrand tableau with inferences or-
dered so that no Herbrand termthat occursin L isintroduced by a Herbrand infer-
encein T and no general inference with instance x and no Herbrand rule introduc-
ing x lieson a path fromtheroot to a Herbrand rule introducing x. Suppose the root
of T carriesalineZ>T, I, Awhereall thel" and I'* expressions are of theformtE
and the A expressions are of the form fE, where no operators of possibility or nega-
tionoccur in T, I'* or A and where for every uAl, € I'* thereisno uBl € A such that
pisaprefix of v. Then T can be transformed into a relaxed Herbrand tableau of
T, A.

The proof isastraightforward induction on the structure of proofs. A few key obser-
vations, based on Lemma 27 and the logical fragment, allow the proof presented in
[Stone, 1999Db] to go through. First, modal Herbrand inferences are associated only
with negative statements, while modal general inferences are associated only with
positive statements. Second, consider those Herbrand inferences, e.g.:

oA, fO A
Z,u/pn ic T A fO AL FAYT

The order of inferences ensuresthat n is new, so if aformulais not associated with
aprefix of p, it's not associated with a prefix of un either. Finaly, consider those
genera inferences, e.g.:

ST, A tOAL
2, u/pn in T, A O AL tAY

The typing requiresthat (L be aprefix of v soif pisnot a prefix of some A formula,
thenv isnot either. These observationsallow inferencesto I'* formulasto be induc-
tively discarded. ®

Lemma 28 provides an alternative method to eliminate the modal side conditions
on closurerules. We assume the streamlined tracking system of section 5.3, inwhich
every tracked formulais the result of an explicit instantiation.

Lemma 29 Let T bearelaxed Herbrand tableau, such that theroot of T carriesa
lineXe>T, I Awhereall thel and ' are of the form tE and the A are of the form
fE, where no operators of possibility or negation occur inl", I'* or A and where for
every uAl € I'* thereisno uBl € A such that p is a prefix of v. Then T can be
transformed into a ground proof of 1", A.
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Proof. Transform T to a reordered T *, then apply Lemma 25 to eliminate
unchecked first-order terms. We next apply Lemma 28 to eliminate certain formulas
and inferences from the proof. | claim that the resulting relaxed Herbrand tableau
has no unchecked modal termseither. By the form of tracking, any untracked modal
Herbrand term occurrencen is associated with some general inference R at which n
isthe instantiated parameter. Because the occurrence is untracked, there can be no
corresponding Herbrand inferenceinvolving n closer to theroot. Thisin turn means
theinference Rmust involve apositive sideexpression tAi” whereun isnot aprefix
of v for any negative expression fBY. Thisisaimpossible, for such an inference R
would have been eliminated from the tableau by the application of Lemma 28. ®

55 Afinal observation

Consider either of the systems studied in Section 5.2 or 5.4, in which the side con-
dition on closure rules are eliminated. We conclude by observing that such systems
allow the form of sequents themselves to be streamlined. Construct a typeless ver-
sion of these calculi in which tableau lines take the smple form I, where T is (as
always) amultiset of signed tracked prefixed formulas—here we eliminate the typ-
ing X from the sequent. The tableau rules for the typeless calculi are obtained like-
wise by simply omitting = (and changes to %) from the formulation of the original
inference rules.

The typeless calculi are sensible because the side condition on tableau rules—
on theclosureinference particularly—nolonger depend on X intheoriginal calcluli.
The side conditions on inference rules therefore remain unchanged by the smplifi-
cation to the typeless system.

It is therefore straightforward to show by induction that the typeless calculi are
equivalent in provability to theorigina systems. To transform an original tableau to
atypelesstableau, one smply erasesthetyping Z on each tableau linein the tabl eau.
Conversely, starting from atyping > and a typeless tableau, one smply inductively
redecoratesthe tableau with typings derived from Z according to the original tableau
rules.

References

[Auffray and Enjalbert, 1992] Auffray, Y. and Enjalbert, P. (1992). Modal theorem
proving: an equational viewpoint. Journal of Logic and Computation, 2(3):247—
295.

[Baldoni et al., 1993] Baldoni, M., Giordano, L., and Martelli, A. (1993). A multi-
modal logic to define modulesin logic programming. In ILPS, pages 473-487.

