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Summary

We study prefixed tableaux for first-order multi-modal logic, provid-
ing proofs for soundness and completeness theorems, a Herbrand the-
orem on deductions describing the use of Herbrand or Skolem terms
in place of parameters in proofs, and a lifting theorem describing the
use of variables and constraints to describe instantiation. The general
development applies uniformly across a range of regimes for defining
modal operators and relating them to one another; we also consider cer-
tain simplifications that are possible with restricted modal theories and
fragments.
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1 Introduction
Recent years have seen an explosion in research in formalizing inference in
modal logic [Goré, 1999, Basin et al., 1998, Fitting and Mendelsohn, 1998]
and in using modal theories in knowledge representation [Fagin et al., 1995,
McCarthy and Buvač, 1994, Stone, 1998]. Unfortunately, research on modal infer-
ence does not link up as directly as could be hoped with proposed modal theories.
This report aims to help provide such links by providing a set of extremely general
results about first-order multi-modal deduction in terms of analytic tableaux and
a prefix representation of possible worlds. We first provide sound and complete
ground tableau and sequent inference systems, extending and refining those pre-
sented in [Fitting and Mendelsohn, 1998] to the multi-modal case. Then we show
how to apply general proof-theoretic techniques to derive an equivalent calculus
where Herbrand terms streamline proof search [Lincoln and Shankar, 1994].
Finally, we derive a lifted multi-modal sequent inference system, which uses unifi-
cation (or constraint-satisfaction) to resolve the values of variables, in the style of
[Voronkov, 1996]. From one point of view, this report can be regarded as the multi-
modal generalization of the results presented for linear logic and first-order modal
logic in [Lincoln and Shankar, 1994, Fitting, 1996, Fitting and Mendelsohn, 1998];
alternatively, it can be seen as recasting into a modal setting the results of
[Stone, 1999b], which investigates first-order intuitionistic logic along similar
lines.

Formal modal logic goes back eighty years [Lewis, 1918,
Lewis and Langford, 1932]. Yet according to McCarthy [McCarthy, 1997],
for example, the modal logic literature still does not offer a formalism with the
intensional expressive power—including fresh modalities defined ad hoc, and
means to describe knowing what by concise and easily manipulated formulas—that
is needed for knowledge representation in Artificial Intelligence. Moreover, typical
results from the modal logic literature do not support the design of specialized
modal inference mechanisms to solve particular knowledge representation tasks.

The approach adopted here is a response to these gaps. We tackle a first-order
multi-modal logic with an arbitrary number of modal operators and a flexible regime
for relating different modal operators to one another—this gets at limitations in ex-
pressive power. We consider inference in analytic tableaux (or, seen upside-down,
in the cut-free sequent calculus)—this provides a close grounding with techniques
for implementing deduction. And—in order to suggest and facilitate results about
specialized inference algorithms, such as [Stone, 1999a, Stone, 1999c]—we avoid
definitions for logical connectives, we represent worlds using prefix terms, denot-
ing paths of accessibility among possible worlds, and we factor out reasoning about
accessibility into side conditions on inference rules.

Individually, these choices are familiar from research on modal logic. For ex-
ample, [Fitting and Mendelsohn, 1998] present a comprehensive treatment of the
first-order modal logic using prefix terms and analytic tableaux. But they treat
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only a single modal operator. [Basin et al., 1998] adopt a proof-theoretic view of
first-order modal logic in which reasoning about accessibility and boolean rea-
soning are clearly distinguished. But they also treat only a single modal opera-
tor, and do so using atomic terms for worlds and natural deduction proof. Mean-
while, [Baldoni et al., 1998] explore a first-order multi-modal logic with related op-
erators using analytic tableaux—but they also use atoms to refer possible worlds
and now allow reasoning about accessibility to interact with first-order reasoning.
[Nonnengart, 1993] covers a few multi-modal logics using a prefix representation of
worlds, but avoids interactions among modal operators and advocates a translation
method with purely classical reasoning where modal proofs are difficult to study.

Thus the combination of ideas explored here—a combination that plays a crucial
role for applications in logic programming and knowledge representation—remains
a novel one. In fact, even today, research in modal logic—whether the investigation
is more mathematical [Goré, 1992, Massacci, 1998b, Massacci, 1998a, Goré, 1999]
or primarily concerns algorithms for proof search [Otten and Kreitz, 1996,
Beckert and Goré, 1997, Schmidt, 1998]—is dominated by the study of the
propositional logic of a single modal operator (or accessibility relation).

When multiple modal operators are considered, their interpretations and inter-
actions are often predefined. In PDL and terminological logics we have combi-
nations of orthogonal K modal operators [Goldblatt, 1992, Schild, 1991]. In typ-
ical epistemic logics, we have orthogonal combinations of S5 modal operators to
model knowledge [Fagin et al., 1995] or KD45 to model belief [Nonnengart, 1993].
In tense logics, we have a predefined pair of symmetric operators for past and future
[Prior, 1967].

Other researchers who have investigated modal logic in a first-order setting have
tended to jump directly into a discussion of particular theorem-proving strategies,
particularly resolution [Jackson and Reichgelt, 1987, Wallen, 1990, Catach, 1991,
Frisch and Scherl, 1991, Auffray and Enjalbert, 1992, Ohlbach, 1993]. Often the
modal component of the language is translated away using first-order quanti-
fiers as soon as a semantics for it is provided. Another strategy has been to
study only logic programming proof for multi-modal logic [Fariñas del Cerro, 1986,
Baldoni et al., 1993, Baldoni et al., 1996]. For such approaches, it suffices to pro-
vide soundness and completeness proofs for a restricted logical fragment; indeed,
these approaches often avail themselves of specialized proof-theoretic representa-
tions that do not generalize to the full modal language and whose relationship to the
general proof-theory is left unexplored.

2 Ground First-order Multi-Modal Deduction
These preliminaries have suggested that there is both the motivation and the need to
study prefixed tableaux for multi-modal logics in a general way. So let us consider
the syntax, semantics and ground proof theory of a broad multi-modal language.
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2.1 Syntax
Our language is defined by a signature 〈OP, REL, VAR, CONST 〉. OP is a finite col-
lection of modalities, which we shall write using the necessity operators21, . . .,2k
and the possibility operators 31, . . .,3k. These modal operators may be subject to
any of a number of logical conditions, which we explain presently. REL is a count-
able set of relation symbols R1, . . . each of which is specified for arity; REL should
contain at least one relation but may be finite. VAR is a countably infinite collection
of variables x1, . . ., and CONST is a countable collection of constant symbols c1, . . .
possibly finite but containing at least one symbol. Thus, we insist on a countable
language here. (Both constants and variables will be interpreted rigidly.) While OP,
REL and VAR can remain fixed throughout the rest of this report, it will be conve-
nient to consider languages in which a countably infinite number of parameters are
included in the language to supplement the symbols in CONST. So we write L(C)
to describe the language built over the signature 〈 OP, REL, VAR, C 〉. The basic
language is then L(CONST).

Definition 1 (Formulas) The set of formulas in L(C) is the smallest set meeting all
of the following criteria. If Ri is a l-ary relation symbol of REL and t1, . . ., tl is a
sequence of length l each of whose elements is some constant c j in C or some vari-
able x j in VAR, then Ri(t1, . . ., tl) is a formula. > is also a formula. If A and B are
formulas and i indexes one of the k modalities of OP, then the formulas also include
¬A, (A∧B), (A∨B), (A⊃ B), 2iA and3iA. If A is a formula and x is a variable of
VAR, then ∀xA and ∃xA are also formulas.

We appeal to the usual notions of free and bound occurrences of variables in for-
mulas; we likewise invoke the depth of a formula (the largest number of nested log-
ical connectives in the formula).

Definition 1 is set up so that different formulas are independent, which is conve-
nient if we intend to apply our results to restricted logical fragments. An alternative
approach invites us to take A∨B as an abbreviation for¬(¬A∧¬B), to take A⊃B as
an abbreviation for ¬(A∧¬B), to take3iA as an abbreviation of ¬2i¬A and to take
∃xA as an abbreviation for ¬∀x¬A. Such abbreviation cuts down the cases we must
consider in the metatheory—an alternative streamlining device is to introduce uni-
form notation as in [Smullyan, 1968, Smullyan, 1973, Fitting, 1983, Wallen, 1990]
to collapse proof rules without collapsing connectives. From a pedagogical point of
view, not much hinges on this; when analysis of numerous similar cases is required,
proofs are rarely presented with explicit analysis for all of them.

2.2 Semantics
As is standard, we describe the models for the modal language in two steps. The
first step is to set up frames that describe the structure of any model; a full model
can then be obtained by combining a frame with a way of assigning interpretations
to formulas in a frame.
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Definition 2 (frame) A first-order k-frame (or, here, simply frame) consists of a tu-
ple 〈G,R ,D〉 where: G is a non-empty set, whose members are generally called
possible worlds; R names a family of binary relations on G, R i for i ≤ k, gener-
ally called accessibility relations; and D is a function, called the domain function
mapping members of G to non-empty sets.

Within the frame F , the function D induces a set D(F ), called the domain of
the frame, as ∪{D(w) | w ∈ G}. In order to simplify the treatment of constant
symbols, it is also convenient to define a set of objects that all the domains of the
different possible worlds have in common, the common domain of the frame F :
C (F ) = ∩{D(w) | w ∈ G}. We effectively insist that C (F ) be non-empty as well,
since CONST is non-empty and each symbol in CONST must be interpreted by an
element of C (F ).

The intermediate level of frames is useful in characterizing the meanings of
modal operators and modal quantification. In particular, simply by putting con-
straints on R i or on D at the level of frames, we can obtain representative classes of
models in which certain general patterns of inference are validated. The constraints
we will avail ourselves of are introduced in Definition 3.

Definition 3 Let 〈G,R ,D〉 be a first-order k-frame. We say the frame is:

• reflexive at i if wR iw
′ for every w ∈ G;

• symmetric at i if wR iw
′ only if w′R iw for every w,w′ ∈ G;

• transitive at i if, for any w,w′′ ∈ G, wR iw
′′ whenever there is a w′ ∈ G such

that wR iw
′ and w′R iw

′′;

• serial at i if for each w ∈ G there is some w′ ∈ G such that wR iw
′;

• euclidean at i if whenever wR iw
′ and wR iw

′′ then w′R iw
′′ for any w,w′,w′′ ∈

G;

• narrowing from j to i if wR iw
′ implies wR jw

′ for all w,w′ ∈ G;

• constant domain if D(w) = D(w′) for any w,w′ ∈ G;

• increasing domain if for all w,w′ ∈ G, D(w)⊆D(w′) whenever there is some
accessibility relationship wR iw

′.

Our scheme for using the constraints of Definition 3 depends on establishing
a regime for the k modal operators in the language, describing the inferences that
should relate the modal operators. The regime is defined as follows.
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Definition 4 (Regime) A first-order k-regime (or, here, simply regime) is a tuple
〈A,N ,Q 〉, where: A is a function mapping each integer in the interval [1..k] into
one of the symbols K, KB, K4, K5, K45, KD, KDB, KD4, KD5, KD45, T, B, S4 and
S5; N is a (strict) partial order on the integers in the interval [1..k], and Q is one
of constant, increasing, or varying.

The reader will recognize the symbols in the image of A as the classic names for
modal logics of a single modality. This meaning for these symbols can be enforced
by considering only frames that respect the given regime.

Definition 5 (Respect) Let F = 〈G,R ,D〉 be a first-order k-frame, and let S =
〈A,N ,Q 〉 be a first-order k-regime. We say F respects S whenever the following
conditions are met (taking i and j to range over all integers in the interval [1..k]):

• If A(i) is T, B, S4, or S5 then R i is reflexive.

• If A(i) is KB, KDB, or B then R i is symmetric.

• If A(i) is K4, K45, KD4, KD45, S4 or S5 then R i is transitive.

• If A(i) is KD, KDB, KD4, KD5 or KD45 then R i is serial.

• If A(i) is K5, K45, KD5, KD45 or S5 then R i is euclidean.

• If i≤ j according to N then F is narrowing from j to i.

• If Q is constant, then F is constant domain; if Q is increasing, then F is in-
creasing domain.

From now on, we assume that some regime S = 〈A,N ,Q 〉 is fixed, and restrict
our attention to frames that respect S. Informally, now, a model consists of a frame
together with an interpretation.

Definition 6 (interpretation) J is an interpretation in a first-order k-frame
〈G,R ,D〉 if J satisfies these two conditions:

1. J assigns to each n-place relation symbol Ri and each possible world w ∈ G
some n-place relation on the domain of the frame D(F ).

2. J assigns to each constant symbol c some element of the common domain of
the frame C (F ).

Thus we can define a model over S thus:

Definition 7 (model) A first-order k-modal model over a regime S is a tuple
〈G,R ,D,J〉 where 〈G,R ,D〉 is a first-order k-frame that respects S and J is an
interpretation in 〈G,R ,D〉.
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To define truth in a model, we need the usual notion of assignments and variants:

Definition 8 (assignment) Let M = 〈G,R ,D,J〉 be a first-order k-modal model
(over some regime S). An assignment in M is a mapping g that assigns to each
variable x some member g(x) of the domain of the frame of the model D(〈G,R ,D〉).

On occasion, we will be asked to interpret formulas not just in the ordinary language
L(C) with a given set of model operators, relations, constants and variables, but in
an expanded language L(C∪P) which also includes a set P of first-order parame-
ters; we will want to use the same models for this interpretation. Over L(C∪P), we
suppose that an assignment in M also assigns some member g(p) of the domain of
the frame of M to each parameter p in P. This allows the model M to provide an
interpretation of formulas in L(C∪P), without the interpretation J of M describing
P.

Definition 9 (variants) Let g and g′ be two assignments in a model M =
〈G,R ,D,J〉; g′ is an x-variant of g at a world w ∈ G if g and g′ agree on all vari-
ables except possibly for x and g′(x) ∈D(w).

Definition 10 (truth in a model) Let M = 〈G,R ,D,J〉 be a first-order k-modal
model. Then the formula A is true at world w of model M on assignment g—written
M ,w −g A—just in case the clause below selected by syntactic structure of A is
satisfied:

• A is >: Then always M ,w −g A.

• A is Ri(t1, . . ., tn): Then M ,w −g A just in case 〈e1, . . .en〉 ∈ J(Ri,w), where
for each ti, ei is J(ti) if ti is a constant and g(ti) if ti is a variable (or a param-
eter).

• A is ¬B: Then M ,w −g A just in case M ,w 6 −g B.

• A is B1∧B2: Then M ,w −g A just in case both M ,w −g B1 and M ,w −g B2.

• A is B1∨B2: Then M ,w −g A just in case either M ,w −g B1 or M ,w −g B1.

• A is 2iB: Then M ,w −g A just in case for every w′ ∈ G, if wR iw
′ then

M ,w′ −g B.

• A is3iB: Then M ,w −g A just in case there is some w′ ∈G such that wR iw
′

and M ,w′ −g B.

• A is ∀xB: Then M ,w −g A just in case for every x-variant g′ of g at w,
M ,w −g′ B.

• A is ∃xB: Then M ,w −g A just in case there is some x-variant g′ of g at w
such that M ,w −g′ B.
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Where the semantic definition considers variant assignment, the proof systems
must appeal to syntactic substitution. Thus, for soundness, we need to establish an
appropriate relationship between assignments and substitutions.

Lemma 1 (Substitution) Suppose M = 〈G,R ,D,J〉 is a first-order k-modal
model for the language L(C), w∈G, and g1 and g2 are two assignments in M for the
language L(C∪P). Suppose A is a formula in L(C∪P) in which the symbol x may
have some occurrences and the symbol y either does not occur or is a constant. (We
are neutral as to whether x is drawn from VAR or P, and whether y is drawn from
VAR, P or CONST.) Write A[y/x] for the result of replacing all (free) occurrences of
x with occurrences of y. Finally, suppose g1 and g2 agree on all the parameters and
free variables of A except possibly for x, and either g1(x) = g2(y) or g1(x) = J(y)
(according to the category of y). Then

M ,w −g1 A⇔M ,w −g2 A[y/x]

Proof. By induction on the structure of formulas. The base case has A atomic;
> is obvious; so we just need to show M ,w −g1 Ri(t1, . . ., tn) ⇔ M ,w −g2

(Ri(t1, . . ., tn))[y/x]. This follows because the arguments of Ri induce the same tuple
〈e1, . . .,en〉 in both cases. Each t j is either a constant, x, or a variable or parameter
other than x. For constants, t j = t j[y/x] and ei = J(t j) = J(t j[y/x]). For x, x[y/x] = y
and (as appropriate) ei = g1(x) = g2(y) or ei = g1(x) = J(y). For variables or pa-
rameters other than x, t j[y/x] = t j and ei = g1(t j) = g2(t j).

Now assume the lemma true for formulas of depth N or less, and consider a for-
mula A of depth N+1. We illustrate the argument for representative cases depending
on whether A is composed by a boolean operation, a modal operator, or a quantifier.

Booleans. Suppose A is B1∧B2. The induction hypothesis gives M ,w −g1 B1⇔
M ,w −g2 B1[y/x] and M ,w −g1 B2⇔M ,w −g2 B2[y/x]. It then follows from the
truth-definition for B1∧B2 that M ,w −g1 A⇔M ,w −g2 A[y/x].

Modals. Suppose A is3iB. Either M ,w −g1 A or not. If so, then there is a w′ ∈G
with wR iw

′ and M ,w′ −g1 B. By induction hypothesis M ,w′ −g2 B[y/x] and hence
M ,w −g2 A[y/x]. Otherwise there is no w′ ∈ G with wR iw

′ and M ,w′ −g1 B. By
induction hypothesis, then, there cannot be any w′ ∈ G with wR iw

′ and M ,w′ −g2

B[y/x]. So it is also not the case that M ,w −g2 A[y/x].
Quantifiers. Suppose A is ∃vB. We define B∗ so that A[y/x] is ∃vB∗. (There are

two cases: x = v and x 6= v. In the first case, A[y/x] = ∃vB and B∗ = B; in the second,
A[y/x] = ∃v(B[y/x]) and B∗ = B[y/x].) Now, M ,w −g1 A is equivalent to the con-
dition that there is a v-variant g′1 of g1 with M ,w −g′1

B. I claim that exactly when
there is such a g′1, there is a v-variant of g′2 of g2 with g′2(v) = g′1(v) and M ,w −g′2

B∗.
From this claim, the lemma follows. To show the claim for B∗ = B, observe that g′1
and g′2 agree on all the parameters and free variables of B∗; the induction hypothesis
applies (for any substitution of elements neither of which occurs in B) to establish
the claim. Alternatively, for B∗ = B[y/x], the free variables of B are those of A plus
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v, and by construction g′1 and g′2 agree on v. So the induction hypothesis applies for
the substitution of y for x to establish the claim.

By a sentence we mean a formula of L(CONST) in which no variables occur free.
For any sentence A, model M and world w of M , Lemma 1 guarantees that M ,w −g

A for some assignment g in M exactly when M ,w −g A for all assignments g in M .
In this case, we can write simply M ,w − A and say that A is true in M at w.

Definition 11 (Valid) Let A be a sentence and M = 〈G,R ,D,J〉 be a first-order
k-modal model. A is valid in M if for every world w ∈ G, M ,w − A. A is valid (on
the regime 〈A,N ,Q 〉) if A is valid in any model M that respects the regime.

2.3 Proof theory
The most concise and general systems for modal proof are prefixed tableaux, which
originate in the work of Fitting [Fitting, 1972, Fitting, 1983]. The idea is to associate
formulas in proofs with concise terms, prefixes, which identify a world in a model.
Formally, we assume a countable set κ of modal parameters, enumerated α1,α2, . . ..
(When the enumeration of κ is not important, I will also write its elements α, β, etc.)

Definition 12 (Prefix) A prefix is a finite sequence of modal parameters. I will use
ε to denote the empty prefix and µ, ν, etc., to denote general prefixes. A prefixed
formula is an expression of the form Aµ where µ is a prefix and A is a formula.

There are departures from Fitting’s notation here, but not the essential ideas. We
use modal parameters rather than integers to establish an exact parallel with rea-
soning with first-order parameters and substitutions; to fit with proof theory more
generally, we reserve the symbol σ for substitutions and reserve the ‘prefix’ posi-
tion l on formulas—l A or l : A—for the assocation between formulas in deductions
and proof-terms indicating how those formulas contribute to the deduction (as used
for example in establishing correspondences between tableau or sequent proofs and
natural deduction proofs; see for example [Gallier, 1993]).

Our proof rules will work with signed prefixed formulas.

Definition 13 (Signed expressions) If E denotes the expressions of some class,
then the signed expressions of that class are expressions of the form te or fe for e
an expression drawn from E. We use u as a metavariable over t and f.

The use of prefixes gives us the need to talk about the language Π(κ) of prefixes
over the signature κ of modal parameters, and the language L(C)Π(κ) of prefixed
formulas with formulas drawn from L(C) and prefixes drawn from Π(κ). In fact, as
mentioned earlier, the proof rules will also assume a set P of first-order parameters,
so that proofs will contain signed expressions drawn from L(CONST∪P)Π(κ).

In tandem with signed prefixed formulas, we will also need typings that specify
which accessibility relations different transitions between prefixes instantiate, and
which possible worlds different individuals exist at.
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Definition 14 (Typing) A typing (over a language LΠ) is a set Σ of statements, each
of which takes one of two forms:

1. µ/ν : i, where µ and ν are prefixes (from Π) and i is the index of a modal op-
erator (i.e., an integer in the range [1..k]), indicating that the transition from
world µ to world ν is in the i-th accessibility relation;

2. t : µ, where t is a first-order parameter (from L) and µ is a prefix (from Π),
indicating that the parameter t is in the domain of the world µ.

We say Σ is a typing for a set or multiset of signed prefixed formulas Γ whenever Σ
is a finite set that contains an expression t : µ for each first-order parameter t that
occurs in Γ and Σ contains an expression µ/ν : i for each prefix ν other than the
empty prefix that occurs in Γ or Σ.

The need for syntactic records of this kind only becomes evident with multi-modal
logic. With only a single kind of modality, side conditions on modal rules need
only refer to whether or not a transition already appears on a tableau branch. Now
we must not only find the transition on the branch, but make sure that the transi-
tion is of the right kind. Recording syntactic expressions to make this determina-
tion is the most natural move. It allows us to introduce a judgment S,Σ . µ/ν : i
by which we indicate that the premises in Σ, together with the constraints on modal
operators declared in the modal regime S, together ensure that the transition from
world µ to world ν is a transition in the i-th accessibility relation. The differences
among modal logics now translate into different rules for deriving the judgment
S,Σ . µ/ν : i, in a uniform way—or what Massacci has called a “modular” way
[Massacci, 1994, Massacci, 1998b]. (In modal logic, I prefer to reserve modular-
ity to describe information-flow in proofs; see [Stone, 1999a].)