[Baldoni et al., 1996] Baldoni, M., Giordano, L., and Martelli, A. (1996). A frame-
work for modal logic programming. In Maher, M., editor, JICS_P 96, pages 52—
66. MIT Press.



76

[Baldoni et al., 1998] Baldoni, M., Giordano, L., and Martelli, A. (1998). Onin-
teraction axioms in multimodal logics: a prefixed tableau calculus. In Labelled
Deduction ’ 98, Freiburg.

[Basin et a., 1998] Basin, D., Matthews, S., and Vigano, L. (1998). Labelled modal
logics. Quantifiers. Journal of Logic, Language and Information, 7(3):237-263.

[Beckert and Goré, 1997] Beckert, B. and Goré, R. (1997). Free variable tableaux
for propositional modal logics. In TABLEAUX 97, LNAI 1227, pages 91-106.

Springer.

[Catach, 1991] Catach, L. (1991). TABLEAUX, a genera theorem prover for
modal logics. Journal of Automated Reasoning, 7:489-510.

[Fagineta., 1995] Fagin, R., Halpern, J. Y., Moses, Y., and Vardi, M. Y. (1995).
Reasoning About Knowledge. MIT Press, Cambridge MA.

[Farifas del Cerro, 1986] Farifias del Cerro, L. (1986). MOLOG: A system that
extends PROLOG with modal logic. New Generation Computing, 4:35-50.

[Fitting, 1972] Fitting, M. (1972). Tableau methods of proof for modal logics.
Notre Dame Journal of Formal Logic, 13(2).

[Fitting, 1983] Fitting, M. (1983). Proof Methods for Modal and Intuitionistic Log-
ics, volume 169 of Synthese Library. D. Reidel, Dordrecht.

[Fitting, 1996] Fitting, M. (1996). A modal Herbrand theorem. Fundamenta I nfor-
maticae, 28:101-122.

[Fitting and Mendel sohn, 1998] Fitting, M. and Mendelsohn, R. L. (1998). First-
order Modal Logic, volume 277 of Synthese Library. Kluwer, Dordrecht.

[Frisch and Scherl, 1991] Frisch, A. M. and Scherl, R. B. (1991). A genera frame-
work for modal deduction. In Proceedings of KR, pages 196—207. Morgan Kauf-
mann.

[Gallier, 1993] Gallier, J. (1993). Constructivelogics. |. A tutorial on proof systems
and typed A-calculi. Theoretical Computer Science, 110(2):249-339.

[Gallier, 1986] Gallier, J. H. (1986). Logic for Computer Science: Foundations of
Automated Theorem Proving. Harper and Row, New York.

[Goldblatt, 1992] Goldblatt, R. (1992). Logicsof Timeand Computation. Number 7
in CSLI Lecture Notes. CSLI, second edition.

[Gorg, 1992] Goré, R. (1992). Cut-free Sequent and Tableau Systems for Proposi-
tional Normal Modal Logics. PhD thesis, University of Cambridge.



FIRST-ORDER MULTI-MODAL DEDUCTION 77

[Gorg, 1999] Goré, R. (1999). Tableau methods for modal and temporal logics. In
D’ Agostino, M., Gabbay, D., Hahnle, R., and Posegga, J., editors, Handbook of
Tableau Methods. Kluwer, Dordrecht.

[Jackson and Reichgelt, 1987] Jackson, P. and Reichgelt, H. (1987). A genera
proof method for first-order modal logic. In Proceedings of 1JCAI, pages 942—
944.

[Kleene, 1951] Kleene, S. C. (1951). Permutation of inferencesin Gentzen's cal-
culi LK and LJ. In Two papers on the predicate calculus, pages 1-26. American
Mathematical Society, Providence, RI.

[Lewis, 1918] Lewis, C.1.(1918). A Survey of Symbolic Logic. Dover, New York.

[Lewis and Langford, 1932] Lewis, C. |. and Langford, C. H. (1932). Symbolic
Logic. Dover, New York.

[Lincoln and Shankar, 1994] Lincoln, P. D. and Shankar, N. (1994). Proof search
in first-order linear logic and other cut-free sequent calculi. In LICS pages 282—
291.