Definition 15 (Typings) Assume that Σ is a typing over a language
L(CONST∪P)Π(κ)—where in particular a base language L(CONST) has been
extended by first-order parameters P for the purposes of proof. Then the set of
derivable typing judgments from Σ with respect to a regime S = 〈A,N ,Q 〉 is the
smallest set including the expressions defined by the following conditions.

• (K). S,Σ.µ/ν : i if µ/ν : i ∈ Σ.

• (T). S,Σ.µ/µ : i if A(i) is T, B, S4 or S5, and µ occurs in Σ.

• (4). S,Σ. µ/ν : i if µ/µ′ : i ∈ Σ, S,Σ .µ′/ν : i, and A(i) is K4, K45, KD4,
KD45, S4 or S5.

• (5). S,Σ. µ′/ν : i if µ/µ′ : i ∈ Σ, S,Σ . µ/ν : i, and A(i) is K5, K45, KD5,
KD45 or S5.

• (B). S,Σ.ν/µ : i if S,Σ.µ/ν : i and A(i) is KB, KDB or B.
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• (Inc). S,Σ.µ/ν : j if S,Σ.µ/ν : i and i≤ j according to N .

• (V). S,Σ. t : µ if t : µ ∈ Σ.

• (I). S,Σ. t : ν if Q is increasing, S,Σ.µ/ν : i for some i and S,Σ. t : µ.

• (C). S,Σ. t : ν if ν occurs in Σ and either Q is constant and t : µ ∈ Σ or t is a
constant symbol (t ∈ CONST).

We also say that there is a typing derivation S,Σ. J, or simply that S,Σ. J, when
S,Σ. J is a derivable judgment. We can treat the derivation of a typing judgment
as a syntactic object, and introduce the height of such derivations—the number of
nested rule-applications in the derivation—as a measure to perform induction on
these derivations. For example, such an induction establishes (as is clear from in-
spection of these rules) that S,Σ.µ/ν : i only if ν and µ occur in Σ.
Remark. In contrast to Massacci’s rules, the inference rules of Definition 15 freely
access compound transitions. With a single modal operator, it is possible to recast
the inferences of Definition 15 so that any recursive rule checks for a single-step
transition µ/µα drawn from Σ. In the multi-modal case, the connections among
operators prevents this in general. For example, consider the 2-modal regime S
defined by 〈A = {0 7→ S4,1 7→ KB},N = {0 ≤ 1},Q = constant〉, and a typing
Σ = {ε/α : 0,α/αβ : 0}. In this case, we must have S,Σ.αβ/ε : 1. We derive first
ε/αβ : 0 by (4), then ε/αβ : 1 by (Inc), and finally αβ/ε : 1 by (B). However, no
“single-step” derivation is possible, because there is no way to derive that αβ/ε : 1
where the (B) inference accesses only atomic transitions from Σ.

We now describe first the constituents of deductions, and then the deductions
themselves. Our notation and definitions are modeled on [Goré, 1999]; we first in-
troduce the formalism for tableau rules, and then describe the motivation for these
rules—particularly the distinctive features of modal tableau rules.

Definition 16 (Tableau line) A first-order multi-modal prefixed tableau line is an
expression of the form Σ.Γ, where Γ is a finite multiset of signed prefixed formu-
las and Σ is a typing for Γ. A symbol n is new to a tableau line Σ.Γ if there is no
occurrence of n in Σ.

Definition 17 (Tableau rule) A tableau rule consists of a numerator L above the
line and a (finite) list of denominators D1, . . .Dn below the line, perhaps accompa-
nied by a side condition governing the applicability of the rule. Both the numerators
and the denominators are tableau lines.

For first-order multi-modal logic over a regime S, we will use the following
tableau rules:

1. closure, with A an atomic formula:

Σ.Γ, tAµ, fAµ

⊥
Σ.Γ, f>µ

⊥
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2. conjunctive:

Σ.Γ, tA∧Bµ

Σ.Γ, tA∧Bµ, tAµ, tBµ
Σ.Γ, fA∨Bµ

Σ.Γ, fA∨Bµ, fAµ, fBµ

3. disjunctive:
Σ.Γ, fA∧Bµ

Σ.Γ, fA∧Bµ, fAµ Σ.Γ, fA∧Bµ, fBµ

Σ.Γ, tA∨Bµ

Σ.Γ, tA∨Bµ, tAµ Σ.Γ, tA∨Bµ, tBµ

4. negation:
Σ.Γ, t¬Aµ

Σ.Γ, t¬Aµ, fAµ
Σ.Γ, f¬Aµ

Σ.Γ, f¬Aµ, tAµ

5. possibility, subject to the side condition that α is new to Σ:

Σ.Γ, f2iAµ

Σ,µ/µα : i.Γ, f2iAµ, fAµα
Σ.Γ, t3iAµ

Σ,µ/µα : i.Γ, t3iAµ, tAµα

6. necessity—subject to the side condition that there is a typing derivation S,Σ.
µ/ν : i:

Σ.Γ, t2iAµ

Σ.Γ, t2iAµ, tAν
Σ.Γ, f3iAµ

Σ.Γ, f3iAµ, fAν

7. special necessity—subject to the side condition that A(i) is one of KD, KDB,
KD4, KD5 or KD45, that i≤ j according to N and that α is a modal param-
eter new to Σ:

Σ.Γ, t2 jAµ

Σ,µ/µα : i.Γ, t2 jAµ, tAµα
Σ.Γ, f3 jAµ

Σ,µ/µα : i.Γ, f3 jAµ, fAµα

8. extra special necessity—subject to the side conditions that A(i) is one of KD,
KDB, KD4, KD5 or KD45, that A( j) is one of K5, K45, KD5, KD45 or S5,
that i≤ j according to N , that S,Σ.µ/ν : j, and that α is a modal parameter
new to Σ:

Σ.Γ,uAν

Σ,µ/µα : i.Γ, t>µα,uAν

9. existential—subject to the side condition that c is a first-order parameter new
to Σ:

Σ.Γ, t∃xAµ

Σ,c : µ.Γ, t∃xAµ, tA[c/x]µ
Σ.Γ, f∀xAµ

Σ,c : µ.Γ, f∀xAµ, fA[c/x]µ
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10. universal—subject to the side condition that there is a typing derivation S,Σ.
t : µ:

Σ.Γ, t∀xAµ

Σ.Γ, t∀xAµ, tA[t/x]µ
Σ.Γ, f∃xAµ

Σ.Γ, f∃xAµ, fA[t/x]µ

Definition 18 (Tableau) A first-order multi-modal tableau for X (over regime S) is
a finite tree in which each node carries a tableau line, and in particular the root
carries the line X, such that when an internal node carries line Y and its children
carry lines Z1, . . .,Zn, Y/Z1 . . .Zn instantiates a tableau rule over S in such a way as
any side conditions on the tableau rule are met.

Remark (Rules). A tableau is a syntactic record that describes a systematic search
for a model in which all formulas from Γ are satisfied. Such a search fails at a clo-
sure inference, for no model can simultaneously make the same atomic formula both
true and false at the same world. Meanwhile, each inference rule decomposes some
formula according to its outermost logical connective, so as to explore the different
ways a model could satisfy that formula. For example, the conjunctive figure

Σ.Γ, tA∧Bµ

Σ.Γ, tA∧Bµ, tAµ, tBµ

indicates that, since both A and B must be true at world µ for A∧B to be true at µ,
search for a model for A∧B succeeds only when both A and B are satisfied at µ.
Conversely, the disjunctive figure

Σ.Γ, tA∨Bµ

Σ.Γ, tA∨Bµ, tAµ Σ.Γ, tA∨Bµ, tBµ

indicates that, since A∨B is true at a world µ as long as either A is true at µ or B is,
search for a model to A∨B may involves finding a structure which is a model of A,
or it may involve finding one which is a model of B.

A tableau proof —a tableau in which every path eventually reaches a closure
inference—then indicates that all possible ways of constructing a model have been
tried, and have failed. If Γ has the form fE, the tableau then shows that there is no
way to make E false: E must hold in all models.

As with the boolean rules, tableau rules for modal operators and quantifiers can
be viewed as a function of the semantics of modal formulas and quantified formulas.
In the case of the possibilty and necessity rules, this view is relatively straightfor-
ward. For possibility, for example, a model for3iA at µ must satisfy A at some world
accessible from µ. The inference rule gives this world an arbitrary name µα, and
continues the search for a model. At necessity, meanwhile, a model which makes
2iA true at a world µ must have A true at any accessible world ν in the model; the
inference rule checks that ν is acessible from µ, and continues the search for the
model assuming also that A is true at ν.
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Clearly, however, the proof-theoretic treatment of serial modalities—as rep-
resented in the special necessity and extra special necessity inference figures—
involves additional complexity. From the point of view of uniformity, the simplest
treatment of serial modalities would be to introduce a general rule of the following
form—

Σ.Γ
Σ,µ/µα : i.Γ

—subject to the side condition that µ occurs in Σ and A(i) is one of KD, KDB, KD4,
KD5 or KD45. (In fact, since the domains of quantifiers cannot be empty, a simi-
lar rule would be needed to infer ∃xA from ∀xA—except that since we always have
some constant symbol that we can instantiate the universal statement to, we do not
need a special rule to introduce a fresh symbol for this purpose.) Observe that the
extra special necessity rule is just an instance of this rule, except for the addition of
an always true signed prefixed formula in the denominator of the tableau rule. The
special necessity rule, meanwhile, combines an application of this rule with an ap-
plication of the necessity rule to instantiate a formula at the new prefix µα.

There are a number of advantages to the use of the special necessity rule. The
special necessity rule encodes the fact that formulas cannot probe paths of accessi-
bility whose length exceeds the modal depth of the formula, an important semantic
generalization about modal logic, cf. [van Benthem, 1983]. At the same time, the
rule makes for a tighter proof system about which stronger results can be proved.
For example, the special necessity rule gives easy decision procedures for combina-
tions of KD modal operators in the propositional case: with it, tableaux can only in-
troduce prefixes whose length equals the modal depth of the formulas being proved.
In multi-modal regimes where the special necessity rule suffices—regimes where
serial operators never narrow euclidean operators—it makes sense to use it. That
motivates its adoption here, where a major goal—as suggested in section 1 and un-
derscored in section 5—is to lay the groundwork for computational investigation of
particular modal theories and fragments.

Unfortunately, the extra special necessity rule is indispensible when we do have
serial operators that narrow euclidean operators. In this case there is no local test
that permits us to determine when we may have to look at the witness world for a
serial modality in order to derive a contradiction. An example will give the flavor
of the difficulty. Consider this regime

S = 〈A = {1 7→ KD,2 7→ K5,3 7→K5},N = {1≤ 2,1≤ 3},Q = constant〉
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Then we have a closed tableau

. t3222A, t3323¬A
/α : 2 . t22Aα, t3323¬A

t32

/α : 2, /β : 3 . t22Aα, t23¬Aβ t33

/α : 2, /β : 3, γ : 1 . t22Aα, t23¬Aβ, t>γ extra special

/α : 2, /β : 3, γ : 1 . tAγ, t23¬Aβ, t>γ t22

/α : 2, /β : 3, γ : 1 . tAγ, t¬Aγ, t>γ t23

⊥ closure

In displaying this proof, the preservation of principal formulas of tableau rules is
suppressed for readability. The extra special necessity rule applies at the third step
to introduce world γ. Thereafter, we can derive α/γ : 2 and α/γ : 3 by (Inc) and (5);
instantiating the necessary formulas there derives a contradiction.

There is a final feature that makes the special necessity rule attractive, and which
motivates the difference between the tableau scheme given above and the extra spe-
cial necessity rule. This is that they allow the worlds relevant to satisfying a tableau
line Σ.Γ to be determined from the prefixes that occur in Γ. This permits shortcuts
in the metatheory, particular in the completeness proof.

Remark (Structure). Each of the tableau rules of Definition 17 (except clo-
sure) applies at a node in virtue of the presence of a distinguished signed prefixed
formula that the node carries; we refer to this as the principal expression or simply
the principal of the rule or rule application. (One typically refers to the principal
formula of a rule; but in this report the objects in question are not simply formu-
las, but expressions built out of formulas, as well as prefixes, signs, etc.) Similarly,
each of the tableau rules introduces new expressions onto the branch which we re-
fer to as the side expressions of the rule. Typically, the side expressions of a rule are
constituents (modulo instantiation of terms for variables and a change in prefix) of
the rule’s principal expression—the exception being the extra special necessity rule
(where the side formula serves, as noted above, only to register a new prefix on the
tableau line).

A branch of a tableau is a path in the tableau from the root to a leaf. Tableau rules
are often written so that each node carries just the new formulas introduced there.
On this convention, the closure conditions must check that a formula and its comple-
ment occur on the same branch of the tableau. A tableau so written may be converted
to a tableau using the figures of Definition 17 by relabling each node to include all
formulas higher on any branch through the node. The tableau rules of Definition 17
bear an evident resemblance to the rules of the sequent calculus. Suppose we break
down a multiset of signed prefixed formulas Γ into a multiset of formulas Ψ signed
t and a multiset of formulas ∆ signed f. Then Γ corresponds to the sequent Ψ - ∆
and now the tableau figures of Definition 17 may be regarded just as sequent calculus
rules written upside-down. In particular, the rules follow a convention of dispensing
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with the structural rules of the sequent calculus—avoiding the weakening rule by
permitting a multiset Γ of “extraneous” formulas on the closure rule; and avoiding
the contraction rule by automatically preserving all formulas at the application of
logical rules. Finally, we remark that the use of signed expressions means that each
rule comes in double; we will refer to an application of the rule to an expression
signed t as a positive one and an application to an expression signed f as a negative
one.

A branch is closed just in case the leaf on the branch carries the label ⊥. A
tableau is closed just in case every branch of the tableau is closed.

Definition 19 (Provability) Let Γ be a set of prefixed formulas and A be a prefixed
formula, and let Σ be set of typing expressions. Then A follows from Γ under Σ—
written Σ.Γ - A just in case there is a finite multiset Γ0 ⊂ Γ and a finite subset
Σ0 ⊂ Σ such that Σ0 is a typing for Γ0,A and there is a closed tableau for Σ0 .Γ0, fA.

In proving properties of tableaux and tableau proofs, we have two structural
strategies. The first is based on the natural notion of subproof. Given a tableau—
consisting of a tree T whose nodes carry tableau lines—then any subtree of T ′ (with
the same nodes carrying the same lines) is also a tableau; we can call T ′ a subtableau
(or if T is a proof, a subproof) of of T .

The second method is based on viewing tableaux as composed by branch exten-
sion. Two paths (or branches) agree if they contain the same number of nodes and
corresponding nodes carry identical labels; branch b′ extends branch b if b and the
path obtained by removing the leaf from b′ agree. In general, if the leaf of a branch
carries the line Σ.Γ, we say the branch ends in Σ.Γ.

Then the tableau T ′ extends the tableau T if any branch of T but one, b, agrees
with some branch of T ′, and every branch of T ′ agrees with a branch of T or extends
b.

2.4 Soundness
We begin by showing that the proof system is sound: that a formula is never provable
unless it is true in all models; we adapt the arguments presented in [Fitting, 1983,
2.3] and [Fitting and Mendelsohn, 1998, 5.3]. These arguments formalize the intu-
itive motivation for the tableau system as providing a systematic search for a model
for formulas. To be precise about the kind of model that a tableau should construct,
we first define satisfiability in a model with respect to an assignment. The main
lemma, Lemma 4, then shows that the search for these models involved in the ap-
plication of the tableau rules leaves open all possibilities. So, if a tableau line has a
model, there is no way for a tableau proof to report that there is no model for it.

Definition 20 (Satisfiable) Given a regime S, suppose Γ is a set of signed prefixed
formulas (over L(CONST∪P)Π(κ)) and Σ is a set of typing expressions in the same
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language. We say Γ is satisfiable against Σ in a model M = 〈G,R ,D,J〉 that re-
spects S with respect to an assignment g if there is a map θ assigning each prefix µ
that occurs in Σ to a world θ(µ) ∈ G such that:

1. For any expression µ/ν : i in Σ, θ(µ)R iθ(ν).

2. For any parameter p with an expression p : µ in Σ, g(p) ∈D(θ(µ)).

3. For any signed prefixed formula tAµ ∈ Γ, M ,θ(µ) −g A, and for any signed
prefixed formula fAµ ∈ Γ, M ,θ(µ) 6 −g A.

Once we find an assignment and function that match Σ (according to conditions 1 and
2 of Definition 20), we thereby ensure respect for all the typing judgments derivable
from Σ according to the regime S.

Lemma 2 Let Σ be a set of typing expressions, let M = 〈G,R ,D,J〉 be a model
that respects the regime S = 〈A,N ,Q 〉, and let θ be a map from the prefixes that
occur in Σ to worlds in G such that for all expressions µ′/ν′ : i in Σ, θ(µ′)R iθ(ν′).
Then if S,Σ.µ/ν : i for prefixes µ and ν that occur in Σ then θ(µ)R iθ(ν).

Proof. By induction on the height of the derivation of Σ.µ/ν : i.
The base cases are as follows:

1. µ/ν : i in Σ (K)—so the result follows by assumption;

2. µ = ν and A(i) is T, B, S4 or S5 (T) and µ occurs in Σ—so the result follows
because θ must be defined on µ and hence θ(µ) = θ(ν) and R i is reflexive.

Suppose the induction true of derivations of height h− 1 or less and consider a
derivation of height h according to the clause which introduces it:

1. (B): we get µ/ν : i by showing S,Σ. ν/µ : i in fewer steps with A(i) one of
KB, KDB or B—so the result follows because by assumption θ(ν)R iθ(µ) and
R i is symmetric

2. (4): we get µ/ν : i by µ/µ′ ∈ Σ and a shorter derivation of S,Σ.µ′/ν : i. By
IH then θ(µ)R iθ(µ′) and θ(µ′)R iθ(ν). Since A(i) is K4, K45, KD4, KD45,
S4 or S5, R i is transitive, and θ(µ)R iθ(ν)

3. (5): we get µ′/ν : i by S,Σ.µ/µ′ : i and S,Σ.µ/ν : i. By IH, θ(µ)R iθ(µ′)
and θ(µ)R iθ(ν). Since A(i) is K5, K45, KD5, KD45 or S5, R i is euclidean
and hence θ(µα)R iθ(ν).

4. (Inc): we get µ/ν : j by showing S,Σ.µ/ν : i with i≤ j according to N . But
by IH, θ(µ)R iθ(ν) and since the frame is narrowing from j to i, θ(µ)R jθ(ν).
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This establishes the result.
Not only the modal parameters but also the first-order parameters are treated

properly.

Lemma 3 Let Σ be a set of typing expressions, let M = 〈G,R ,D,J〉 be a model
that respects the regime S = 〈A,N ,Q 〉, let θ be a map from prefixes that occur in
Σ to worlds and let g be an assignment such that for any expression µ/ν : i ∈ Σ then
θ(µ)R iθ(ν) and for any parameter p with an expression p : µ∈ Σ, g(p)∈D(θ(µ)).
Then if S,Σ. p : ν then g(p) ∈D(θ(ν))

Proof. The judgment S,Σ. p : ν is derived in one of three ways, depending in part on
Q . In the base case, the judgment may be derived from p : ν ∈ Σ, but then g(p) ∈
D(θ(ν)) by assumption. Or, if Q is constant, then we know p : µ ∈ Σ and ν also
occurs in Σ. Then θ(ν) names some possible world, and g(p)∈D(θ(µ)). But since
this is a constant domain model, D(θ(µ)) = D(θ(ν)).

Finally, inductively, if Q is increasing, the judgment may be derived from a
shorter derivation of S,Σ. p : µ and a derivation that S,Σ.µ/ν : i. By Lemma 2,
θ(µ)R iθ(ν). But then since M respects the regime, D(θ(µ))⊆D(θ(ν)). Since by
hypothesis g(p) ∈D(θ(µ)), g(p) ∈D(θ(ν)).

A tableau branch is satisfiable it ends in Σ.Γ—and Γ is satisfiable against Σ in
some model with respect to some assignment. A tableau is satisfiable if some branch
in the tableau is satisfiable.

Lemma 4 (Extension) Any extension T ′ of a satisfiable tableau T is satisfiable.

Proof. We suppose T is satisfiable. By definition, for all the branches of T but one,
b, there is a branch of T ′ that agrees. Hence, we need only consider the case where
b is the unique satisfiable branch of T ; we can refer to the model M = 〈G,R ,D,J〉,
the world function θ and the assignment g which witness the satisfiability of b. In
T ′, the path b occurs; but now it ends in an internal node which instantiates some
tableau rule. We show that T ′ is satisfiable by case analysis on this rule.

If the rule is closure, there is one branch b′ in T ′ extending b, and since the leaf on
b′ is⊥, b′ is not satisfiable by definition. But for closure to apply, b must end either
in Σ.Γ, tAµ, fAµ or in Σ.Γ, f>µ. In the first case we must have both M ,θ(µ) −g A
and M ,θ(µ) 6 −g A. This is absurd. The second case is likewise impossible, as it
requires M ,θ(µ) 6 −g >.

If the rule is conjunctive, the following reasoning for the positive instance is
representative. There is one branch b′ in T ′ extending b; the leaf of b must carry
Σ .Γ, tA∧Bµ while the leaf of b′ must carry Σ .Γ, tA∧Bµ, tAµ, tBµ. To show the
satisfiabilty of b′ it suffices to show M ,θ(µ) −g A and M ,θ(µ) −g B. But this fol-
lows from the fact that M ,θ(µ) −g A∧B—which we know from the satisfiability
of b—and the definition of truth in a model.

If the rule is negation, the same reasoning applies mutatis mutandis.
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If the rule is disjunctive, the following reasoning for the positive instance is rep-
resentative. There are two branches b′ and b′′ in T ′ extending b. The leaf of b must
carry Σ.Γ, tA∨Bµ while let us say the leaf of b′ carries Σ.Γ, tA∨Bµ, tAµ, while
that of b′′ carries Σ.Γ, tA∨Bµ, tBµ. To show one of b′ and b′′ satisfiable, it suffices
to show that either M ,θ(µ) −g A or M ,θ(µ) −g B. Again, this follows from the
fact that M ,θ(µ) −g A∨B—which we know from the satisfiability of b—and the
definition of truth in a model.

If the rule is possibility, the following reasoning for the positive instance is rep-
resentative. There is one branch b′ in T ′ extending b; the leaf of b must carry
Σ.Γ, t3iAµ while the leaf of b′ must carry Σ,µ/µα : i .Γ, t3iAµ, tAµα for α new.
Now we know M ,θ(µ) −g3iA, so there must be a world w such that θ(µ)R iw and
M ,w −g A — by the definition of truth in a model. So construct a function θ′ ex-
actly like θ except that θ′(µα) = w. For µ/µα : i then, θ′(µ)R iθ′(µα). Moreover,
since θ′ coincides with θ on the prefixes of Σ and Γ, for any Bν in Γ, M ,θ′(µ) −g B
if and only if M ,θ′(µ) −g B. For the same reason θ′ meets conditions 1 and 2 of
Definition 20 (on Σ, with respect to g). It follows that Γ, t3iAµ, tAµα is satisfiable
against Σ,µ/µα : i in M with respect to g and θ′.

If the rule is necessity, again we consider a representative positive case. There
is one branch b′ in T ′ extending b; the leaf of b must carry Σ.Γ, t2iAµ while the
leaf of b′ must carry Σ.Γ, t2iAµ, tAν with Σ.µ/ν : i. Since Σ.µ/ν : i by Lemma 2,
θ(µ)R iθ(ν). Moreover, we have M ,θ(µ) −g 2iA. But then by the definition of
truth, M ,θ(ν) −g A. So b′ is satisfiable.

If the rule is special necessity, we combine the preceding arguments. We con-
sider a new world w provided by the seriality of modality i and construct a variant θ′
of θ with θ′(µα) = w. The argumentation from the possibilistic case allows us to re-
duce the satisfiability of the branch with respect to θ′ to some condition M ,w −g A
(in a positive rule); this follows from the necessity of 2 jA as in the necessity case,
thanks to a derivation of µ/µα : j from µ/µα : i using the fact that i≤ j according
to N .

If the rule is extra special necessity, it suffices simply to consider a new world w
provided by the seriality of modality i and construct a variant θ′ of θ with θ′(µα) =
w.

If the rule is existential, again we consider a representative positive case. There
is one branch b′ in T ′ extending b; the leaf of b must carry Σ.Γ, t∃xAµ while the
leaf of b′ must carry Σ,c : µ .Γ, t∃xAµ, tA[c/x]µ, for some new c. Now we know
M ,θ(µ) −g ∃xA so by the definition of truth in a model there must be some indi-
vidual u ∈D(θ(µ)) such that M ,θ(µ) −g′ A for an x-variant g′ of g with g′(x) = u.
Now we consider an assignment g′′ which is in fact a c-variant of g for the parameter
c, with g′′(x) = c. It is immediate that g′′ satisfies conditions 1 and 2 of Definition 20.
Moreover, since c does not occur in Σ or Γ, we can apply Lemma 1—for any variable
z that does not occur in Γ—to show of any Bµ in Γ that M ,θ −g′′ B; it remains only
to show M ,θ(µ) −g′′ A[c/x]. But this follows by another application of Lemma 1
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with x and c.
If the rule is universal, we can reason as with the following positive case. There

is one branch b′ in T ′ extending b; the leaf of b must carry Σ.Γ, t∀xAµ while the
leaf of b′ must carry Σ.Γ, t∀xAµ,A[t/x]µ, for some t with Σ. t : µ. Again we know
that M ,θ(µ) −g ∀xA. Let u = g(t) if t is a parameter; we know by Lemma 3, that
u ∈D(θ(µ)). Otherwise, let u = J(t) (if t is a constant); because J(t) ∈ C (F ), u ∈
D(θ(µ)). In either case, by the definition of truth, M ,θ(µ) −′g A with g′ and x-
variant of g with g′(x) = u. Then, again by Lemma 1, M ,θ(µ) −g A[t/x], and so b′

is satisfiable.

Theorem 1 (Soundness) Suppose there is a closed tableau T for .fAε. Then A is
valid.

Proof. By contradiction: suppose A is not valid. Then there is some model M ,
world w and assignment g such that M ,w −g ¬A. This means that the tableau T0
consisting of a single node carrying .¬A is satisfiable. Hence, by the lemma, so is
any tableau we get from T0 and applying branch extension rules—in particular T is
satisfiable. But T cannot be satisfiable, since T is closed. Thus A must be valid.

2.5 Completeness
We now turn to the completeness theorem, which states that if a formula is valid then
there is a proof for it. In fact, we prove the contrapositive: if there is no proof for
the formula, then there is a model where the formula is false. Again, the argument
behind the completeness theorem can be seen as a formalization of the motivation
for tableaux in systematic search for models. In this case, the idea is that this sys-
tematic search, if carried far enough, will construct a countermodel to a formula if
a countermodel exists. Otherwise, the search must fail, giving a syntactic proof for
the formula. Now, modal formulas may be satisfied only in infinite models, so the
completeness theorem effectively requires us to consider infinite sequences of ap-
plications of tableau rules. In moving to infinite sets in this way, we must formally
move from tableaux, viewed as syntactic objects, to a more abstract, algebraic char-
acterization of sets of modal formulas. In particular, we will follow [Fitting, 1983]
in developing the completeness argument in terms of analytic consistency proper-
ties for the modal language. The bridge from finite tableaux to infinite consistency
properties is mediated by an extended construction—presented in section 2.5.1 with
the runup to Proposition 8—that develops a characterization for an infinite set of for-
mulas in terms of the behavior, on finite subsets of that set, of rewrite rules like those
used in the construction of a tableau.

In this setting, the systematic, infinite application of tableau rules corresponds to
finding a fixed point for the rewrite rules. This is formalized in section 2.5.2 with
the notion of a downward saturated set: a set which already contains all the formu-
las that might possibly be added along a hypothetical infinite branch in a tableau.
We show there how to start with the kinds of sets for which tableau search fails to
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derive a closed tableau (characterized algebraically in terms of analytic consistency
properties) and extend them into downward saturated sets—with some care about
the introduction of representative possible worlds and first-order parameters to wit-
ness possible and existential statements. It is a short step from a downward saturated
set to a corresponding modal model.

The proof of completeness itself is then presented in section 2.5.3. It links the re-
sults together, showing how to conclude that there is a countermodel for a formula as
long as there is no corresponding closed tableau. Because we are reasoning in an ex-
pressive logical language using a proof system without cut, the development of this
completeness proof shoulders a relatively large burden. Much simpler completeness
proofs are possible for proof systems with cut, but they then require a syntactic proof
of cut-elimination to derive a computational proof system for automated reasoning.

2.5.1 Consistency Properties
Definition 21 (Consistency property) Given a regime S = 〈A,N ,Q 〉, let Σ be a
typing over a language L(CONST∪P)Π(κ) and let C be a collection of sets of signed
prefixed formulas from L(CONST∪P)Π(κ). C is a first-order S-consistency property
for Σ if for each set S ∈ C the following conditions are met:

1. every prefix µ that occurs in S occurs in Σ; and whenever some first order
parameter p ∈ P occurs in S, p also occurs in Σ.

2. there is no atomic formula A and prefix µ with tAµ ∈ S and fAµ ∈ S, nor is
f>µ ∈ S.

3. tA∧Bµ ∈ S⇒ S∪{tAµ, tBµ} ∈C. Likewise, fA∨Bµ ∈ S⇒ S∪{fAµ, fBµ} ∈
C.

4. tA∨Bµ ∈ S⇒ either S∪{tAµ} ∈C or S∪{tBµ} ∈C. Likewise, f(A∧B)µ ∈ S
⇒ either S∪{fAµ} ∈ C or S∪{fBµ} ∈C.

5. t¬Aµ ∈ S⇒ S∪{fAµ} ∈C. Likewise, f¬Aµ ∈ S⇒ S∪{tAµ} ∈C.

6. t∀xAµ ∈ S ⇒ S ∪ {tA[p/x]} ∈ C for every symbol p satisfying either (1)
p ∈CONST, or (2) p ∈ P, p occurs in S, and S,Σ. p : µ. Likewise, f∃xAµ ∈ S
⇒ S∪{fA[p/x]} ∈ C for every symbol p satisfying either (1) p ∈CONST, or
(2) p ∈ P, p occurs in S, and S,Σ. p : µ.

7. t∃xAµ ∈ S⇒ there is some symbol p∈CONST∪P such that S,Σ. p : µ and S∪
{tA[p/x]} ∈ C. Likewise, f∀xAµ ∈ S⇒ there is some symbol p ∈CONST∪P
such that S,Σ. p : µ and S∪{fA[p/x]} ∈ C.

8. t2iAµ ∈ S⇒ S∪{tAν} ∈C for every prefix ν ∈ Π(κ) such that S,Σ.µ/ν : i
and there is some uBµ ∈ S. Likewise, f3iAµ ∈ S⇒ S∪{fAν} ∈ C for every
prefix ν ∈Π(κ) such that S,Σ.µ/ν : i and there is some uBµ ∈ S.
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9. Suppose either (1) t3iAµ ∈ S or (2) t2 jAµ ∈ S and A(i) is KD, KDB, KD4,
KD5 or KD45 with i ≤ j by N : then S∪{tAµα} ∈ C for some prefix µα ∈
Π(κ) such that µ/µα : i ∈ Σ. Likewise, suppose either (1) f2iAµ ∈ S or (2)
f3 jAµ ∈ S and A(i) is KD, KDB, KD4, KD5 or KD45 with i≤ j by N : then
S∪{fAµα} ∈C for some prefix µα ∈Π(κ) such that µ/µα : i ∈ Σ.

10. If uAν ∈ S with S,Σ.µ/ν : j for A( j) one of K5, K45, KD5, KD45 or S5, for
i≤ j by N and A(i) one of KD, KDB, KD4, KD5 or KD45, then S∪{t>µα} ∈
C for some α such that µ/µα : i ∈ Σ.

Let C be a first-order S-consistency property for Σ and let X be a set of formulas
from L(CONST). We call C X-compatible if, for each S ∈ C and for each A ∈ X,
S∪{tAε} ∈ C.

Now, in order to work with consistency properties, we need to place some sen-
sible constraints on typings.

Definition 22 (Fairness) Given a typing Σ, denote by Σκ(µ, i) the set {α ∈
κ | µ/µα : i ∈ Σ}. Denote by ΣP(µ) {p ∈ P | p : µ ∈ Σ}. A typing Σ is fair to a
countable set of modal parameters κ and a countable set of first-order parameters
P if:

• for any α ∈ κ, there is a unique expression µ/να : i ∈ Σ and µ = ν;

• for any p ∈ P, there is a unqiue expression p : µ ∈ Σ;

• for any µ∈Π(κ) and any modality i, Σκ(µ, i) and ΣP(µ) are countably infinite.

Remark (existence). For any countably infinite sets κ and P, we can construct a fair
typing. Let αi enumerate κ and let pi enumerate P. Meanwhile, let 〈µi,mi〉i be an
enumeration of the pairs of prefixes of Π(κ) and integers indexing modalities with
infinite repetition. We can choose these enumerations such that when any element
α j occurs in µi, then j < i. Now use the typing:

{µi/µiαi : mi | for any integer i}∪{pi : µi | for any integer i}

Moreover, given a fair typing Σ for κ and P, we can partition κ and P into count-
ably many disjoint countably infinite sets κ1 . . . and P1 . . . such that Σ is still fair
if restricted to typing expressions for prefixes over

S
n<m κm and parameters over

S
n<m pm. We can ensure at the same time that Σκ(µ, i)∩κm is countably infinite, as

is ΣP(µ, i)∩Pm. (We appeal to this construction in the proof of Lemma 11.)
To construct κ j we assume an operator E(κ∗,m, j) where κ∗ is a subset of κ, m

is a modality and j is an integer. E(κ∗,m, j) is defined as follows. Let αi enumerate
{µ/µα : m ∈ Σ | µ ∈ Π(κ∗)} and let ni enumerate integers with infinite repetition:
E(κ∗,m, j) = {αi|ni = j}.
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We construct κ j as the union of sets κn
j using E. κ0

j = �. κn+1
j = κn

j ∪S
m
S

k≤ j E(κn
k ,m, j). The partition of P proceeds similarly, by distributing p : µ with

µ ∈Π(κ j) among Pi with j ≤ i fairly.

Lemma 5 Let C be an X-compatible first-order S-consistency property for Σ. De-
fine C′ as S ∈C′ just in case there is S′ ∈C such that S⊆ S′. (Thus, C′ contains all
subsets of members of C.) Then C′ is also an X-compatible first-order consistency
property for Σ, extending C and closed under subsets.

Proof. C′ extends C since for any S ∈ C, S ⊆ S and hence S ∈ C′. C′ is closed
under subsets because given S ∈ C′ and T ⊆ S, there is an S′ ∈ C with S ⊆ S′; then
T ⊆ S′ so T ∈C′. Now, take S ∈C′ and A ∈ X. There is S′ ∈C with S⊆ S′; since C
is X-consistent S′ ∪ {tAε} ∈ C; since S∪{tAε} ⊆ S′ ∪ {tAε}, S∪{tAε} ∈ C′. Thus
C′ is X-compatible.

Finally, the various conditions for being a first-order consistency property for
Σ must be checked for C′. C′ introduces no prefixes or first order parameters. so
clause 1 is satisfied. To show clause 2, suppose tAµ and fAµ ∈ S∈C′. Then tAµ and
fAµ ∈ S′ ∈ C, which is impossible.

The reasoning is essentially the same in all the remaining cases: we have S∈C′

and need to show S∪ T ∈ C′ (for appropriate T). This follows since S ⊆ S′ with
S′ ∈ C, so S′ ∪T ∈ C since C is a consistency property, and S∪T ⊆ S′ ∪T . To be
concrete, here are representative cases: for tA∧Bµ ∈ S, we use this argument with
T = {tAµ, tBµ}. For tA∨Bµ ∈ S, we use this argument with T chosen as whichever
of {tAµ} and {tBµ} gives S′ ∪T ∈C (we must have one). For t¬Aµ ∈ S, we use this
argument with T = {fAµ}. For t∀xAµ ∈ S, we have T = {tA[p/x]µ} (for any such
p where the side conditions apply in in S, they apply in S′ because p must occur
in S′ if p occurs in S and S ⊆ S′). We argue similarly for modal universals, such as
t2iAµ: we have T = {tAν} (any ν that meets the side conditions in S meets them in S′

because S⊆ S′). For t∃xAµ, we can pick T = {tA[p/x]µ} to find S′ ∪T ∈C. We argue
similarly for modal existence conditions, such as t3iAµ: we can pick T = {tAµα}
to find S′ ∪T ∈C.

The simple existential way of dealing with ∃x and 3i in consistency properties
is insufficient for the rest of the completeness proof. It is convenient to reformulate
it using a new parameter condition.

Definition 23 (Alternate consistency property) A collection C (of sets of signed
prefixed formulas) meets the new parameter condition for Σ if the following three
conditions are met for each S ∈ C.

• For each t∃xAµ ∈ S, S∪{tA[c/x]µ} ∈C for every first-order parameter c that
does not occur in S and for which c : µ ∈ Σ. Likewise, for each f∀xAµ ∈ S,
S∪ {fA[c/x]µ} ∈ C for every parameter c that does not occur in S and for
which Σ. c : µ.
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• Whenever we have either (1) t3iAµ ∈ S or (2) t2 jAµ with A(i) KD, KDB,
KD4, KD5 or KD45 and with i≤ j by N , then S∪{tAµα} ∈C for every tran-
sition parameter α such that: µ/µα : i ∈ Σ, α does not occur in S, and further
no parameter p occurs in S with p : ν ∈ Σ where α occurs in ν. Likewise,
whenever we have either (1) f2iAµ ∈ S or (2) f3 jAµ ∈ S with A(i) KD, KDB,
KD4, KD5 or KD45 and with i≤ j by N , then S∪{fAµα} ∈C for every tran-
sition parameter α such that: µ/µα : i ∈ Σ, α does not occur in S, and further
no parameter p occurs in S with p : ν ∈ Σ where α occurs in ν.

• If uAν ∈ S with S,Σ.µ/ν : j for A( j) one of K5, K45, KD5, KD45 or S5, for
i≤ j by N and A(i) one of KD, KDB, KD4, KD5 or KD45, then S∪{t>µα} ∈
C for every transition parameter α which does not occur in S and for which
µ/µα : i ∈ Σ.

If C satisfies all the conditions for being a first-order S-consistency property for Σ,
except for conditions 7, 9 and 10 (on existential and possible statements), and C also
satisfies the new parameter condition for Σ, we will call C an alternate S-consistency
property for Σ.

To show that this reformulation is general, we consider parameter substitutions.

Definition 24 σ is a S-parameter substitution for Σ (over the language
L(CONST∪P)Π(κ)) if σ = 〈σP,σΠ〉 where σP : P →CONST∪P and
σΠ : Π(κ)→Π(κ) satisfying the following properties:

• σP(p) occurs in Σ⇒ p occurs in Σ; σΠ(µ) occurs in Σ⇒ µ occurs in Σ;

• for all c and µ, if S,Σ. c : µ, then S,Σ.σP(c) : σΠ(µ);

• for all µ and ν, if S,Σ.µ/ν : i, then S,Σ.σΠ(µ)/σΠ(ν) : i.

For formula A we can write σP(A) for the formula obtained by replacing each oc-
currence of first-order parameter in A by an occurrence of its image under σP. Then
we can write σ(Aµ) for σP(A)σΠ(µ); we extend σ to sets of signed prefixed formulas
accordingly.

Note that a parameter substitution σ, unlike a syntactic substitution of values to vari-
ables, may have infinitely many symbols p for which σ(p) differs from p.

Lemma 6 Let Σ be a fair typing (with respect to κ and P). Suppose C′ is an X-
compatible first-order S-consistency property for Σ, with C′ closed under subsets.
Define C′′ by S∈C′′ just in case σ(S) ∈C′ for some parameter substitution σ for Σ.
Then C′′ is an X-compatible alternate S-consistency property for Σ that extends C′

and is closed under subsets.
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Proof. First, we show that C′′ is an alternate S-consistency property, condi-
tion by condition. To show clause 1, suppose we have S ∈ C′′ in virtue of σ; by
consistency of C′ any prefix σΠ(µ) or first order parameter σP(p) that occurs in
σ(S) occurs in Σ; then by definition of parameter substitution µ or p occurs in Σ.
To show clause 2, suppose tAµ ∈ S and fAµ ∈ S for S ∈ C′′. Then tσ(Aµ) ∈ σ(S)
and fσ(Aµ)∈ σ(S) for σ(S)∈C′—impossible since C′ is a first-order S-consistency
property.

To show the remaining relevant clauses from Definition 21, we again use essen-
tially common reasoning to show, given S ∈C′′, that S∪T ∈C′′ for appropriate T .
We get this by showing that σ(S∪T) = σ(S)∪σ(T)∈C′; in each case this argument
rests on the observations that σ(S) ∈C′ and σ(S) triggers the relevant clause of the
S-consistency set definition.

For example, given tA ∧ Bµ ∈ S ∈ C′′, we need S ∪ {tAµ, tBµ} ∈ C′′. This
is established by the definition of C′′ as follows: Since σ(tA ∧ Bµ) = tσP(A) ∧
σP(B)σΠ(µ) and σ(S) is an element of consistency property C′, we obtain σ(S)∪
{σ(tAµ),σ(tBµ)} ∈ C′. Similar reasoning applies for t¬Aµ ∈ S ∈ C′′. Next, given
tA∨Bµ ∈ S ∈ C′′, we need S∪{tAµ} ∈ C′′ or S∪{tBµ} ∈ C′′. But σ(S) ∈ C′′ and
tσP(A)σΠ(µ)∨σP(B)σΠ(µ)∈σ(S) so either σ(S)∪σ(tAµ)∈C′ or σ(S)∪σ(tBµ)∈C′.

Next, for the universal conditions, suppose t∀xAµ ∈ S ∈ C′′. We need to show
S∪{tA[p/x]µ} ∈ C′′ for p a constant or p ∈ P such that p occurs in S and S,Σ. p :
µ. We know since σ is a parameter substitution that either σP(p) is a constant or
σP(p) occurs in σ(S) and S,Σ.σP(p) : σΠ(µ). Thus from σ(t∀xAµ) ∈ σ(S) we get
σ(S)∪{tσP(A[p/x])σΠ(µ)} ∈ C′. Finally, for t2iAµ ∈ S ∈ C′′, we consider ν that
occurs in S with S,Σ.µ/ν : i. Then σΠ(ν) occurs in σ(S) and (since σ is a parameter
substitution) S,Σ.σΠ(µ)/σΠ(ν) : i. Hence σ(S)∪{tσP(A)σΠ(ν)} ∈C′.

Now consider the new parameter condition, first clause; for reference we de-
scribe the positive condition. We suppose t∃xAµ ∈ S∈C′′. Then tσ(∃xAµ)∈σ(S)∈
C′ and for some t such that S,Σ. t : σ(µ), σ(S)∪{tσ(Aµ)} ∈C′. Now let p be any
first-order parameter that does not occur in S with p : µ∈ Σ, and define σ′ = 〈σ′P,σΠ〉
with σ′P exactly like σP except possibly that σ′P(p) = t. We claim σ′ is a parameter
substitution. Since σ′P(p) = t is the only new assignment, we need only show that
S,Σ. p : ν⇒ S,Σ.σ′P(p) : σΠ(ν). We can show this by induction on the height of
the typing derivation for S,Σ. p : ν. The base case has p : ν ∈ Σ, but since Σ is fair
and p : µ ∈ Σ already, we must have ν = µ and by construction S,Σ.σ′P(p) : σΠ(µ).
The result extends straightforwardly to compound derivations using the fact that σ′
agrees with σ on prefixes and the fact that σ is a parameter substitution. Since p does
not occur in S, σ′(S) = σ(S). But now we have σ′(S∪{tA[p/x]µ})∈C′, so we have
established S∪{tA[p/x]µ} ∈C′′ as needed.