[Martelli and Montanari, 1982] Martelli, A. and Montanari, U. (1982). An efficient
unification algorithm. ACM Transactions on Programming Languages and Sys-
tems, 4(2):258-282.

[Massacci, 1994] Massacci, F. (1994). Strongly analytic tableaux for normal modal
logics. In Bundy, A., editor, CADE-12, volume 814 of LNAI, pages 723-737,
Berlin. Springer.

[Massacci, 1998a] Massacci, F. (1998a). Single step tableaux for modal logics.
Technical Report DIS TR-04-98, Unviersity of Rome*La Sapienza’.

[Massacci, 1998b] Massacci, F. (1998b). Single step tableaux for modal logics:
methodol ogy, computations, algorithms. Technical Report TR-04, DIS, Univer-
sity of Rome “La Sapienza’.

[McAllister and Rosenblitt, 1991] McAllister, D. and Rosenblitt, D. (1991). Sys-
tematic nonlinear planning. In Proceedings of AAAI, pages 634—-639.

[McCarthy, 1997] McCarthy, J. (1997). Modality, si! modal logic, no! Sudia Log-
ica, 59(1):29-32.

[McCarthy and Buvac, 1994] McCarthy, J. and Buvac, S. (1994). Formalizing con-
text (expanded notes). Technical Report STAN-CS-TN-94-13, Stanford Univer-
Sity.



78

[Nonnengart, 1993] Nonnengart, A. (1993). First-order modal logic theorem prov-
ing and functional ssimulation. In Proceedings of IJCAI, pages 80-87.

[Ohlbach, 1993] Ohlbach, H. J. (1993). Optimized trandation of multi modal logic
into predicatelogic. In Voronkov, A., editor, Logic Programming and Automated
Reasoning, volume 698 of LNCS, pages 253-264. Springer, Berlin.

[Otten and Kreitz, 1996] Otten, J. and Kreitz, C. (1996). T-string-unification: uni-
fying prefixes in non-classical proof methods. In TABLEAUX 96, volume 1071
of LNAI, pages 244-260, Berlin. Springer.

[Prior, 1967] Prior, A. N. (1967). Past, Present and Future. Clarendon Press, Ox-
ford.

[Schild, 1991] Schild, K. (1991). A correspondence theory for terminological log-
ics. preliminary report. In 1JCAI, pages 466—471.

[Schmidt, 1998] Schmidt, R. A. (1998). E-Unification for subsystems of $4. In
Rewriting Techniques and Applications.

[Smullyan, 1968] Smullyan, R. M. (1968). First-order Logic, volume43 of Ergeb-
nisse der Mathematik und ihere Grenzgebeite. Springer-Verlag, Berlin.

[Smullyan, 1973] Smullyan, R. M. (1973). A generdization of intuitionistic and
modal logics. In Leblanc, H., editor, Truth, Syntax and Modality, pages 274-293.
North-Holland, Amsterdam.

[Stone, 1998] Stone, M. (1998). Modality in Dialogue: Planning, Pragmatics and
Computation. PhD thesis, University of Pennsylvania

[Stone, 1999a] Stone, M. (1999a). Indefinite information in modal logic program-
ming. Technical Report RUCCS Report 56, Rutgers University.

[Stone, 1999b] Stone, M. (1999b). Representing scope in intuitionistic deductions.
Theoretical Computer Science, 211(1-2):129-188.

[Stone, 1999¢] Stone, M. (1999c). Tree constraints for labelled modal deduction.
Technical report, Rutgers University. In preparation.

[van Benthem, 1983] van Benthem, J. F. A. K. (1983). Modal Logic and Classical
Logic. Bibliopolis, Naples.

[Voronkov, 1996] Voronkov, A. (1996). Proof-search in intuitionistic logic based
on congtraint satisfaction. In TABLEAUX 96, volume 1071 of LNAI, pages 312—
329, Berlin. Springer.



FIRST-ORDER MULTI-MODAL DEDUCTION 79

[Wallen, 1990] Wallen, L. A. (1990). Automated Proof Search in Non-Classical
Logics: Efficient Matrix Proof Methodsfor Modal and IntuitionisticLogics. MIT
Press, Cambridge.