The reasoning for the second and third clauses extends this reasoning. For in-
stance, for t3iAµ ∈ S ∈ C′′ we need to show S∪ tAµα for any parameter α where
µ/µα : i ∈ Σ and S has occurrences neither of α nor of any p with p : ν ∈ Σ and α
occurs in ν.
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Now, because C′ is a consistency property, we know σ(S)∪{tσ(A)σΠ(µ)β} ∈C′

for some β such that σΠ(µ)/σΠ(µ)β : i∈Σ. We will extend σΠ by establishing a cor-
respondence between prefixes involving α and prefixes containing β. In particular,
define

ΠO = {µαν ∈Π(κ) | for some ν}
ΠN = {σΠ(µ)βν ∈ Π(κ) | for some ν}

Since Σ is fair, we can construct a function ρ : ΠO→ΠN such that ρ(µα) = σ(µ)β
and such that for any ξ,ζ ∈ ΠO, if ξ/ζ : i ∈ Σ, ρ(ξ)/ρ(ζ) : i ∈ Σ. Since α does not
occur in S, no element of ΠO occurs in S. We can define σ′Π by

σ′Π(ξ) =
{

ρ(ξ) if ξ ∈ΠO
σΠ(ξ) otherwise

And we observe that σ′Π agrees with σΠ on all prefixes that occur in S. To obtain
a parameter substitution, we will also adjust σP(p) for all p with p : ξ ∈ Σ for ξ ∈
ΠO. Since Σ is fair, both ΣP(ξ) and ΣP(ρ(ξ)) are countable sets: let gξ : ΣP(ξ)→
ΣP(ρ(ξ)) be any one-to-one onto map. Then define σ′P by

σ′P(p) =
{

gξ(p) if p : ξ ∈ Σ and ξ ∈ΠO

σP(p) otherwise

Again, we can observe that since S contains occurrences of no p such that p : ν ∈ Σ
with α in ν, σ′P agrees with σP on all parameters that occur in S.

We claim that σ′ = 〈σ′P,σ′Π〉 so defined is a parameter substitution. First we
show, by induction, S,Σ.µ′/ν′ : j⇒ S,Σ.σ′Π(µ′)/σ′Π(ν′) : j.

The base case considers a tuple ξ/ζ : i ∈ Σ. Suppose ζ ∈ ΠO. If ζ = µα then
ξ = µ and σ′Π(µ) = σ(µ) while σ(ζ) = σ(µ)β and σ(µ)/σ(µ)β : i∈Σ by assumption.
Otherwise ξ = µαν; σ′Π(ξ) = ρ(xi) and ρ(ξ) : ρ(ζ) : i by construction. Otherwise ζ 6∈
ΠO. Neither is ξ∈ΠO so σ′Π(ξ) = σ(ξ) and σ′Π(ζ) = σ(ζ) so since σ is a parameter
substitution S,Σ.σ(ξ)/σ(ζ) : i. The inductive cases follow straightforwardly (as in
the proof of Lemma 2).

Next we show by induction that S,Σ. c : µ′ ⇒ S,Σ.σ′P(c) : σ′Π(µ′). Here the
argument mirrors the reasoning for the existential case. The base case has c : ξ ∈ Σ.
Then if ξ ∈ΠO then gξ(c) : ρ(ξ)∈ Σ by construction; otherwise this is a case where
σ′ agrees with parameter substitution σ. The result extends to compound derivations
using the fact that σ′Π sends related prefixes to related prefixes.

Moreover, σ′(S∪{tAµα}) = σ(S)∪{tσ(A)σ(µ)β}, since σ′Π is identical to σΠ on
prefixes in S, and σ′P is identical to σP on first-order parameters in S.

Having established that C′′ is an alternate S-consistency condition, we turn to the
remaining facts. C′′ extends C′ since the pair 〈1P,1Π〉 consisting of the identity map
on first-order parameters and the identity on prefixes is a S-parameter substitution.
C′′ is X-compatible because C′ is X-compatible and moreover X is a set of sentences
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from L(CONST) and hence σ(X) = X for any S-parameter substitution. C′′ is closed
under subsets because C′ is closed under subsets and S⊆ S′ implies σ(S)⊆ σ(S′).

A collection C of sets is said to be of finite character provided S∈C if and only
if every finite subset of S belongs to C.

Lemma 7 Suppose C′′ is an alternate S-consistency property that is X-compatible
and closed under subsets. Let C′′′ consist of those sets S all of whose finite subsets
are in C′′. Then C′′′ is again an X-compatible alternate S-consistency property that
extends C′′ and is of finite character.

Proof. First, we show that C′′ is an alternate S-consistency property, condition by
condition. To show clause 1, suppose tAµ ∈ S and fAµ ∈ S for S ∈ C′′′. Then S0 =
{tAµ, fAµ} is a finite subset of S: therefore S0 ∈C′′, which is impossible.

For the remaining conditions, for S∈C′′′ we need to show S∪T ∈C′′′ (for appro-
priate T). We derive a contradiction from the assumption of some finite F ⊂ S∪T
with F 6∈ C′′ by constructing finite H ⊂ S for which H ∪ T ∈ C′′ and F ⊆ H ∪ T .
(Such argument also shows that C′′′ is X-compatible.)

For example, suppose tA∧Bµ ∈ S. For T = {tAµ, tBµ} we must show S∪T ∈
C′′′. Suppose otherwise: then there is a finite F ⊆ S∪T with F 6∈C′′. But consider
H = (F ∩ S)∪{tA∧Bµ}. H ⊆ S and H is finite, so H ∈ C′′, so H∪T ∈ C′′. C′′ is
closed under subsets, and F ⊆ (F∩S)∪T , so F ∈C′′. This is a contradiction. (The
same goes for t¬Aµ ∈ S.)

For t∀xAµ ∈ S, we consider p constant or p occurs in S with S,Σ . p : µ. If p
occurs in S it occurs in some particular expression E ∈ S. We want to show S∪T ∈
C′′′ for T = {tA[p/x]µ}. Suppose otherwise: then there is F ⊆ S∪T with F 6∈ C′′.
We can now use H = (F∩S)∪{t∀xAµ,E} to show F⊆H∪T ∈C′′, a contradiction.
For t∃xAµ, we apply this reasoning with T = {tA[p/x]µ} for S,Σ. p : µ and p not
occurring in S; we hypoethesize H = (F ∩ S)∪{t∃xAµ} (where surely p does not
occur). These two schemas also extend to the various 2i and 3i cases.

Finally, for tA∨Bµ ∈ S, let T1 = {tAµ} and T2 = {tBµ}. Assuming neither S∪
T1 ∈C′′′ nor S∪T2 ∈C′′′ gives F1 ⊆ S∪T1 and F2 ⊆ S∪T2: we take H as (F1∩S)∪
(F2∩S).

We now establish the remaining claims about C′′′. The fact that C′′ is closed
under subsets ensures that S∈C′′ implies S∈C′′′. C′′′ is of finite character because
C′′ and C′′′ agree on finite sets.

Lemmas 5, 6 and 7 are summarized in Proposition 8.

Proposition 8 Let Σ be a fair typing and let C be an X-compatible first-order S-
consistency property for Σ (where X is a set of sentences of L(CONST)). Then C
may be extended to a collection C∗ that is an X-compatible alternate S-consistency
property for Σ of finite character.

It will be convenient to construct certain additional alternate S-consistency prop-
erties from C∗.
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Definition 25 (Sections) Let P′ be a set of first-order parameters and let κ′ be
a set of modal parameters. The 〈P′,κ′〉-section of a collection C∗ is a collec-
tion C∗|P′,κ′ defined as {S ∈ C∗ | all members of S are signed expressions over
L(CONST∪P′)Π(κ′)}.

Lemma 9 (Sections) If C∗ is an X-compatible alternate S-consistency property of
finite character for L(CONST∪P)Π(κ), then any C∗|P′,κ′ is an X-compatible alter-
nate S-consistency property for L(CONST∪P′)Π(κ′)—so long as P′ ⊆ P and κ′ ⊆ κ.

Proof. The argument here is straightforward. For any S ∈ C∗|P′,κ′ , S ∈ C∗. So
there can be no tAµ ∈ S with fAµ ∈ S. The remaining clauses of the alternate S-
consistency property (and X-compatibility) require S∪T ∈C∗|P′,κ′ for some appro-
priate T a signed expression of L(CONST∪P′)Π(κ′); but we already have S∪T ∈C∗.
Finally, since C∗ is of finite character: S ∈ C∗ and S a set of signed expression of
L(CONST∪P′)Π(κ′) just in case every finite subset F of S has F ∈C∗ and F a signed
expression of L(CONST∪P′)Π(κ′). But this is equivalent to S ∈C∗|P′,κ′ just in case
every finite subset of S belongs to C∗|P′,κ′ .

2.5.2 Model Existence
In this subsection, we show that our construction of S-consistency properties gives
us—for any S-consistency property and any set that belongs to the consistency
property—a model in which the set is satisfied. We first establish two facts and a
definition that we will use in the construction.

Proposition 10 In an alternate S-consistency property C∗ of finite character: the
union of any chain of members is again a member; for any S∈C∗ there is a maximal
S′ ∈ C∗ with S⊆ S′.

Proof. Let S0 ⊆ S1 . . . be a chain of members of C∗, and let S be its union. We want
to show S ∈ C∗. Suppose not; since C∗ is of finite character, there must be some
finite F ⊆ S with F 6∈C∗. But since F is finite there is some element Sn of the chain
such that F ⊆ Sn. This contradicts the assumption that Sn is a member of C∗.

We now have that the union of a chain of members of C∗ extending S is also a
member of C∗ that extends S. Thus, we can apply Zorn’s Lemma to the set {S′ ∈
C∗ | S⊆ S′} to obtain the needed maximal element.

Definition 26 (Saturation) Let Σ be fair, and suppose C∗ is an X-compatible alter-
nate S-consistency property for Σ (over L(CONST∪P)Π(κ)) of finite character. Let S
and T be sets of signed expressions of L(CONST∪P′)Π(κ′) (with P′ ⊆ P and κ′ ⊆ κ).
We say S is downward S-saturated into T in C∗|P′,κ′ just in case the following con-
ditions are met:

1. If t∃xAµ ∈ S, then tA[c/x]µ ∈ T for some c ∈ P′ with S,Σ. c : µ; likewise if
f∀xAµ ∈ S, then fA[c/x]µ ∈ T for some c ∈ P′ with S,Σ. c : µ.
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2. If either t3iAµ ∈ S or t2 jAµ ∈ S with A(i) KD, KDB, KD4, KD5 or KD45 and
with i≤ j by N , then tAµα ∈ T for some α∈ κ′ with S,Σ.µ/µα : i; likewise if
either f2iAµ ∈ S or f3 jAµ ∈ S with A(i) KD, KDB, KD4, KD5 or KD45 and
with i≤ j by N , then fAµα ∈ T for some α ∈ κ′ with S,Σ.µ/µα : i.

3. If uAν ∈ S with S,Σ.µ/ν : j for A( j) one of K5, K45, KD5, KD45 or S5, for
i ≤ j by N and A(i) one of KD, KDB, KD4, KD5 or KD45, then t>µα ∈ T
for some parameter α ∈ κ with S,Σ.µ/µα : i.

S is downward S-saturated in C∗|P′,κ′ just in case S is maximal in C∗|P′,κ′ and S is
downward S-saturated into S.

Lemma 11 Let C∗ be an X-compatible alternate S-consistency property of finite
character for Σ (over L(CONST∪P)Π(κ)); let Q and R be two disjoint countably in-
finite subsets of P, and let ξ and ζ be two disjoint countably infinite subsets of κ,
such that Σ is fair to R and ζ. If S ∈ C∗|Q,ξ then S may be extended to a set that is
downward S-saturated in C∗|Q∪R,ξ∪ζ.

Proof. We begin by defining an operator F . The input of F is a set of signed prefixed
formulas T ∈C∗|P′,κ′ for some language L(CONST∪P′)Π(κ′) and countable sets P′′

of first-order parameters and κ′′ of modal parameters disjoint from P′ and κ′ subject
to two conditions against the typing Σ. First, Σ is fair to P′ ∪P′′ and κ′ ∪κ′′. Second,
Σκ(µ, i)∩κ′′ is countably infinite, as is ΣP(µ, i)∩P′′. The output of F , F (T,P′′,κ′′)
is a set T ′ that is maximal in C∗|P′∪P′′,κ′∪κ′′ , where T is downward S-saturated into
T ′ in C∗|P′,κ′ .

In brief, F adds to T a witness for each existential and possible signed prefixed
formula in T , and extends the result to a maximal set. Let T∃ be the signed prefixed
formulas in T of the form t∃xAµ or f∀xAµ. Enumerate T∃, and assign all expressions
E ∈ T∃ a unique first-order parameter pE ∈ P′′ with pE : µ ∈ Σ. This is possible be-
cause Σ meets the two conditions provided and T∃ is countable. Now we define S∃ to
be {tA[pE/x]µ |E = t∃xAµ ∈ T∃}∪{fA[pE/x]µ |E = f∀xAµ ∈ T∃}. Our enumeration
of T∃ induces an enumeration of S∃; let Sn∃ denote the first n elements of S∃ in this
enumeration.

Similarly, let T3 be the signed prefixed formulas in T of one of the five follow-
ing forms: t3ixAµ; t2 jxAµ for A(i) KD, KDB, KD4, KD5 or KD45 with i≤ j by
N ; f2iAµ; f3 jAµ for A(i) KD, KDB, KD4, KD5 or KD45 with i ≤ j by N ; and
uAν with S,Σ.µ/ν : j for A( j) one of K5, K45, KD5, KD45 or S5, for i≤ j by N
and A(i) one of KD, KDB, KD4, KD5 or KD45. Enumerate T3, and assign all ex-
pressions E ∈ T3 a unique modal parameter αE ∈ κ′′ with µ/µα : i ∈ Σ. Again, this
is possible because Σ meets the two conditions provided and T3 is countable. Now
we define S3 to be {tAµαE | E = t3iAµ ∈ T3 or E = t2 jAµ ∈ T3}∪{fAµαE | E =
f2iAµ ∈ T3 or E = f3 jAµ ∈ T3}∪{t>µαE | E = uAν ∈ T3 with S,Σ.µ/ν : j}. Our
enumeration of T3 induces an enumeration of S3; let Sn3 denote the first n elements
of S3 in this enumeration.



30

We claim that T ∪ S∃ ∪ S3 ∈ C∗|P′∪P′′,κ′∪κ′′ . We know T ∈ C∗|P′∪P′′,κ′∪κ′′, so if
the claim is false there must be a first n such that T ∪Sn+1∃∪Sn+13 6∈C∗|P′∪P′′,κ′∪κ′′ .
But we can get from T ∪Sn∃ ∪Sn3 to T ∪Sn+1∃∪Sn+13 by two steps of applying the
new parameter condition for the alternate consistency property C∗|P′∪P′′,κ′∪κ′′ . This
is a contradiction. As the result of F , take a maximal member T ′ of C∗|P′∪P′′,κ′∪κ′′

that extends T ∪S∃ ∪S3.
As claimed, it follows from this construction that T ′ is maximal in C∗|P′∪P′′,κ′∪κ′′

and that T is downward S-saturated into T ′ in C∗|P′,κ′ .
Now we describe an increasing sequence of sets S1, . . .; we construct the desired

set S∗ as ∪nSn. We partition R and ζ into countably many disjoint countable sets
R1, . . . and ζ1, . . . according to Σ, using the construction following Definition 22; we
define R∗n as∪m≤nRm and ζ∗n as∪m≤nζm. S1 is simply F (S,R1,ζ1). Given Sn, Sn+1 =
F (Sn,Rn,ζn). By construction of F , clearly Sn is a maximal set in in C∗|R∗n,ζ∗n and
Sn is downward S-saturated into Sn+1 in C∗|R∗n,ζ∗n .

S∗ ∈ C∗|Q∪R,ξ∪ζ by Proposition 10, because S∗ is the union of a chain
in C∗|Q∪R,ξ∪ζ which is an alternate consistency property of finite character by
Lemma 9.

S∗ must be maximal in C∗|Q∪R,ξ∪ζ. Since C∗|Q∪R,ξ∪ζ is of finite character, it suf-
fices to show for any E such that S∗ ∪E ∈ C∗|Q∪R,ξ∪ζ, E ∈ S∗. Consider an E that
meets the hypothesis; E is a signed expression of L(CONST∪Q∪R)Π(ξ∪ζ) and can
only contain a finite number of parameters; E is therefore in fact a signed expression
in L(CONST∪Q∪R∗n)Π(ξ∪ζ∗n) for some n. It follows that Sn ∪{E} ∈ C∗|Q∪R∗n,ξ∪ζ∗n .
But since Sn is maximal here by construction, we must have E ∈ Sn and hence E ∈ S∗.

By analogous reasoning, for any existential or possible signed prefixed formula
E in S∗, there is an Sn at which E first appears. There is hence a witness for E in
Sn+1 and thus in S∗.

Definition 27 (Term Frame) Let S be a downward S-saturated set of signed ex-
pressions of some language L(CONST∪P)Π(κ) for some typing Σ. Define the term
frame of S as a tuple 〈G,R ,D〉 as follows:

• G = {µ | uAµ ∈ S}.

• R i = {〈µ,ν〉 |µ∈G,ν∈G,S,Σ.µ/ν : i}∪{〈µ,µ〉 | µ∈G,A( j) is KD, KDB,
KD4, KD5 or KD45, j≤ i by N and there is no ν∈G such that S,Σ.µ/ν : j}.

• D(µ) =CONST∪{t | t occurs in S and S,Σ. t : µ}

Lemma 12 (Respect) Let F be the term frame for S (a downward S-saturated set)
according to Σ. Then F respects the regime S.

Proof. We begin with an observation. Suppose there is a prefix µ in S for which no
ν occurs in S with S,Σ. µ/ν : i with A(i) KD, KDB, KD4, KD5 or KD45. Then
for any j with i≤ j and A( j) in K5, K45, KD5, KD45 or S5, no ν′ occurs in S with
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S,Σ.µ/ν′ : j. Since S is downward S-saturated, if there was such a ν′, by saturation
we would have t>µα ∈ S for some modal parameter α with µ/µα : i. This contradicts
our supposition.

Now we can consider the conditions for F to respect S case by case.

• A(i) is T, B, S4 or S5. Since the consistency property ensures that any world
µ occurs in Σ, by rule (T) there is a typing derivation S,Σ.µ/µ : i. Thus, R i
is reflexive.

• A(i) is KB, KDB or B, and µR iν. There are two cases: in one case there is a
derivation S,Σ.µ/ν : i so by rule (B) there is a derivation S,Σ.ν/µ : i: R i is
symmetric; in the other case, we have the obviously symmetric tuple ν = µ.

• A(i) is K4, K45, KD4, KD45, S4 or S5. Suppose µR iµ′ and µ′R iν. There are
three cases: in one case, there are derivations S,Σ.µ/µ′ : i and S,Σ.µ′/ν : i,
and so by rule (4) there is a derivation S,Σ.µ/ν : i: R i is transitive; in the
other cases, µ = µ′ or µ′ = ν so transitivity holds by assumption.

• A(i) is KD, KDB, KD4, KD5 or KD45. Then R i is serial, because either
µR iν for some prefix ν or else by construction µR iµ.

• A(i) is K5, K45, KD5, KD45 or S5. Suppose µR iµ′ and µR iν. There are
three cases. In the first case, there are derivations S,Σ . µ/µ′ : i and S,Σ .
µ/ν : i, and so by rule (5) there is a derivation S,Σ . µ/ν : i. In the second
case, µ′ = µ (accessible by construction): then the hypothesis µR iν is the
conclusion needed for euclideanness. Finally, there is the possibility that ν =
µ (accessible by construction). But then by our observation, we must have
µ′ = µ as well; the hypothesis µR iµ is the needed conclusion.

• Suppose i ≤ j and µR iν. There are two cases. If ν = µ (accessible by con-
struction) then there must be some modality k with k ≤ i, A(k) one of KD,
KDB, KD5 or KD45, and no ν ∈ G such that S,Σ.µ/ν : j. But since i ≤ j,
we have k ≤ j by transitivity of N and hence µR jµ by construction as well.
In the second case, we have a derivation of S,Σ.µ/ν : i; from this we derive
the needed relation by (Inc).

• Suppose Q is constant. Then S,Σ . t : µ for any t that occurs in S, and any
µ ∈ G, thus D(µ) = D(ν) for any µ,ν ∈ G. And suppose Q is increasing.
Obviously we need only consider µR iν with µ 6= ν. But in this case we must
have S,Σ.µ/ν : i. Now t ∈D(µ) implies S,Σ. t : µ; putting the two deriva-
tions together by (I) gives t ∈D(ν).

This concludes the proof.
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Definition 28 (Term Model) Let S be a downward S-saturated set of signed ex-
pressions of some language L(CONST∪P)Π(κ) for some typing Σ. Let 〈G,R ,D〉
be the term frame of S, and define an interpretation J as follows:

1. For each constant c ∈CONST, J(c) = c;

2. For any t1, . . ., tn ∈CONST∪P, 〈t1, . . ., tn〉 ∈ J(Ri) at world µ if and only if
tRi(t1, . . ., tn)µ ∈ S.

Then M = 〈G,R ,D,J〉 is a k-modal model, called the term model for S.

Lemma 13 (Satisfaction) Let M = 〈G,R ,D,J〉 be the term model for S down-
ward saturated in C∗. Let g be an assignment that is the identity on parameters.
Then for each signed prefixed formula tAµ ∈ S, M ,µ −g A; conversely, for each
signed prefixed formula fAµ ∈ S, M ,µ 6 −g A.

Proof. The proof is by induction on the degree of the formula A. In the base case,
we have uAµ with A atomic formula; there are in principle four possibilities.

• u = t, A =>: Then always M ,µ −g A.

• u = t, A = Ri(t1, . . ., tn): Then M ,µ −g A if and only if t1, . . ., tn ∈ J(Ri) at µ
(since g is the identity on parameters and J is the identity on constants). This
holds by construction.

• u = f, A =>: This is impossible, by the definition of a consistency property.

• u = f, A = Ri(t1, . . ., tn): Suppose for contradiction M ,µ −g A. Then we must
have tAµ ∈ S. This is impossible, since we have fAµ ∈ S, by the definition of
a consistency property.

So suppose that the claim holds for all signed prefixed formulas uAµ with the degree
of A smaller than h; let E = uAµ ∈ S where h is the degree of A. Consider the form
of E.

• E = tB∧Cµ. Then S∪{tBµ, tCµ} ∈C∗ since C∗ is a consistency property. So
tBµ ∈ S and tCµ ∈ S, since S is downward closed, hence maximal. By the in-
duction hypothesis, M ,µ −g B and M ,µ −g C. Thus M ,µ −g B∧C. Analo-
gous reasoning goes for E = fB∨Cµ—and, for that matter, for t¬Bµ and f¬Bµ.

• E = tB∨Cµ. Then either S∪{tBµ ∈C∗ or S∪{tCµ} ∈C∗. Since S is maximal
either tBµ ∈ S or tCµ ∈ S. Then by induction hypothesis, either M ,µ −g B or
M ,µ −g C. Thus we must have M ,µ −g B∨C. Analogous reasoning goes
for E = fB∧Cµ.
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• E = t2iCµ. Consider any ν such that µR iν. There are in principle two cases.
For one, µ = ν and A( j) is KD, KDB, KD4, KD5 or KD45, j ≤ i by N and
there is no ν ∈ G such that S,Σ.µ/ν : j. But since S is downward saturated,
there must be some µα with S,Σ . µ/µα : j and tCµα ∈ S. Hence there is
some world ν = µα ∈ G such that S,Σ.µ/ν : j. This is absurd. So then we
must have the other case: S,Σ.µ/ν : i. Therefore, since C∗ is a consistency
property, S∪{tCν} ∈ C∗. Since S is maximal, tCν ∈ S. Then by the induc-
tion hypothesis, M ,ν −g C. Since ν was arbitrary, we have established that
M ,µ −g 2iC. Analogous reasoning goes for E = f3iCµ.

• E = t3iCµ. Since S is downward saturated, there is some µα such that S,Σ.
µ/µα : i and tCµα ∈ S. We have therefore that µR iµα (by definition of R i)
and M ,µα −g C (by induction hypothesis). Thus M ,µ −g 3iC. Analogous
reasoning goes for E = f2iCµ.

• E = t∀xCµ. Let t be some element of D(µ): that means S,Σ. t : µ and either
t is a constant or t occurs in S. So by definition of consistency property, S∪
{tC[t/x]µ} ∈ C∗—that is, tC[t/x]µ ∈ S. Let g′ be an x-variant of g such that
g(x) = t. If g is the identity on parameters, so is g′ (x is a variable). Thus by
induction hypothesis M ,µ −g′ C[t/x]; by Lemma 1 then M ,µ −g′ C. This
shows M ,µ −g ∀xC. Analogous reasoning goes for E = f∃xCµ.

• E = t∃xCµ. Since S is downward saturated, tC[c/x]µ ∈ S for some c with S,Σ.
c : µ. Then c ∈D(µ); let g′ be an x-variant of g with g′(x) = c. By induction
hypothesis M ,µ −g′ C[c/x] and so by Lemma 1 M ,µ −g C. Thus M ,µ −g

∃xC. Analogous reasoning goes for E = f∀xCµ.

The results thus far are summarized in Proposition 14.

Proposition 14 Let C be a first-order S-consistency property for Σ fair (to κ and P)
that is X-compatible where X is a set of sentences of L(CONST). Let S ∈ C, where
S is a set of signed formulas from L(CONST) labeled with the prefix ε. Then there
is a k-modal model in which S is satisfiable.

Proof. By Proposition 8, we can extend C to C∗ an alternate consistency property
of finite character; we still have S ∈C∗. In fact, we can divide P and κ into disjoint
Q and R and disjoint ξ and ζ with Σ still fair to R and ζ, so that S ∈ C∗|Q,ξ. After
all, S contains only L(CONST) sentences. Thus by Lemma 11 we can find S′ ∈C∗

downward saturated with S⊆ S′. By Lemma 13, S′ is satisfiable in the term model for
S′ on any assignment g that is the identity function on parameters and any function
θ that is the identity function on prefixes. Thus since S ⊆ S′, S is also satisfiable in
the term model for S′ with respect to g and θ.
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2.5.3 Completeness Proper
We are now in a position to prove completeness immediately.

Theorem 2 (Completeness) Suppose A is valid. Then there is a closed tableau for
.fAε.

Proof. We have seen that we can construct a fair typing Σ for P and κ. Given a set
Γ of signed prefixed sentences of L(CONST∪P)Π(κ), let ΣG be {µ/ν ∈ Σ | µ and ν
occur in Γ}∪{p : µ ∈ Σ | p occurs in Γ}; say Γ is tableau-consistent if ΣG .Γ is a
tableau line and there is no closed tableau for ΣG .Γ. Let C be the collection of all
such tableau-consistent sets. We claim C is an first-order S-consistency property.

Suppose Γ ∈C. Then if tAµ ∈ Γ and fAµ ∈ Γ, we can apply closure to obtain a
closed tableau, contrary to assumption. Likewise if f>µ ∈ Γ.

Again, for the remaining cases we have common reasoning. We suppose for the
sake of argument that Γ∈C but Γ∪C 6∈C for appropriateC. That would mean there
was a closed tableau T for ΣΓ∪C .Γ∪C. By applying a tableau rule from ΣΓ .Γ to
ΣΓ∪C .Γ∪C, we construct a closed tableau for ΣΓ .Γ using T . This is impossible.

We consider representative cases. For tA ∧ Bµ ∈ Γ, suppose not Γ′ = Γ ∪
{tAµ, tBµ} 6∈ C. Then there is a closed tableau T for ΣΓ′ .Γ′. Since ΣΓ′ = ΣΓ we
can construct a closed tableau thus:

ΣΓ .Γ
ΣΓ .Γ′

T

We obtain essentially the same for t¬Aµ ∈ Γ (and for fA∨Bµ, f¬Aµ).
For t∀xAµ ∈ Γ, we suppose there is some Γ′ = Γ∪{tA[p/x]µ} where p is a con-

stant or p occurs in Γ and S,Σ. p : µ. But under these circumstances, S,ΣΓ . p : µ,
so the tableau above meets the side conditions on the universal rule.

For t∃xAµ ∈ Γ, we suppose that for every c with S,Σ. p : µ, Γ∪{tA[p/x]µ} 6∈C.
But since Σ is fair and ΣΓ .Γ is a tableau line, there must be some such c that does
not occur in ΣΓ. Consider Γ′ = Γ∪{tA[c/x]µ}: there must be a closed tableau T for
this. We derive a contradiction by constructing a new closed tableau:

ΣΓ .Γ
ΣΓ,c : µ.Γ′

T

The same goes, mutatis mutandis, for the modal cases.
Finally, for tA∨Bµ ∈ Γ, suppose both Γ′ = Γ∪{tAµ} 6∈C and Γ′′ = Γ∪{tBµ} 6∈

C. Then we have tableaux T ′ for ΣΓ′ .Γ′ and T ′′ for ΣΓ′′ .Γ′′. Again ΣΓ = ΣΓ′ = ΣΓ′′ ,
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so we construct
ΣΓ .Γ

ΣΓ .Γ′
T ′

ΣΓ .Γ′′
T ′′

(We obtain essentially the same for fA∧Bµ.)
Having shown that C is a consistency property, suppose there is no closed tableau

for .fAε. It follows that {fAε} ∈C. Then by Proposition 14, there is a model M and
world w with M ,w 6 − A.

3 First-order Multi-Modal Herbrand Deduction
A major drawback to the use of the first-order tableau calculus studied in section 2
is the form of quantifier rules. Rules like the existential rule

Σ . Γ, t∃xAµ

Σ, c : µ . Γ, t∃xAµ, tA[c/x]µ

have a side condition that requires the parameter c to be new; this is known as an
eigenvariable condition. Because of the eigenvariable condition, the order in which
inferences are applied in tableau proofs matters. In particular, under appropriate cir-
cumstances, it will be possible to construct a closed tableau by applying the follow-
ing inferences:

Σ . Γ, t∃xAµ, t∀xBµ

Σ, c : µ . Γ, t∃xAµ, tA[c/x]µ, t∀xBµ (t∃)

Σ, c : µ . Γ, t∃xAµ, tA[c/x]µ, t∀xBµ, tB[c/x]µ
...

(t∀)

However, suppose we construct a tree of tableau lines exactly corresponding to that
tableau except that the existential and universal inferences are swapped, as below:

Σ . Γ, t∃xAµ, t∀xBµ

Σ . Γ, t∃xAµ, t∀xBµ, tB[c/x]µ (t∀)

Σ, c : µ . Γ, t∃xAµ, tA[c/x]µ, t∀xBµ, tB[c/x]µ
...

(t∃)

This tree will not constitute a tableau, because the eigenvariable condition is not met
at the existential inference. (As it happens, the typing side condition on the universal
inference is not met either, but the same problem with the eigenvariable condition
still arises in proof systems where universal inferences do not have such side con-
ditions.) This asymmetry means that it may be necessary in proof search with this
system to search not only for the right inferences but the right inferences in the right
order.
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In this section, we describe a standard method for reformulating quantifier rules
in order to eliminate this asymmetry. This method calls for the use of Herbrand
terms (also known, from another point of view, as Skolem terms) in place of fresh
parameters for existential rules. Herbrand terms have the form h(X); h is a symbol
uniquely associated with some formula A in the base language which might serve as
the principal of an existential rule; X is a tuple of terms. We refer to a proof system
which calls for parameters to satisfy the eigenvariable condition as a ground tableau
calculus; we refer to a proof system that calls for the use of Herbrand terms as a
Herbrand tableau calculus.

The rationale behind the use of a Herbrand term h(X) at an existential inference
R goes like this. Regardless of the order in which inferences are applied in a closed
tableau, there will be some parameters that must occur on the tableau line where R
applies. For example, some parameters must appear on this tableau line as a result of
the instantiations that must take place in deriving the principal expression of R. The
terms X which are supplied as an argument to the Herbrand term h(X) identify all
these parameters indirectly. The structure h(X) can therefore serve as a placeholder
for a new parameter that is chosen to be different from each of the terms in X. The
structure h(X) thus packs all the information required to allow the inferences in the
proof to be reordered and an appropriate parameter chosen so that the inference at
A respects the eigenvariable condition.

In modal deduction, of course, eigenvariable conditions are not only associ-
ated with existential inferences; they are also associated with inferences of possibil-
ity and the special inference rules for serial modalities. Modal Herbrand inference
therefore requires that we introduce Herbrand terms to describe transitions among
possible worlds and Herbrand prefixes to name possible worlds, in addition to intro-
ducing first-order Herbrand terms to represent first-order parameters. In this case,
the arguments X to Herbrand terms must mix first-order Herbrand terms and Her-
brand prefixes, since logical formulas can encode dependencies among first-order
and modal parameters.

3.1 Formalism
To describe the Herbrand inference system, we rework the definitions of section 2.3.
We begin by assuming two countably infinite sets of symbols: a set H of first-order
Herbrand functions and ϒ of modal Herbrand functions. By mutual recursion, we
can now define sets PH of first-order Herbrand terms and κϒ of modal Herbrand
terms:

Definition 29 (Herbrand terms and prefixes) Let t0 be a Herbrand prefix and let
t1, . . ., tn be a sequence (possibly empty), where each ti is either an element of
CONST, a first-order Herbrand term, or a Herbrand prefix. Then if h is a first-order
Herbrand function then h(t0, t1, . . ., tn) is a first-order Herbrand term. If η is a modal
Herbrand function then η(t0, t1, . . ., tn) is a modal Herbrand term. A Herbrand prefix
is any finite sequence of modal Hebrand terms.
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The terms that this definition provides can be named as a class H =CONST∪PH ∪
Π(κϒ). The basic expressions in proofs will now be prefixed formulas in the lan-
guage L(CONST∪PH)Π(κϒ). The formulas continue to be signed; moreover, now
they must also be tracked to indicate the sequence of instantiations that has taken
place in the derivation of an expression.

Definition 30 (Signed, tracked expressions) If E denotes the expressions of some
class, then the signed, tracked expressions of that class are expressions of the form
teI or feI where e is an expression of e and I is a finite sequence (possibly empty) of
elements of H.

We say that a signed tracked expression ueI tracks a term t just in case t occurs as a
subterm of some term in I.

It is clear that there are countably many first-order Herbrand terms, Herbrand
prefixes, and formulas in L(CONST∪PH). We can therefore describe a correspon-
dence as follows. If A is a formula of the form∀xB or ∃xB, we define a corresponding
first-order Herbrand function hA so that each first-order Herbrand function is hA for
some A. If A is a formula of the form2iB or3iB, we define a corresponding modal
Herbrand function ηA. If A is a formula of the form2iB and j is a modality, we also
define a modal Herbrand function ηs( j,A). And if A is any formula, µ is a Herbrand
prefix and j is a modality, we define a modal Herbrand function ηe( j,µ,A). We in-
sist that the sets {ηA}, {ηs( j,A)} and {ηe( j,µ,A)} be disjoint and that their union be ϒ.
Now we have:

Definition 31 (Herbrand Typings) A Herbrand typing for a language
L(CONST∪PH) (under a correspondence as just described) is a set Σ of statements,
each of which takes one of two forms:

1. µ/µη : i where: µ is a Herbrand prefix and η is a modal Herbrand term meet-
ing one of the following conditions:

• η is ηA(µ, I) and A is 2iB or3iB.

• η is ηs(i,A)(µ, I).
• η is ηe(i,µ,A)(I).

2. t : µ where t is a first-order Herbrand term of the form h(µ, I).

Note that the first bullet under clause 1 does not place any restriction on A beyond
what ηA already requires, but simply accesses the modality i from A.

A sequence of modal and first-order Herbrand terms X determines a Herbrand
typing ΞX, consisting of the appropriate µ/µη : i for each modal Herbrand term η
that occurs in X (possibly as a subterm) and the appropriate h : µ for each first-order
Herbrand term h that occurs in X (possibly as a subterm).
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A Herbrand typing for a set or multiset Γ of signed, tracked expressions of
L(CONST∪PH)Π(κϒ) whenever Σ is a finite Herbrand typing that contains an ap-
propriate expression t : µ for each first-order Herbrand term that occurs in Γ or in
Σ itself and an appropriate expression µ/µη : i for each modal Herbrand term η that
occurs in Γ or in Σ itself.

The definition of derivations of typing judgments carries over from Definition 14 to
Herbrand typings unchanged.

A Herbrand multi-modal tableau line is an expression of the form Σ.Γ where Γ
is a finite multiset of signed, tracked expressions of L(CONST∪PH)Π(κϒ) and Σ is a
finite Herbrand typing. (Σ need not be a typing for Γ.)

Definition 32 (Tableau rule) For first-order multi-modal Herbrand deductions
over a regime S, we will use the following tableau rules:

1. closure—with A an atomic formula and subject to the side condition that ΞX ⊆
Σ and (for the binary rule) ΞY ⊆ Σ:

Σ.Γ, tAµ
X , fA

µ
Y

⊥
Σ.Γ, f>µ

X
⊥

2. conjunctive:

Σ.Γ, tA∧Bµ
X

Σ.Γ, tA∧Bµ
X , tA

µ
X , tB

µ
X

Σ.Γ, fA∨Bµ
X

Σ.Γ, fA∨Bµ
X , fA

µ
X , fB

µ
X

3. disjunctive:

Σ.Γ, fA∧Bµ
X

Σ.Γ, fA∧Bµ
X , fA

µ
X Σ.Γ, fA∧Bµ

X , fB
µ
X

Σ.Γ, tA∨Bµ
X

Σ.Γ, tA∨Bµ
X , tA

µ
X Σ.Γ, tA∨Bµ

X , tB
µ
X

4. negation:
Σ.Γ, t¬Aµ

X
Σ.Γ, t¬Aµ

X , fA
µ
X

Σ.Γ, f¬Aµ
X

Σ.Γ, f¬Aµ
X , tA

µ
X

5. possibility—where η is ηA(µ,X) for uAµ
X the principal of the rule (either 2iA

or 3iA):

Σ.Γ, f2iA
µ
X

Σ,µ/µη : i.Γ, f2iA
µ
X , fA

µη
X,µη

Σ.Γ, t3iA
µ
X

Σ,µ/µη : i.Γ, t3iA
µ
X , tA

µη
X,µη
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6. necessity—subject to the side condition that there is a typing derivation
S,ΞX,N,ν .µ/ν : i for a sequence N of elements of H:

Σ.Γ, t2iA
µ
X

Σ.Γ, t2iA
µ
X , tA

ν
X,N,ν

Σ.Γ, f3iA
µ
X

Σ.Γ, f3iA
µ
X , fA

ν
X,N,ν

7. special necessity—subject to the side condition that A(i) is one of KD, KDB,
KD4, KD5 or KD45, that i≤ j according to N , that η is ηs(i,A)(µ,X) for uAµ

X
the principal of the rule:

Σ.Γ, t2 jA
µ
X

Σ,µ/µη : i.Γ, t2 jA
µ
X , tA

µη
X,µη

Σ.Γ, f3 jA
µ
X

Σ,µ/µη : i.Γ, f3 jA
µ
X , fA

µη
X,µη

8. extra special necessity—subject to the side conditions that A(i) is one of KD,
KDB, KD4, KD5 or KD45, that A( j) is one of K5, K45, KD5, KD45 or S5,
that i ≤ j according to N , that there is a derivation S,ΞX,N . µ/ν : j for a
sequence N of elements of H, that η is ηe(i,µ,A)(ν,X,N):

Σ,µ/µη : i.Γ,uAν
X

Σ,µ/µη : i.Γ, t>µη
X,N,µη,uAν

X

9. existential—subject to the side condition that h is hA(µ,X) where uAµ
X is the

principal of the rule:

Σ.Γ, t∃xAµ
X

Σ,h : µ.Γ, t∃xAµ, tA[h/x]µX,h

Σ.Γ, f∀xAµ
X

Σ,h : µ.Γ, f∀xAµ
X , fA[h/x]µX,h

10. universal—subject to the side condition that there is a typing derivation
S,ΞX,N,t . t : µ for a sequence N of elements of H:

Σ.Γ, t∀xAµ
X

Σ.Γ, t∀xAµ
X , tA[t/x]µX,N,t

Σ.Γ, f∃xAµ
X

Σ.Γ, f∃xAµ
X , fA[t/x]µX,N,t

Tableaux, branches, agreement and closure remain as in Definition 18 and following.
Remark. Once again the distinction between serial and non-serial modalities

and the presence of euclidean modalities leads to some surprises in the definitions.
One surprise is the side condition governing typings at the closure rules. This

is required to correctly model modal operators with accessibility relations that may
be empty. With non-serial modalities, it becomes possible to construct a Herbrand
prefix µη for which no corresponding world exists in some model, even though µ
does correspond to a world in that model. In this case it would be incorrect to rea-
son about world µη. Such cases cannot be distinguished from cases where µη does
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correspond to a world in the model by inspection of a typing ΞX where X includes
η. Instead, we must check whether the worlds that have been explicitly introduced
by possibility inferences (and special or extra special necessity inferences) include
µη.

Another surprise is the extension of the terms tracked on universal and neces-
sity tableau rules by a parametric list N of additional elements of H. The reason for
this, informally, is that we may have situations in which we can only derive µ/ν : i
by accessing a prefix µ′ some of whose elements occur neither in µ nor in ν. For
example, consider a regime S defined by

〈A = {0 7→ K,1 7→K5,2 7→K5,3 7→ K4},
N = {0≤ 1,0≤ 2,0≤ 3,1≤ 3,2≤ 3},
Q = constant〉

Then from /α : 0, /β : 1,γ : 2 we can derive β/γ : 3 but without /α : 0 we cannot
derive this. (The derivation first shows β/α : i via inclusion and euclideanness, then
shows α/γ : j via inclusion and euclideanness, and finally β/γ : k via inclusion and
transitivity.)

This characteristic of typing derivations translates into corresponding facts about
closed Herbrand tableaux. For example we have that the set {3123q,32¬q} is S-
consistent, but the set {30 p,3123q,32¬q} is not. The derivation of inconsistency
is obtained by introducing transitions /α : 0, /β : 1,γ : 2 corresponding to the three
possibility statements, then instantiating 23qβ to show qγ. In this case, any further
use of qγ in fact depends on having introduced world α already. So were we to
rewrite this proof using Herbrand terms, we must encode this by creating a tracked
formula as qγ

β,α,γ. This accounts for the tracking of new terms for typing derivations
on universal tableau rules.

Definition 33 (Proof) A Herbrand proof is a closed Herbrand tableau for .Γ.

The Herbrand calculus is also a sound and complete characterization of first-
order modal models. In contrast to the semantic methods we used in section 2, we
will establish this correctness result by syntactic methods, which relate Herbrand
proofs to closed ground tableaux. Suppose Γ contains sentences of L(CONST) (pre-
fixed by ε). Then the soundness theorem says that if there is a Herbrand proof of .Γ,
then there is a closed first-order tableau for .Γ. The completeness theorem says that
if there is a closed first-order tableau for .Γ, then there is a Herbrand proof of .Γ.
In addition to the syntactic formulation of these theorems, there is another major re-
versal from our earlier results: now soundness is the difficult thing to show, whereas
completeness is relatively straightforward. Section 3.3 presents the soundness result
drawing on background introduced in Section 3.2. Finally, Section 3.4 proves com-
pleteness.
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3.2 Background
Our syntactic methods for reasoning about tableaux exploit permutability of infer-
ence in the Herbrand tableau calculus. To develop the notion of permutability of
inference, we need to make some observations about the tableau rules of Defini-
tion 32. We begin with those observations that are common to tableau calculi in
general. Here as earlier, we can distinguish the principal and side expressions of
each tableau inference (except closure). In each denominator tableau line, the occur-
rence of the principal expression and the side expression all derive from—or as we
shall say, originate in—the occurrence of the principal in the numerator tableau line.
Similarly, each of the remaining expressions in the denominator tableau line origi-
nate in an occurrence of the same expression in the numerator tableau line. (Here,
as in [Kleene, 1951], we are assuming an analysis of each inference to specify this
correspondence in the case where the same expression occurs multiple times in the
numerator or denominator tableau line.)

Consider then two distinct tableau lines on the same branch b of a tableau. We
will identify the line O closer to the root of the tableau as the original line and the
the line further from the root of the tableau line as the derivative line, or the deriva-
tive line to O. Applying the notion orginates transitively to expressions separated by
multiple steps of inference along a branch, we can say that each expression occur-
rence in the derivative line originates in a unique expression occurrence in the orig-
inal line. By extension, when an inference L applies at the derivative line (meaning
that the line is the numerator of L), and so the principal formula of L originates in
some expression E of the original line, we say that L itself originates in E. Call the
inference that applies at the original line O; in the more specific case that L originates
in a side expression of the denominator of O on the branch b, we say that inference
L originates in inference O.

Now, in the case of the Herbrand tableau calculus in particular, we distinguish
the possibility, special necessity, extra special necessity and existential rules as Her-
brand rules, since any occurrence of these inferences in a tableau is associated with
some Herbrand term x that is introduced there. Conversely, we distinguish the ne-
cessity, extra special necessity and universal rules as general rules where there is
the possibility of introducing a general term x either as the value for a variable or as
an element of a sequence N of terms introduced for the purposes of typing.

The form of general rules is such that at a general inference L, any side expres-
sion of L tracks the term x that L introduces. We extend the terminology of tracking
to describe inferences: when a side expression of an inference L tracks x, we say
that L tracks x. In the case of a closure inference from f>µ

X , we say the inference
tracks t just in case t occurs as a subterm in some term in X; for a closure inference
from tEX and fEY , the inference tracks t just in case t occurs as a subterm in some
term in X or in Y . As we consider the tracking of terms in tableaux more broadly, we
discover that if inference L originates in inference O, and O tracks x, then L tracks
x—This follows from a simple induction on the length of the path from O to L and
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the observation that tracked terms on principal expressions are always preserved on
side expressions.

Interchanges of inference are transformations on proofs. They appeal to the two
basic operations of contraction and weakening, which must be cast as transforma-
tions on proofs in this framework. (In other proof systems, contraction and weak-
ening are introduced as explicit structural rules.)

Lemma 15 (Weakening (by formulas)) Let T be a Herbrand tableau and let ∆ be
a finite multiset of signed, tracked prefixed formulas (in the same language as T ).
Denote by T + ∆ a structure with nodes and edges exactly like T , but where any
node in T carries Σ .Γ, the corresponding node in T + ∆ carries Σ .Γ,∆; other-
wise corresponding nodes in T and T +∆ both carry⊥. Then T +∆ is a Herbrand
tableau and T + ∆ is closed just in case T is closed.

Lemma 16 (Weakening (by typings)) Let T be a Herbrand tableau and let Φ be
a finite Herbrand typing (in the same language as T ). Denote by T +Φ a structure
with nodes and edges exactly like T , but where any node in T carries Σ .Γ, the
corresponding node in T +Φ carries Σ,Φ.Γ; otherwise corresponding nodes in T
and T + Φ both carry ⊥. Then T + Φ is a Herbrand tableau and T + Φ is closed
just in case T is closed.

Lemma 17 (Contraction) Let T be a Herbrand tableau whose root carries Σ .
Γ,E,E. Then we can construct a tableau T ′ whose root carries Σ.Γ,E, where T ′ is
closed if and only if T is, where the height of T ′ is at most the height of T and where
there is a one-to-one correspondence (also preserving order of inferences) that takes
any inference of T ′ to an inference with the same principal and side expressions in
T .

These lemmas follow from straightforward induction on the structure of tableaux.
To define interchanges of inference, consider two inferences O and D on the

same branch in a tableau T , with O the original and D the derivative. We say that O
and D are adjacent when the numerator of D is in fact a denominator of O. Suppose
O and D are adjacent, and D does not originate in O; then rooted at O in T we have
the following scenario (although of course D may apply to any denominator of O):

Σ.Γ
Ψ

T1D . . .TmD
D

T2O . . .TnO
O

Then the tableau T ′ interchanges O and D in T if T ′ is exactly like T except that the
order of O and D along the branch has changed. Explicitly, such a T ′ must consist
of T without the subtree rooted at O; in place of this subtree, T ′ must include a new
subtree rooted with an instance of D, with adjacent instances of O below, and for the
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subtrees below copies (possibly weakened) of T1D, . . .,TmD and T2O, . . .,TnO. Since
the leaves of T ′ are then just the leaves of T , T ′ is closed if and only if T is.

We can now present the basic result about inference in classical Herbrand infer-
ence systems.

Lemma 18 (Interchange) Suppose T is a Herbrand tableau and O and D are adja-
cent inferences in T neither of which originates in the other. Then there is a tableau
T ′ that interchanges O and D in T .

Proof. The proof consists of a simple analysis of the possible cases. The common
reasoning behind these many cases shows how interchanges can be accomplished
according to a few general schemas that describe how expressions should be prop-
agated through tableau lines. We illustrate these schemas here with a case study of
the positive tableau rules for ∨ and ¬; the schemas can also be presented in abstract
generality, as in [Kleene, 1951], in a more rigorous (but perhaps less perspecuous)
style.

First, we consider the interchange of two positive (¬) inferences; we start with
the following configuration:

Σ . Γ, t¬Aµ
X , t¬Bν

Y
Σ . Γ, t¬Aµ

X , fAµ
X , t¬Bν

Y
Σ . Γ, t¬Aµ

X , fAµ
X , t¬Bν

Y , fBν
Y

T

Interchanging the inferences can be accomplished by adjusting the intermediate
tableau line to carry fBν

Y —the side expression of the former derivative inference—in
place of fAµ

X—the side expression of the former original inference:

Σ.Γ, t¬Aµ
X , t¬Bν

Y
Σ.Γ, t¬Aµ

X , t¬Bν
Y , fB

ν
Y

Σ.Γ, t¬Aµ
X , fA

µ
X , t¬Bν

Y , fB
ν
Y

T

Next, suppose we start with an original positive (¬) inference and a derivative pos-
itive (∨), thus:

Σ.Γ, t¬Aµ
X , tB∨Cν

Y
Σ.Γ, t¬Aµ

X , fA
µ
X , tB∨Cν

Y
Σ.Γ, t¬Aµ

X , fA
µ
X , tB∨Cν

Y , tB
ν
Y

T ′
Σ.Γ, t¬Aµ

X , fA
µ
X , tB∨Cν

Y , tC
ν
Y

T ′′
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The tableau that interchanges these inferences is:

Σ.Γ, t¬Aµ
X , tB∨Cν

Y
Σ.Γ, t¬Aµ

X , tB∨Cν
Y , tB

ν
Y

Σ.Γ, t¬Aµ
X , fA

µ
X , tB∨Cν

Y , tB
ν
Y

T ′

Σ.Γ, t¬Aµ
X , tB∨Cν

Y , tC
ν
Y

Σ.Γ, t¬Aµ
X , fA

µ
X , tB∨Cν

Y , tC
ν
Y

T ′′

Now suppose we start with an original positive (∨) inference and a derivative pos-
itive (¬), thus:

Σ.Γ, t¬Aµ
X , tB∨Cν

Y
Σ.Γ, t¬Aµ

X , tB∨Cν
Y , tB

ν
Y

Σ.Γ, t¬Aµ
X , fA

µ
X , tB∨Cν

Y , tB
ν
Y

T ′

Σ.Γ, t¬Aµ
X , tB∨Cν

Y , tC
ν
Y

T ′′

Interchanging these inferences for the first time calls for weakening:

Σ.Γ, t¬Aµ
X , tB∨Cν

Y
Σ.Γ, t¬Aµ

X , fA
µ
X , tB∨Cν

Y
Σ.Γ, t¬Aµ

X , fA
µ
X , tB∨Cν

Y , tB
ν
Y

T ′
Σ.Γ, t¬Aµ

X , fA
µ
X , tB∨Cν

Y , tC
ν
Y

T ′′+ fAµ
X

In the case where the unary rule is a Herbrand rule, the schema also calls for weak-
ening T ′′ by any new typings that the rule introduces.

A final representative is provided by the interchange of two positive ∨ infer-
ences. Initially, then, we have:

Σ.Γ, tA∨Bν
Y , tC∨Dµ

X
Σ.Γ, tA∨Bν

Y , tA
ν
Y , tC∨Dµ

X
Σ.Γ, tA∨Bν

Y , tA
ν
Y , tC∨Dµ

X , tC
µ
X

T ′
Σ.Γ, tA∨Bν

Y , tA
ν
Y , tC∨Dµ

X , tD
µ
X

T ′′

Σ.Γ, tA∨Bν
Y , tB

ν
Y , tC∨Dµ

X
T ′′′

This interchange requires not only weakening but also the copying of the tableau
T ′′′:

Σ.Γ, tA∨Bν
Y , tC∨Dµ

X
Σ.Γ, tA∨Bν

Y , tC∨Dµ
X , tC

µ
X

Σ.Γ, tA∨Bν
Y , tA

ν
Y ,

tC∨Dµ
X , tC

µ
X

T ′

Σ.Γ, tA∨Bν
Y , tB

ν
Y ,

tC∨Dµ
X , tC

µ
X

T ′′′+ tCµ
X

Σ.Γ, tA∨Bν
Y , tC∨Dµ

X , tD
µ
X

Σ.Γ, tA∨Bν
Y , tA

ν
Y ,

tC∨Dµ
X , tD

µ
X

T ′′

Σ.Γ, tA∨Bν
Y , tB

ν
Y ,

tC∨Dµ
X , tD

µ
X

T ′′′+ tDµ
X

Given these schemas for interchanges—which classify interchanges based on the
number of denominators in the two inferences to be exchanged—any particular in-
terchange can be established by showing that any side conditions on the application
of the inference rule continue to hold in the transformed proof. But, as is easily ver-
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ified by inspection of Definition 32, the side conditions on Herbrand tableau rules
depend only on the form of the principal and side expressions, the modal regime S
and some typing ΞS. And the principal and side expressions of the inference, the typ-
ing ΞS, and of course the modal regime S are unchanged from the original tableau
to the transformed tableau.

3.3 Soundness
The idea behind the soundness of any Herbrand tableau calculus is that the struc-
ture of Herbrand terms provides enough information to reconfigure a tableau (by an
inductive process of interchanges of inference) so that equivalents of the eigenvari-
able conditions are enforced. For the modal Herbrand tableau calculus of Defini-
tion 32, it is easiest to perform this reconfiguration in steps. The first step ensures
that no branch contains a general inference for any term x that occurs closer to the
root than a Herbrand inference that introduces x. The next step simplifies the proof
to eliminate duplicate Herbrand inferences and extraneous general inferences from
any branch. Finally, we rewrite the simplified reordered proof in terms of the tableau
rules of the first-order tableau calculus.

We begin by describing a relation< on inferences in any Herbrand tableau T .

Definition 34 Let R and R′ be two inferences in a Herbrand tableau T . Then R<R′

if

1. R′ is distinct from R, and R′ originates in R

2. R is a Herbrand rule introducing x, and R′ is a general rule with instance x

3. There is an inference R′′ with R < R′′ and R′′ < R′.

Lemma 19 < is a transitive, asymmetric relation.

Proof. Clause 3 directly ensures that < is transitive. It remains to show that we
never have both R< R′ and R′ < R. First, observe that if R< R′ and R tracks x then
R′ tracks x. This follows inductively from the definition of <. If R′ originates in R
then R′ must track x by preservation. If R is a Herbrand inference, then every term x
that R tracks is a subterm of the Herbrand term h that R introduces. Since R′ tracks h,
R′ tracks x. Then the transitive case is derived by applying the induction hypothesis
to R′′ and then R′. Thus, if R< R′ and R′ < R then R tracks x just in case R′ tracks x.

Now, we claim that if R < R′ and R tracks x just in case R′ tracks x, then R′

orginates in R and R 6= R′. We show this inductively from the definition of <. The
first case is trivial: the case is just that R′ originates in R and R 6= R′. Next, suppose
R is a Herbrand inference introducing h and R′ is a general inference with instance h.
Then R′ tracks h but R cannot track h because h contains as a proper subterm every
term that R tracks. So this case is impossible. Then the transitive case follows by
induction hypothesis and the transitivity of the originates relation.
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If R<R′ and R′<R, we have R<R by transitivity, and certainly R tracks x if and
only if R tracks x. Therefore by the previous argument R 6= R. This is impossible.

Lemma 20 (Introduction) Any Herbrand proof T may be transformed into an-
other Herbrand proof T ′ by interchanges of inference with the following property:
for any pair of inferences R and R′ on a branch in T ′, if R<R′ then R is the original
inference and R′ is the derivative inference.

Proof. Given a Herbrand tableau T , say an inference R′ is misplaced if there is an-
other inference R with R< R′, where R′ is the original inference and R is the deriva-
tive inference. With this terminology, the tableau T ′ we want is simply a Herbrand
proof with no misplaced inferences. We will show that T can be transformed by
interchanges of inference in such a way as to eliminate misplaced inferences. The
argument is by induction on the number of misplaced inferences in the proof; we
show how to transform T with n+1 misplaced inferences into T ′ with n misplaced
inferences.

Since T is finite, it must contain a misplaced inference M with the property that
no other misplaced inference applies to a tableau line derivative from M. Let TM be
the subproof of T rooted at M; we will construct a subproof T ′M without misplaced
inferences from TM by interchanges of inference. The tableau T ′ with n misplaced
inferences that we need is then obtained from T by replacing TM with T ′M. The proof
of the lemma is thereby reduced to the proof of the following proposition.

Proposition 21 Let TM be a Herbrand tableau in which only the root inference is
misplaced. TM can be transformed into a Herbrand tableau T ′M without misplaced
inferences by interchanges of inference.

We will call a Herbrand tableau in which only the root inference is misplaced a
penultimate tableau. By the height of an inference G in TM, we mean the number
of inferences that intervene on the branch from the root to G. Let the degree of a
penultimate tableau TM rooted with inference M be the sum of the heights of the in-
ferences L in TM for which L<M. Since M 6<M, a penultimate Herbrand tableau of
degree zero has no misplaced inferences. Now we assume the proposition true for
all penultimate Herbrand tableaux of degree d or less, and consider a penultimate
tableau TM of degree d + 1 rooted in inference M. At least one subproof rooted at a
denominator of M must contain an inference L with L<M. Call the adjacent infer-
ence to M in this subproof D.

Observe that D cannot originate in M. For if it did, we would have M < D, and
hence by transitivity L < D, and by asymmetry L 6= D. But since L and D are on
a common branch that means D is misplaced, contradicting our assumption on M.
This means that we can interchange M and D according to the schemas of Lemma 18.
After the interchange, the new subproofs rooted at M continue to have only M mis-
placed, but now must have lower degree, since the height of each inference above
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D has been reduced by one. An illustration will make this point obvious; say M and
D are binary inferences:

Φ
Φ′

T ′ T ′′ D
T ′′′ M

We interchange M and D as follows:

Φ
Φ′′

T ′ T ′′′+ M
Φ′′′

T ′′ T ′′′+ M
D

The subproofs rooted at M will consist of inferences from T ′′′ whose height remains
the same plus inferences from T ′ or T ′′ whose height is reduced by one. Thus we
can apply the induction hypothesis to obtain new subproofs. We obtain T ′R by re-
combining the new subproofs using the D inference.

This completes the proof of the proposition and the lemma.
The next step is to ensure that the Herbrand inferences that apply along any

branch do not have identical principal expressions.

Lemma 22 A Herbrand proof T may be transformed into another Herbrand proof
T ′ with two properties: there is a one-to-one correspondence (also preserving order
of inferences) that takes any inference of T ′ to an inference with the same principal
and side expressions in T ; and if R and R′ are two Herbrand inferences on the same
branch in T ′ then the side expressions of R and R′ are distinct.

Proof. By induction on the number of pairs of Herbrand inferences R and R′ that
apply on a common branch with identical side expressions. If there is no such pair,
we can use T as T ′. So suppose the claim true for tableaux with n pairs or fewer, and
consider a proof with n + 1 pairs. Consider any pair R and R′; let R be the original
and R′ the derivative, and consider the tableau line that serves as the denominator of
R′. This line must take the form Σ.Γ,E,E where E is the side expression of R′; one
E derives from R′ and given the preservation of formulas in tableau lines, another E
must derive from the side expression of R. Therefore we can apply the contraction
lemma to the subproof TD rooted at the denominator of R′ to obtain a tableau whose
root carries Σ.Γ,E. But this is the line to which R′ applies; therefore we can use
TD in place of the original subproof rooted at R. The result contains at most n bad
pairs.

As we shall see, these lemmas are enough to guarantee that when a Herbrand rule
applies, the term h that it introduces is new to the sequent. We still need to ensure,
however, that Herbrand terms are only used after being introduced; this requires a
final tranformation on proofs.

Definition 35 (essential) Let T be a Herbrand proof with TL as a subproof, and let
Σ.Γ be the line that the root of TL carries. An expression occurrence E in Γ is es-
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sential if there is a closure inference in TL that tracks every t that E tracks. Likewise,
a typing statement µ/µη : i in Σ is essential if there is a closure instance in TL that
tracks η and a typing statement h : µ in Σ is essential if there is a closure instance
in TL that tracks h.

Given a tableau TL rooted with Σ.Γ, we introduce the following notation:

ΣE for {E ∈ Σ | E is essential }
ΓE for {E ∈ Γ | E is essential }

Lemma 23 (essential) Suppose T is a Herbrand proof. Then T may be trans-
formed into another Herbrand proof T ′ with two properties: there is a one-to-one
correspondence (also preserving order of inferences) that takes any inference of T ′
to an inference with the same principal and side expressions in T ; and whenever an
inference L applies in T , in some denomator of L either the side expression of L or
the typing introduced by L is essential.

Proof. We describe T ′ as required by induction on the structure of tableaux; we
construct T ′ so that if the root of T ′ carries Σ.Γ, every typing in Σ and expression
in Γ is essential—this is the same tableau line as ΣE .ΓE.

Suppose T consists of an application of the closure rule

Σ.Γ, tAµ
X , fA

µ
Y

⊥

Clearly tAµ
X and fAµ

Y are essential here: any term they track, they track. So it suf-
fices to show the side conditions are met, namely ΞX ⊆ ΣE and ΞY ⊆ ΣE . Take ΞX ;
by definition, it consists of the appropriate µ/µη : i for each modal Herbrand term η
that occurs in X (possibly as a subterm) and the appropriate h : µ for each first-order
Herbrand term h that occurs in X (possibly as a subterm). Each such expression oc-
curs in Σ, since we start from a closure inference, and is clearly essential in the line.
In sum, then, we construct the closure inference:

ΣE .ΓE, tA
µ
X , fA

µ
Y

⊥

The same reasoning goes for the > closure inference.
Suppose the hypothesis holds for closed tableaux of height h, and consider a

tableau of height h + 1. We can construct a revised tableau T ′ by case analysis on
the inference that applies at the root of T . The case for positive ∨ illustrates the
complexities involved in any of these cases. We start from

Σ.Γ, tA∨Bµ
X

Σ.Γ, tA∨Bµ
X , tA

µ
X

T1

Σ.Γ, tA∨Bµ
X , tB

µ
X

T2
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We apply the induction hypothesis to the two subproofs, to obtain a derivation T ′1
for Σ1E .Γ1E and a derivation T ′2 for Σ2E .Γ2E. (These tableau lines need not agree,
not just because of the side formulas but also because the different closures in the
two subproofs induce different essential expressions.) If one of these subderivations
does not contain a side formula of the root inference (or generally a new typing intro-
duced by the rule), we simply use that subderivation as our resulting T ′. Otherwise,
we weaken the two subderivations and construct the new proof. Explicitly, letting
Σ1N be Σ2E\Σ1E , Σ2N be Σ1E\Σ2E , Γ1N be Γ2E\Γ1E together with an occurrence of
the principal expression of the root inference if necessary, and Γ2N be Γ1E\Γ2E to-
gether with an occurrence of the principal expression of the root inference if neces-
sary, we get:

Σ′ .Γ′, tA∨Bµ
X

Σ′ .Γ′tA∨Bµ
X , tA

µ
X

T ′1 + Σ1N + Γ1N

Σ′ .Γ′, tA∨Bµ
X , tB

µ
X

T2 + Σ2N + Γ2N

Σ′ is thus Σ1E ∪Σ2E , while Γ′ contains the expression occurrences (other than the
principal expression) either common to Γ1E and Γ2E , or present in Γ1N or in Γ2N. To
show that the new tableau only contains essential inferences, it suffices to consider
the new inference at the root. It is essential because one of the side expressions is
essential. Likewise, we know that all elements of Σ′ and Γ′ are essential because
each is essential in some subderivation. Finally, since the side expression tracks all
the terms the principal expression tracks, the principal expression is essential. This
shows that the constructed derivation has the required properties. The reasoning for
the other cases is similar.

We are now ready to prove the main result.

Theorem 3 (Herbrand soundness) Suppose Γ contains sentences of L(CONST)
(prefixed by ε). Then if there is a Herbrand proof of .Γ then there is a closed first-
order ground tableau for .Γ.

Proof. Let T be a Herbrand proof of .Γ. By Lemma 20, we construct a Herbrand
proof T ′ that respects the < ordering on inferences. We then apply Lemma 22 to
T ′ obtain a Herbrand proof T ′′ which respects < and where a given Herbrand rule
applies at most once on each branch. We then apply Lemma 23 to T ′′ to obtain a
Herbrand proof T ′′′ which respects <, where a given Herbrand rule applies at most
once on each branch, and every inference is essential. At this point we can weaken
T ′′′ as necessary so that the end-sequent is again .Γ; call the result T ∗. We will
construct a closed first-order ground tableau by induction from T ∗.

Place the first-order Hebrand terms hi in one-to-one correspondence with first-
order parameters ai, and likewise place the modal Herbrand terms ηi in one-to-one
correspondence with parameters αi. If ueX is a signed, tracked prefixed formula, let
ue denote the result of replacing each top-level first-order Herbrand term hi in ue
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by ai and each top-level modal Herbrand term ηi by αi. By Γ denote the multiset
consisting of ue for each ueX in Γ. Similarly, let µ/µηi : i and t : µ be the results of
replacing each top-level modal and first-order Herbrand term by the corresponding
modal and first-order parameters, and extend the notation to Σ.

We are given a Herbrand proof T ∗ whose root carries Σ.Γ, such that:

1. no Herbrand term that occurs in Γ is introduced by a Herbrand inference in
T ∗;

2. Σ is a Herbrand typing for Γ;

3. the side expression of any inference L in T ∗ is essential in some denominator;

4. no general inference L with instance x and no Herbrand rule H introducing x
lies on a path from the root to a Herbrand rule introducing x.

We construct by induction a first-order ground proof of Σ .Γ. Since the proof T ∗
given by the application of these lemmas meets these conditions (insofar as Σ empty
is a Herbrand typing for a sequent Γ containing no Herbrand terms), this construction
will complete the proof of the theorem.

The base case is the closure rule; it suffices to observe that if Γ contains a com-
plementary pair of literals so does Γ.

Assuming the claim true for proofs of height n or less, consider a proof of height
n+1. For boolean inferences, we apply the induction hypothesis to immediate sub-
derivations and recombine, exploiting that A◦B≡ A◦B.

Suppose T ∗ ends in a general rule other than extra special necessity. We can take
a positive necessity rule as a representative case. Then T ∗ looks thus:

Σ.Γ, t2iA
µ
X

Σ.Γ, t2iA
µ
X , tA

ν
X,N,ν

T †

We will apply the induction hypothesis to the immediate subderivation T †. We need
to show first that no Herbrand term in the sequence N,ν is introduced by a Herbrand
inference in T †. We know this because by assumption, in T ∗, no general inference
L with instance x lies on a path from the root to a Herbrand rule introducing x. We
also need that Σ is a Herbrand typing for tAν

X,N,ν. Now, by hypothesis the infer-
ence is essential; therefore some closure inference above has the form Σ′ .Γ′ where
ΞX,N,ν ⊆ Σ′. In particular then Σ′ contains a typing for each Herbrand term in the
sequence N,ν. But we have seen that this typing cannot derive from an inference
in T †. Therefore Σ also contains a typing for each Herbrand term in the sequence
N,ν and since Σ is a Herbrand typing Σ too must contain ΞX,N,ν. T † inherits the
remaining prerequisites from T ∗.
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We apply the induction hypothesis to obtain a closed first-order tableau T o and
apply the first-order necessity rule to obtain our result:

Σ.Γ, t2iAµ

Σ.Γ, t2iAµ, tAν
X,N,ν

T o

Since we have established that S,Σ.µ/ν : i we verify the needed side condition that
S,Σ.µ/ν : i.

Alternatively, suppose T ∗ ends in a Herbrand rule other than extra special ne-
cessity. We can take a positive possibility rule as a representative case. Then T ∗
looks thus:

Σ.Γ, t3iA
µ
X

Σ,µ/µη : i.Γ, t3iA
µ
X , tA

µη
X,η

T †

We will again apply the induction hypothesis to the immediate subderivation T †.
Again, we show first that η is not introduced by a Herbrand inference in T †. We
know this because by assumption, in T ∗, no Herbrand inference L introducing x
lies on a path from the root to another Herbrand rule introducing x. We also need
that Σ,µ/µη : i is a Herbrand typing for tAµη

X,η. But η is the only new Hebrand term
here and the new typing specifies an appropriate expression for it. So the induction
hypothesis applies and the resulting proof T o can be straightforwardly recombined
with the appropriate rule to yield the desired result:

Σ.Γ, t3iAµ

Σ,µ/µη : i.Γ, t3iAµ, tAµη

T o

Finally, for the extra special necessity case, we simply combine the two pieces
of reasoning to show that even with both the general and the Herbrand instantiation,
the induction hypothesis extends to the subderivation and the first-order tableau rule
can be reapplied to the result.

3.4 Completeness
The completeness proof for Herbrand proofs is straightforward by comparison; in
fact, the ideas involved are implicit in the preceding discussion. We can simply
rewrite a closed first-order tableau using the rules of the Herbrand tableau calculus.

Let Σ.Γ be a first-order tableau line. Let σP be a map from the first-order pa-
rameters to first-order Herbrand terms, let σκ be a map from the modal parameters
to modal Herbrand terms, and let σx be a function taking occurrences of formulas
in Γ to sequences of Herbrand terms. Say σ = 〈σP,σκ,σx〉—we call σ a Herbran-
dization. For an expression e = uAµ in Γ we can introduce the notation σ(uAµ) to
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denote uσP(A)σκ(µ)
σx(e) and indicate by σ(Γ) the multiset {σ(e) | e ∈ Γ}. Likewise, we

can define σ(Σ) as:

{σP(t) : σκ(µ)(= σ(t : µ)) | t : µ∈ Σ}∪{σκ(µ)/σκ(ν) : i(= σ(µ/ν : i)) | µ/ν : i∈ Σ}

Theorem 4 (Completeness) Let Γ be a set of formulas of L(CONST) prefixed by ε.
If there is a closed first-order ground tableau for .Γ there is a Herbrand proof of .Γ.

Proof. We prove by induction on the height of tableaux that we can construct a Her-
brand proof whose root carries σ(Σ).σ(Γ) from a closed first-order ground tableau
T whose root carries Σ.Γ and a Herbrandization σ for which σ(Σ) is a Herbrand
typing for σ(Γ). This will establish the result, because for the empty typing, σ() re-
mains the empty typing, which is a Herbrand typing for any multiset containing no
first-order or modal parameters.

The base case is the closure rule; first we observe that if Γ contains a comple-
mentary pair of literals or the inconsistent literal so does σ(Γ). Moreover, since σ(Σ)
is a Herbrand typing for σ(Γ), certainly ΞX ⊆ σ(Σ) for X = σx(e) (for the requisite
expression occurrences e). So the Herbrand closure rule applies to σ(Σ).σ(Γ).

Assuming the claim true for proofs of height n or less, consider a proof of height
n+1. For boolean inferences, we apply the induction hypothesis to immediate sub-
derivations and recombine, exploiting that σA◦B≡ σA◦σB.

Suppose T ∗ ends in a general rule other than extra special necessity. We can take
a positive necessity rule as a representative case. Then T looks thus:

Σ.Γ, t2iAµ

Σ.Γ, t2iAµ, tAν

T ′

From the side condition on instantiation in first-order tableaux, we know that S,Σ.
µ/ν : i. Therefore S,σ(Σ).σ(µ)/σ(ν) : i. It follows that there are terms N,σ(ν) that
we can add to X = σx(t2iAµ) such that S,ΞX,N,ν .σ(µ)/σ(ν) : i. Hence we define
σ′x exactly like σx except σ′x(tAν) = X,N,ν. We apply the induction hypothesis to T ′

using σ′ = 〈σP,σκ,σ′x〉 and recombine using the Herbrand positive necessity rule.
Alternatively, suppose T ends in a Herbrand rule other than extra special neces-

sity. We can take a positive possibility rule as a representative case. Then T looks
thus:

Σ.Γ, t3iAµ

Σ,µ/µα : i.Γ, t3iAµ, tAµα

T ′

We will again apply the induction hypothesis to the immediate subderivation T ′ us-
ing a new Hebrandization σ′. To do this, we construct σ′κ exactly like σκ except that
if the principal expression is e, σ′κ(α) = η = ηA(σx(e),σκ(µ)). We define σ′x to be
exactly like σx except σ′x(tAµα) = σx(e),η. We use σ′ = 〈σP,σ′κ,σ′x〉. Since α does
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not occur in Γ or Σ, σ′(Σ) = σ(Σ) and σ′(Γ) = σ(Γ). Moreover, σ′(Σ,µ/µα : i) must
be a Herbrand typing for σ′(Γ,e, tAµα) given the introduction of the appropriate Her-
brand term η.

To obtain the needed Herbrand proof, we apply the positive Herbrand possibility
rule to the resulting subderivation.

Finally, for the extra special necessity case, we simply combine the two pieces
of reasoning to show that even with both the general and the Herbrand instantiation,
the induction hypothesis extends to the subderivation and the first-order tableau rule
can be reapplied to the result.

4 Lifted Deduction
The Herbrand tableau calculus affords flexible search for the structure of proofs,
because of its permutabilities of inference. However, proof search in the Herbrand
tableau calculus still suffers from nondeterminism at modal and quantifier rules,
where a bound variable can be instantiated by an arbitrary concrete term. To de-
scribe computational proof search strategies precisely, we must find an alternative
presentation of inference which lacks this nondeterminism. We will derive this cal-
culus by the lifting constructions described in this section.

Lifting is a strategy that allows the choice of terms for instantiation at modal and
quantifier rules to be delayed until sufficient information is available from the form
of the proof to determine the value that is needed. Rules that require instantiation are
reformulated to introduce a generic variable, called a logic variable, as a placeholder
for the specific term which must ultimately be provided. Inference figures such as
the closure rule which require terms to match introduce constraints on the values
of logic variables. When inference figures have side conditions, the values of logic
variables must be chosen in such a way that the side conditions are met; hence, side
conditions are also reformulated to introduce appropriate constraints.

These various constraints are accumulated from a derivation in the lifted calcu-
lus. A constraint-satisfaction step is then required to obtain an ordinary derivation
from the lifted derivation. In this step, we must construct a substitution of values
to logic variables under which all of the constraints are satisfied. If we find such a
substitution, we can apply the substitution to the lifted derivation to obtain a corre-
sponding ordinary derivation. However, if there is no such substitution, no ordinary
derivation corresponds to the lifted derivation.

In a lifted calculus, then, the nondeterminism of the choice of term for instan-
tiation is factored from statement of the proof rules to the algorithm for constraint-
satisfaction. But the constraint-satisfaction step, when analyzed in its own right, of-
ten turns out to have sharply delineated complexity. For example, in the case of first-
order logic (without equality), a linear time unification algorithm suffices to solve
the constraints associated with a deduction—see [Martelli and Montanari, 1982].
Hence the lifted calculus is useful not only for carrying out proof search in prac-
tice, but also, in many cases, for establishing theoretical bounds on the com-
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plexity of proof search problems in logical fragments [Lincoln and Shankar, 1994,
Voronkov, 1996, McAllister and Rosenblitt, 1991].

This lifting strategy can be applied to any proof system; here, for example, we
can use it for the ground proof system of section 2 or the Herbrand proof system
of section 3. We treat the Herbrand proof system first in full detail, since this has
the most direct relevance for practical proof search. Then we sketch how an analo-
gous construction can be developed for the ground proof system. Our presentation
of lifting in terms of constraint-satisfaction follows [Voronkov, 1996] most closely.

4.1 Formalism
We begin the construction of the lifted calculus by assuming a countable set X of
logic variables disjoint from any of the symbols we have already considered. The
ordinary logic will describe some set of terms T by which bound variables can be
instantiated for the purposes of proof; in the lifted calculus we will simply use logic
variables from X as placeholders. Thus, where the ordinary proof system deals with
some function of expressions in a language parameterized by T—Φ(T)—we set up
a related set of expressions Φ(X ) to work with in the lifted calculus.

Considering for example the Herbrand inference system, the ordinary terms con-
sist of the two sets introduced in Definition 29: the set CONST∪PH describing con-
stants and first-order Herbrand terms, and the set Π(κϒ) of Herbrand prefixes. It
is convenient to partition X into countable sets XP and Xκ to abstract these different
kinds of terms. The basic expressions in Herbrand tableaux are prefixed formulas in
the language L(CONST∪PH)Π(κϒ). Accordingly, lifted Herbrand tableaux appeal to
prefixed formulas in the language L(CONST∪XP)Xκ; the formulas are then signed
and tracked by variables in X :

Definition 36 (Parameterized signed, tracked expressions) If E denotes the ex-
pressions of some class, then the parameterized signed, tracked expressions of that
class are expressions of the form teI or feI where e is an expression of e and I is a
finite sequence (possibly empty) of elements of X .

The general correspondence between the logic variables in a proof, and the or-
dinary terms from T that the logic variables are meant to represent, is mediated by
a substitution.

Definition 37 (Substitution) A substitution θ is a partial mapping: X → T, where
θ(x) is defined for only finitely many variables x.

A substitution can be represented as a finite set of ordered pairs θ =
{〈x1, t1〉, . . .〈xn, tn〉}, where xi are distinct variables and ti are terms from T .
For lifted Herbrand tableaux, we restrict our attention to substitutions which send
variables in XP to terms in CONST∪PH and which send variables in Xκ to prefixes
in Π(κϒ).



FIRST-ORDER MULTI-MODAL DEDUCTION 55

Suppose ϕ is an expression in Φ(X ) in which logic variables Z occur, and that θ
is defined for all the logic variables in Z. By extension, we can apply θ to ϕ to give
an expression θ(ϕ) in Φ(T) by replacing each occurrence of a logic variable x in ϕ
with an occurrence of θ(x).

Substitutions may be subject to constraints; for a lifted derivation, a constraint
expresses the conditions on a substitution that are required to obtain a corresponding
ground proof. If a substitution θ meets the conditions provided by the constraint C,
we say that θ satisfies C, written θ |= C. The formulation of constraints depends on
the conditions imposed by the tableau rules of a particular ordinary proof system;
we now describe the constraints required for lifted Herbrand tableaux.

Let T ⊆ X and let θ be a substitution defined on all the elements of T . We define
a Herbrand typing Σθ(T) consisting of an appropriate expression µ/µη : i for each
Herbrand prefix µη ∈ θ(T); and an appropriate expression t : µ for each first-order
Herbrand term t ∈ θ(T). We continue to use Ξθ(T) to describe the Herbrand typing
for Herbrand terms that occur in θ(T) (possibly as a subterm of a term in θ(T)).

Definition 38 (Atomic Herbrand constraints) The atomic constraints for lifted
Herbrand tableaux take the following forms and impose the following conditions
on substitutions:

• If X and T are lists of logic variables, then D(X;T) is an atomic constraint.
θ |= D(X;T) exactly when Ξθ(X) ⊆ Σθ(T).

• If x and y are logic variables or constants, then x = y is an atomic constraint.
θ |= x = y exactly when θ(x) = θ(y).

• If m and n are logic variables, A is a formula of L(CONST∪XP) and X is a
sequence of logic variables, then Ph(n,A,m;X) is an atomic constraint. θ |=
Ph(n,A,m;X) exactly when θ(n) = θ(m)ηθ(A)(θ(m),θ(X)).

• If m and n are logic variables, i indexes a modality, and X is a sequence of
logic variables, then Nh(m,n, i;X) is an atomic constraint. θ |= N(m,n, i;X)
just in case there is a typing derivation S,Ξθ(X).θ(m)/θ(n) : i.

• If m and n are logic variables, A is a formula of L(CONST∪XP), i indexes
a modality and X is a sequence of logic variables, then SNh(n,A, i,m;X)
is an atomic constraint. θ |= SNh(n,A, i,m;X) just in case θ(n) =
θ(m)ηs(i,θ(A))(θ(m),θ(X)).

• If m, n and o are logic variables, A is a formula of L(CONST∪XP), i indexes
a modality and X is a sequence of logic variables, then ESNh(o,A, i,m,n;X)
is an atomic constraint. θ |= ESN(o,A, i,m,n;X) just in case θ(o) =
θ(m)ηe(i,θ(m),θ(A))(θ(n),θ(X)).
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• If t and m are logic variables, A is a formula of L(CONST∪XP), and X is a
sequence of logic variables, then Eh(t,A,m;X) is an atomic constraint. θ |=
Eh(t,A,m;X) just in case θ(t) = hθ(A)(θ(m),θ(X)).

• If t and m are logic variables and X is a set of logic variables, then Uh(t,m;X)
is an atomic constraint. θ |= Uh(t,m;X) just in case there is a typing deriva-
tion S,Ξθ(X).θ(t) : θ(m).

Constraints are assembled in proofs using two inductive constructions: conjunction
and existential quantification:

Definition 39 (Herbrand constraints) The Herbrand constraints include the
atomic Herbrand constraints, together with constraints defined as follows:

• If C is a Herbrand constraint and D is a Herbrand constraint then C∧D is a
Herbrand constraint; θ |= C∧D just in case θ |= C and θ |= D.

• If C is a Herbrand constraint and y is a logic variable, then ∃yC is a con-
straint. θ |= ∃yC just in case there is some substitution θ′ exactly like θ, ex-
cept possibly in that θ′ may assign a new value to y, such that θ′ |= C. If N is
a finite sequence of logic variables y1, . . .,yn, we will use ∃NC to abbreviate
∃y1 . . .∃ynC.

We can now describe the construction of lifted tableaux. In general, a line in
a lifted tableau must pair a constraint with a specification from which an ordinary
tableau line can be derived by substitution. For lifted Herbrand tableaux, we use as
tableaux lines expressions of the form:

T .Γ ·C

T is a finite sequence of logic variables, Γ is a finite multiset of parameterized signed,
tracked expressions of L(CONST∪XP)Xκ , and C is a Herbrand constraint. Our in-
tention is that, on a substitution θ satisfying C, such an expression will correspond
to the ordinary Herbrand tableau line Σθ(T) . θ(Γ). We say a logic variable is used
in a lifted tableau line if it occurs in T or if it occurs in Γ. In general, we will write
tableau rules where any logic variable introduced in a denominator of a tableau rule
cannot be used in the numerator. This is indicated by the parenthetical—v new—
accompanying the specifications of the tableau rules.

Definition 40 (Tableau rule) For lifted first-order multi-modal Herbrand deduc-
tions over a regime S, we will use the following tableau rules:

1. closure:

T .Γ, tR(s1, . . ., sn)µ
X , fR(t1, . . ., tn)ν

Y ·D(X;T)∧D(Y ;T)∧µ = ν∧ s1 = t1∧ . . .sn = tn
⊥
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T .Γ, f>µ
X ·D(X;T)
⊥

2. conjunctive:

T .Γ, tA∧Bµ
X ·C

T .Γ, tA∧Bµ
X , tA

µ
X , tB

µ
X ·C

T .Γ, fA∨Bµ
X ·C

T .Γ, fA∨Bµ
X , fA

µ
X , fB

µ
X ·C

3. disjunctive:

T .Γ, fA∧Bµ
X ·C∧D

T .Γ, fA∧Bµ
X , fA

µ
X ·C T .Γ, fA∧Bµ

X , fB
µ
X ·D

T .Γ, tA∨Bµ
X ·C∧D

T .Γ, tA∨Bµ
X , tA

µ
X ·C T .Γ, tA∨Bµ

X , tB
µ
X ·D

4. negation:
T .Γ, t¬Aµ

X ·C
T .Γ, t¬Aµ

X , fA
µ
X ·C

T .Γ, f¬Aµ
X ·C

T .Γ, f¬Aµ
X , tA

µ
X ·C

5. possibility (n new):

T .Γ, f2iA
µ
X · ∃n(C∧Ph(n,2iA,µ;X))

T,n.Γ, f2iA
µ
X , fA

n
X,n ·C

T .Γ, t3iA
µ
X · ∃n(C∧Ph(n,3iA,µ;X))

T,n.Γ, t3iA
µ
X , tA

n
X,n ·C

6. necessity (n, N new):

T .Γ, t2iA
µ
X · ∃n∃N(C∧Nh(µ,n, i;X,N,n))

T .Γ, t2iA
µ
X , tA

n
X,N,n ·C

T .Γ, f3iA
µ
X · ∃n∃N(C∧Nh(µ,n, i;X,N,n))

T .Γ, f3iA
µ
X , fA

n
X,N,n ·C

7. special necessity—subject to the side condition that A(i) is one of KD, KDB,
KD4, KD5 or KD45, that i≤ j according to N (n new):

T .Γ, t2 jA
µ
X · ∃n(C∧SNh(n,2 jA, i,µ;X))

T,n.Γ, t2 jA
µ
X , tA

n
X,n ·C

T .Γ, f3 jA
µ
X · ∃n(C∧SNh(n,2 jA, i,µ;X))

T,n.Γ, f3 jA
µ
X , fA

n
X,n ·C
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8. extra special necessity—subject to the side conditions that A(i) is one of KD,
KDB, KD4, KD5 or KD45, that A( j) is one of K5, K45, KD5, KD45 or S5,
that i≤ j according to N (m, o, N new):

T .Γ,uAν
X · ∃m∃o∃N(C∧ESNh(o,A, i,m,ν;X,N))

T,o.Γ, t>o
X,N,o,uAν

X ·C

9. existential (h new):

T .Γ, t∃xAµ
X · ∃h(C∧Eh(h,∃xA,µ;X))

T,h.Γ, t∃xAµ, tA[h/x]µX,h ·C

T .Γ, f∀xAµ
X · ∃h(C∧Eh(h,∀xA,µ;X))

T,h.Γ, f∀xAµ
X , fA[h/x]µX,h ·C

10. universal (z, N new):

T .Γ, t∀xAµ
X · ∃z∃N(C∧Uh(z,µ;X,N, z))

T .Γ, t∀xAµ
X , tA[z/x]µX,N,z ·C

T .Γ, f∃xAµ
X · ∃z∃N(C∧Uh(z,µ;X,N, z))

T .Γ, f∃xAµ
X , fA[z/x]µX,N,z ·C

Once more, tableaux, branches, agreement and closure remain as in Definition 18
and following.

Definition 41 (Lifted Herbrand proof) A lifted Herbrand proof consists of a
closed, lifted Herbrand tableau for .Γ ·C together with a substitution θ such that
θ |= C.

The lifted calculus provides yet another sound and complete characterization of first-
order modal models. To show this, we will prove the correspondence lifted Her-
brand tableaux and ordinary Herbrand tableaux. In fact, we will set up a direct in-
ductive correspondence between derivations in the two systems. This argument is
presented in section 4.2.

4.2 Correctness
In this section, we prove the following theorem.

Theorem 5 (Correctness) Let T be a (finite) sequence of logic variables, let Γ be
a finite multiset of parameterized signed, tracked expressions of L(CONST∪XP)Xκ ,
and let θ be a substitution defined on all logic variables that occur in T and Γ. Then
the following conditions are equivalent:
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1. There is a closed Herbrand tableau for Σθ(T) .θ(Γ).

2. There is a constraint C and a closed lifted Herbrand tableau for T .Γ ·C with
θ |= C.

Proof (1⇒ 2). By induction on the structure of closed Herbrand tableaux.
The base case is a Herbrand tableau that consists of a closure inference; we take

the binary closure as representative:

Σθ(T) .θ(Γ), tθ(A1)θ(µ)
θ(X), fθ(A2)θ(ν)

θ(Y)
⊥

Now, since A1 is an atomic formula, it takes the form R(s1, . . ., sn); and since A2 is an
atomic formula with θ(A1) = θ(A2), A2 takes the form R(t1, . . ., tn). Indeed, we must
have θ(si) = θ(ti) for each i; since prefixes must match, we also have θ(µ) = θ(ν).
Moreover, because this is a Herbrand tableau, the side conditions Ξθ(X)⊆ Σθ(T) and
Ξθ(Y) ⊆ Σθ(T) hold. Therefore we have θ |= D(X;T), θ |= D(Y ;T), and θ |= si = ti
for each i.

Thus it follows not just that the following is a closed lifted Herbrand tableau:

T .Γ, tR(s1, . . ., sn)µ
X , fR(t1, . . ., tn)ν

Y ·D(X;T)∧D(Y ;T)∧µ = ν∧ s1 = t1∧ . . .sn = tn
⊥

but also that θ satisfies the associated constraint.
Now, assuming the hypothesis holds for closed Herbrand tableaux of height h or

less, consider a closed Herbrand tableau T of height h + 1. We construct the corre-
sponding closed lifted Herbrand tableau by case analysis on the inference at the root
of T .

As a representative Boolean inference (the other cases are similar), we consider
T of the form

Σθ(T) .θ(Γ), fθ(A)∧θ(B)θ(µ)
θ(X)

Σθ(T) .θ(Γ), fθ(A)∧θ(B)θ(µ)
θ(X) , fθ(A)θ(µ)

θ(X)
T ′

Σθ(T) .θ(Γ), fθ(A)∧θ(B)θ(µ)
θ(X), fθ(B)θ(µ)

θ(X)
T ′′

This analysis of T exploits the fact that θ(A∧B) is θ(A)∧θ(B). Application of the
induction hypothesis to T ′ and T ′′ yields closed lifted Herbrand tableaux T ′L and
T ′′L :

T .Γ, fA∧Bµ
X , fA

µ
X ·C

T ′L
T .Γ, fA∧Bµ

X , fB
µ
X ·D

T ′′L

It also yields that θ |= C and θ |= D. Thus we can recombine T ′L and T ′′L by the same
inference figure, to obtain the needed closed lifted Herbrand tableau (schematized
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below) with a constraint C∧D that θ satisfies:

T .Γ, fA∧Bµ
X ·C∧D

T ′L T ′′L

Suppose T ends in a possibility inference, for (a representative) example thus:

Σθ(T) .θ(Γ), t3iθ(A)θ(µ)
θ(X)

Σθ(T),θ(µ)/θ(µ)η.θ(Γ), t3iθ(A)θ(µ)
θ(X), tθ(A)θ(µ)η

θ(X),θ(µ)η
T ′

Let us introduce a fresh variable n for which θ is undefined (thereby working to sat-
isfy the lifted tableau novelty condition). Then we can define θ′ which agrees with
θ everywhere θ is defined, and where moreover θ′(n) = θ(µ)η. Under these condi-
tions θ′ |= Ph(n,3iA,µ;X)), reflecting the side condition on the choice of η for the
(ordinary) Herbrand possibility inference.

Now the root of T ′ carries a tableau line which may be written

Σθ′(T),θ′(n) .θ′(Γ), t3iθ′(A)θ′(µ)
θ′(X), tθ

′(A)θ′(n)
θ′(X),θ′(n)

We can therefore apply the induction hypothesis to obtain a closed lifted Herbrand
tableau T ′L , and construct:

T .Γt3iA
µ
X · ∃n(C∧Ph(n,3iA,µ;X))

T,n.Γ, t3iA
µ
X , tA

n
X,n ·C

T ′L

Now by induction θ′ |= C. It follows from the definition of θ′ and our earlier ob-
servation that θ |= ∃n(C∧Ph(n,3iA,µ;X))—hence the constructed derivation suf-
fices. Special necessity and existential inferences require similar reasoning—the in-
troduction of Herbrand terms for special necessity and existential inferences allow
the application for those inference figures of the strategy for proof transformation
illustrated here for the possiblity inference.

Next, suppose T ends in a necessity inference, for (a representative) example
thus:

Σθ(T) .θ(Γ), t2iθ(A)θ(µ)
θ(X)

Σθ(T) .θ(Γ), t2iθ(A)θ(µ)
θ(X), tθ(A)ν

θ(X),L,ν,

T ′

We introduce a fresh variable n0 to correspond to ν and a variable ni for each term
li in L (thereby working to satisfy the lifted tableau novelty condition); by N de-
note the sequence n1, . . .,nk. We introduce a substitution θ′ which extends θ such
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that θ(n0) = ν and such that θ(ni) = li; thus θ(N) = L. Again, we now have θ′ |=
Nh(µ,n, i;X,N,n), because of the side condition on the (ordinary) Herbrand neces-
sity inference.

Here the root of T ′ carries a tableau line which may be written

Σθ′(T) .θ′(Γ), t2iθ′(A)θ′(µ)
θ′(X), tθ

′(A)θ′(n)
θ′(X),θ′(N),θ′(n)

We can therefore apply the induction hypothesis to T ′ to obtain a closed lifted Her-
brand tableau T ′L , and construct:

T .Γt2iA
µ
X · ∃n∃N(C∧Nh(µ,n, i;X,N,n))
T .Γ, t2iA

µ
X , tA

n
X,N,n ·C

T ′L

Again by induction θ′ |= C, and hence θ |= ∃n∃N(C∧Nh(µ,n, i;X,N,n)). Universal
inferences can be handled by similar reasoning; indeed, despite the double condition
involved, so can extra special necessity inferences.

Proof (2⇒ 1). By induction on the structure of closed lifted Herbrand tableaux.
The base case is a lifted Herbrand tableau that consists of a closure inference;

again, we take the binary closure as representative:

T .Γ, tR(s1, . . ., sn)µ
X , fR(t1, . . ., tn)ν

Y ·D(X;T)∧D(Y ;T)∧µ = ν∧ s1 = t1∧ . . .sn = tn
⊥

By assumption, we have a substitution θ with

θ |= D(X;T)∧D(Y ;T)∧µ = ν∧ s1 = t1∧ . . .sn = tn

Now, we construct

Σθ(T) .θ(Γ), tR(θ(s1), . . .,θ(sn))θ(µ)
θ(X), fR(θ(t1), . . .,θ(tn))θ(ν)

θ(Y)
⊥

We must show that this has the form required for an ordinary Herbrand closure in-
ference. The satisfaction of the constraint guarantees this. In particular, we have
R(θ(s1), . . .,θ(sn))θ(µ) = R(θ(t1), . . .,θ(tn))θ(ν), thanks to the equalities which θ sat-
isfies. Moreover, we have Ξθ(X) ⊆ Σθ(T) and Ξθ(Y) ⊆ Σθ(T) in virtue of the con-
straints D(X;T) and D(Y ;T) that θ satisfies.

Now, assuming the hypothesis holds for closed lifted Herbrand tableaux of
height h or less, consider a closed lifted Herbrand tableau T of height h + 1. We
construct the corresponding closed ordinary Herbrand tableau by case analysis on
the inference at the root of T . Again, the flavor for the reasoning required in each
case is provided by the example cases of a boolean inference, a possibility inference
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and a necessity inference.
First, then, consider as T :

T .Γ, fA∧Bµ
X ·C∧D

T .Γ, fA∧Bµ
X , fA

µ
X ·C

T ′
T .Γ, fA∧Bµ

X , fB
µ
X ·D

T ′′

By assumption, we have a substitution θ such that θ |= C∧D. Hence θ |= C and
θ |= D; thus the induction hypothesis applies to T ′ and T ′′. We combine the result-
ing derivations T ′O and T ′′O into the following closed ordinary Herbrand tableau, as
needed:

Σθ(T) .θ(Γ), fθ(A)∧θ(B)θ(µ)
θ(X)

Σθ(T) .θ(Γ), fθ(A)∧θ(B)θ(µ)
θ(X) , fθ(A)θ(µ)

θ(X)
T ′O

Σθ(T) .θ(Γ), fθ(A)∧θ(B)θ(µ)
θ(X), fθ(B)θ(µ)

θ(X)
T ′′O

We exploit again the fact that θ(A∧B) is θ(A)∧θ(B).
Next, consider T constructed by a possibility inference:

T .Γ, t3iA
µ
X · ∃n(C∧Ph(n,3iA,µ;X))

T,n.Γ, t3iA
µ
X , tA

n
X,n ·C

T ′

By assumption we have θ |=∃n(C∧Ph(n,3iA,µ;X)); therefore there is some θ′ that
differs from θ only in n such that θ′ |= C and θ′ |= Ph(n,3iA,µ;X). Moreover, since
n is not used in the root tableau line, θ(Γ) = θ′(Γ) and θ(T) = θ′(T).

Apply the induction hypothesis to T ′ and θ′, to obtain T ′O; I claim that this per-
mits the construction of a closed ordinary Herbrand tableau thus:

Σθ(T) .θ(Γ), t3iθ(A)θ(µ)
θ(X)

Σθ(T),θ(µ)/θ(µ)η : i.θ(Γ), t3iθ(A)θ(µ)
θ(X), tθ(A)θ(µ)η

θ(X),θ(µ)η
T ′O

It suffices to justify the analysis of the root of T ′O. Start with the typing: the induction
hypothesis gives Σθ′(T),θ′(n), which is Σθ(T),Σθ′(n). Now since θ′ |= Ph(n,3iA,µ;X),
θ′(n) = θ′(µ)η where η = ηθ′(A)(θ′(µ),θ′(X)). Again since n is new that means
θ′(n) = θ(µ)ηθ(A)(θ(µ),θ(X)), and hence the added typing is indeed θ(µ)/θ(µ)η :
i. Likewise, the remainder of the tableau line is justified because θ′(n) = θ(µ)η and,
with n new, θ agrees elsewhere with θ′.
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Finally, consider T constructed by a necessity inference:

T .Γ, t2iA
µ
X · ∃n∃N(C∧Nh(µ,n, i;X,N,n))

T .Γ, t2iA
µ
X , tA

n
X,N,n ·C

T ′

Again, by assumption, we have θ |= ∃n∃N(C∧Nh(µ,n, i;X,N,n)); therefore there
is some θ′ that differs from θ only in new n and N such that θ′ models C and θ′ |=
Nh(µ,n, i;X,N,n). Use θ′(n) = ν and θ′(N) = L. Again, we apply the induction hy-
pothesis to T ′ and θ′, to obtain T ′O and construct a closed ordinary Herbrand tableau:

Σθ(T) .θ(Γ), t2iθ(A)θ(µ)
θ(X)

Σθ(T) .θ(Γ), t2iθ(A)θ(µ)
θ(X), tθ(A)ν

θ(X),L,ν
T ′O

Here we rewrite Σθ′(T) as Σθ(T) and θ′(Γ) as θ(Γ) straightforwardly since θ′ and θ
agree on variables used in the root. So we require only that there is a typing deriva-
tion S,Ξθ(X),L,ν.θ(µ)/ν : i. This follows from the fact that θ′ |= Nh(µ,n, i;X,N,n).

4.3 Discussion and Extensions
The argument of Theorem 5 in fact shows that a lifted proof and a corresponding or-
dinary proof consist of corresponding inferences applied in the same order. Here we
will suggest informally some consequences of this property. In [Voronkov, 1996],
the property is formalized, using the notion of a skeleton of a derivation; the skele-
ton of a derivation is a tree that encodes the identity of inferences performed but
abstracts out from instantiations made at quantifier (or modal) inferences. With this
abstraction, Voronkov shows that the lifted proof and the ordinary proof put in cor-
respondence in his correctness theorem share the same skeleton; the result would
carry over straightforwardly in the case of Theorem 5.

Now, in section 3, we introduced Herbrand tableaux over ground tableaux in or-
der to eliminate the impermutability of inference associated with eigenvariable con-
ditions on ground quantifier rules, which require the use of new parameters. Then, in
lifting Herbrand tableaux, we reintroduced similar conditions by requiring the use of
new logic variables in the lifted quantifier rules. Nevertheless, from the correspon-
dence between lifted tableaux and Herbrand tableaux, the lifted tableaux must retain
free permutabilities of inference. That is, the argument of Theorem 5 can be used
to accomplish the interchange of any two inferences in a lifted tableau, by first find-
ing the corresponding ordinary Herbrand tableau, interchanging the corresponding
inferences in the Herbrand tableau, and rederiving a corresponding lifted tableau.

The reason lifted tableaux retain free interchange of inferences despite the nov-
elty condition on logic variables is because all instantiation inferences in lifted
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tableaux involve fresh logic variables. In the ground calculus, inferences with uni-
versal force may be locked into a constrained position in a tableau because of the
term selected for instantiation; there are no figures in lifted tableaux that range over
logic variables with a corresponding universal force and hence no inferences to be
locked in by the novelty condition on logic variables.

In fact, we can generally rewrite lifted Herbrand tableaux to strengthen the nov-
elty of logic variables, without affecting provability; this result allows constraints to
be simplified for algorithmic purposes.

Definition 42 (Pure variable tableaux) An inference in a lifted tableau is a pure
variable inference if each logic variable introduced at that rule is used only in the
subtableau rooted at that inference. (Recall x is used in T .Γ ·C only if x occurs in
T or in Γ.) A pure variable lifted tableau is one in which every inference is a pure
variable inference.

The pure variable property strengthens the novelty condition on logic variables from
a local property of the sequent at which an inference applies to a global property of
the tableau in which the inference applies. Yet any closed lifted Herbrand tableau
whose root carries T .Γ ·C can be transformed into a pure-variable closed lifted
Herbrand tableau whose root carries T . Γ ·C′ where θ |= C just in case θ |= C′.
To accomplish this transformation, it suffices to rename variables appropriately
throughout the proof; the argument is a straightforward application of arguments that
yield pure variable proofs for sequent systems for classical logic—see for example
[Gallier, 1986, pp 274–276]. Thus the constraint C′ that results is an alphabetic vari-
ant of C, but each quantifier ∃x in C′ binds a distinct variable x.

To see the algorithmic simplification this affords, consider a pure-variable closed
lifted Herbrand tableau T whose root carries .Γ ·C, where Γ is a multiset of formulas
from L(CONST) labeled with the empty prefix. The conditions on T are character-
istic of problems of modal deduction; that is, the problem statement is formulated
without recourse to terms used for the purposes of proof. In particular, no logic vari-
ables occur in Γ; θ(Γ) = Γ for any substitution.

Meanwhile, with these conditions on T , it is straightforward to reformulate C
into the form C′ = ∃VA where A is a conjunction of atomic constraints, with θ |= C
just in case θ |= C′. We simply lift the existential quantifiers in C (each of which
binds a distinct variable) into prenex position. We can therefore conclude (thanks
to Theorems 3 and 5) that there is a closed ground tableau .Γ just in case there is a
substitution θ satisfying each of the atomic constraints in A.

We thus arrive at a general perspective on the selection of terms in lifted
deduction as constructing a substitution to satisfy certain equalities and certain
other primitive constraints (governing the types of values for variables and the
occurrence of values of variables as subterms of other terms). This perspective
is assumed in algorithmic characterizations of instantiation, both for classi-
cal inference (e.g., in work on unification [Martelli and Montanari, 1982]) and



FIRST-ORDER MULTI-MODAL DEDUCTION 65

for equational or constrained reasoning in modal inference [Wallen, 1990,
Frisch and Scherl, 1991, Auffray and Enjalbert, 1992, Ohlbach, 1993,
Otten and Kreitz, 1996, Schmidt, 1998, Stone, 1999c].

The opening of sections 4 and 4.1 indicated that the lifting construction applies in
a similar manner across proof systems. It is thus no surprise that the results outlined
here for lifted modal Herbrand deduction mesh are of a piece with many related sys-
tems. To underscore the point, we close this section by sketching a parallel lifting
construction for ground first-order modal tableaux with parameters and eigenvari-
able conditions. Lifted ground tableaux will not be appropriate for general modal
inference; as we shall see, they (like any lifted system) retain the permutabilities
and impermutabilities of ordinary ground tableaux. However, they may provide a
useful technique for deduction in logical fragments where the impermutabilities are
not an issue (such as the simple fragments that are “interpreted” by proof search in
the design of logic programming languages).

The lifting construction again begins with the definition of constraints, parallel
to the definition of constraints in Definition 38. For the ground calculus, these must
be designed to enforce any side conditions from the ground inference figures of Def-
inition 17. For example, we need these constraints for possibility and necessity in-
ferences:

Definition 43 (Atomic constraints) The atomic constraints for lifted ground
tableaux include:

• If n and m are logic variables and T is a sequence of logic variables, then
Pg(n,m;T) is an atomic constraint. θ |= Pg(n,m;T) just in case θ(n) takes
the form θ(m)α for some modal parameter α and α does not occur in θ(T).

• If n and m are logic variables, Σ is a typing (containing logic variables),
and i indexes a modality, then Ng(n,m, i;Σ) is an atomic constraint. θ |=
Ng(n,m, i;Σ) just in case there is a typing derivation S,θ(Σ).θ(m)/θ(n) : i.

Of course, the general constraints of equality, conjunction and existential quantifi-
cations continue to be needed.

The lifting construction continues by the adaptation of tableau rules to manipu-
late constrained sequents; these will take the form Σ.Γ ·C. (Since Σ will abstract a
typing, we will want to use VΣ to designate the logic variables that occur in Σ.) As
before, boolean rules generally decompose the principal formula in the numerator of
the tableau rule while conjoining constraints from all the denominators of the rules.
Now the rules that require specific instantiations in the ground calculus require spe-
cial reformulation; each revised inference introduces some new logic variables, and
(using an existential quantifier) constrains these variables appropriately to match any
side conditions on the application of the ordinary rule. Again, we limit ourselves to
examples:
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Definition 44 (Lifted Tableau Rule) The lifted version of the ground modal de-
ductions (over a regime S) include:

1. possibility (n new):

Σ.Γ, t3iAµ · ∃n(C∧Pg(n,µ;VΣ))
Σ,m/n : i.Γ, t3iAµ, tAn ·C

2. necessity (n new):

Σ.Γ, t2iAµ · ∃n(C∧Ng(n,m, i;Σ))
Σ.Γ, t2iAµ, tAn ·C

Finally, we establish a correctness theorem:

Theorem 6 (Correctness) Let Σ be a typing containing variables, let Γ be a finite
multiset of parameterized signed expressions (in an appropriate language), and let
θ be a substitution defined on all logic variables that occur in Σ and Γ, such that
θ(Σ) is a typing for θ(Γ). Then the following conditions are equivalent:

1. There is a closed ground tableau for θ(Σ).θ(Γ).

2. There is a constraint C and a lifted tableau for Σ.Γ ·C with θ |= C.

The proof again consists of an induction on the structure of ordinary tableaux and
an induction on the structure of lifted tableaux. Indeed, the arguments can be es-
sentially preserved from the proof of Theorem 5. For (1⇒ 2), the form of the ordi-
nary tableau, in meeting any side conditions on the inferences, guarantees that a sec-
ondary substitution can be constructed from θ so as to allow the induction hypothesis
to be applied and the resulting derivation(s) to be (re)assembled into an overall lifted
tableau, with the resulting overall constraint satisfied by θ. For (2⇒ 1), the fact that
θ meets the constraint and the use of fresh variables ensures that the the induction
hypothesis can be applied and that the resulting derivations(s) can be (re)assembled
into an overall ground tableau.

We can observe from this proof strategy that since ground proofs do not enjoy
free interchange of inference, lifted proofs cannot enjoy free interchange of infer-
ence either. It is of course possible in this case to understand these impermutabil-
ities directly from the lifted calculus itself (much as we did earlier in this section).
In this case, the lifted rules are not permutable because the constraint derived for
a lifted tableau T need not be equivalent to the constraint derived from a tableau
resulting from the interchange of inferences in T . So one constraint may not be sat-
isfiable while the other is; hence one lifted tableau may not represent a lifted proof
while the other does.
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5 Specialized Systems
Thus far, we have considered just the general problem of inference in first-order
multi-modal logic. We have allowed for an arbitrary number of modalities, subject
to accessibility relations that could be any of serial, reflexive, transitive, euclidean,
or narrowing (to another modality); we have treated a full complement of boolean,
first-order and modal connectives.

In knowledge representation, domains may invite a more constrained inven-
tory of modal operators or connectives—for example by motivating an S4 model
of agents’ knowledge rather than an S5 model (or vice versa), or by suggesting ax-
iomatic theories that are naturally formulated as modal Horn clauses (or some other
logical fragment). The results we have presented are compatible with such restric-
tions. Because the results are parameterized by the modal regime, they can be ap-
plied for simpler theories of modalities, right down to the simplest modal logic of a
single K operator. And because all the results are formulated without reference to a
cut inference rule, inference calculi for logical fragments can be obtained simply by
omitting the inference figures for connectives excluded from the fragment.

However, while some complexities of the inference system—take the special ne-
cessity inference of ordinary Herbrand tableaux as an example—come clearly linked
with the complexities of the modal regime and the logical language which motivate
their use, not all complexities of the inference system do. This section concentrates
on two such features of ordinary Herbrand tableaux: the side conditions on typings
for closure inferences, and the introduction of auxiliary tracking terms as a side-
effect of instantiation. Both of these are indirect reflections of the expressive power
of our general framework for first-order multi-modal logic, and can be eliminated
for a range of simpler deduction tasks.

The justification of the simplifications derive from elaborations of the Herbrand
soundness theorem, Theorem 3. Recall that the theorem is proved by first transform-
ing any closed Herbrand tableau T into a revised closed Herbrand tableau T ∗ by
interchange and omission of inferences. In this T ∗, the natural ordering < on in-
ferences is respected, a given Herbrand rule applies at most once on each branch,
and every inference is essential. An induction—the chief obligation of which is to
ensure that the local typing conditions imposed by the ground inference figures are
met—converts T ∗ to a ground proof. Thus, the simplifications we consider here pro-
vide ways of establishing additional properties of the revised proof T ∗, and thereby
rewriting T ∗ using ground inference figures by alternative means.

5.1 Terminology and a basic lemma
To accomplish these transformations, we will be working with relaxed Herbrand
tableaux. The relaxed Herbrand closure rules are given by the figures

Σ.Γ, tAµ
X , fA

µ
Y

⊥
Σ.Γ, f>µ

X
⊥
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for A an atomic formula. A relaxed Herbrand tableau is a tableau built in accordance
with the relaxed Herbrand closure rules and the recursive tableau rules of Defini-
tion 32.

Suppose Φ(Σ,E) is a property of Herbrand typings and signed, tracked prefixed
formulas (in a language with Herbrand terms). Then we say a relaxed Herbrand
tableau T satisfies Φ just in case for each binary closure inference in T :

Σ.Γ, tAµ
X , fA

µ
Y

⊥

both Φ(Σ, tAµ
X) and Φ(Σ, fAµ

Y ) hold, and for each unary closure inference in T :

Σ.Γ, f>µ
X

⊥

Φ(Σ, f>µ
X) holds. For example, consider Φ(Σ,uAµ

X) defined as ΞX ⊆ Σ. Then a re-
laxed Herbrand tableau satisfying Φ is in fact a Herbrand tableau. One can therefore
imagine transforming a relaxed Herbrand tableau so as to satisfy increasingly strong
Φ, until what we have is in fact a Herbrand tableau. In essence, that is exactly what
we will do.

Any defect of a relaxed Herbrand tableau comes in how symbols are introduced
in the proof. Let us say that occurrence of a symbol t in a term is unchecked in a
closure inference with typing Σ if t occurs in a principal expression of the inference
and Ξt 6⊆Σ. Then a relaxed Herbrand tableaux fails to be a Herbrand tableau in virtue
of its unchecked symbol occurrences.

The transformations that remedy such defects consequently require us to replace
one symbol for another. For example, we might have a case in a relaxed Herbrand
tableau where a first-order Herbrand term h which is not properly introduced is in-
stantiated for x in a general inference (for example to reason with a universal formula
∀xA). Then occurrences of h may be unchecked elsewhere in the tableau. But infor-
mally, because h is not introduced by a rule which precisely requires it, we should
be able to replace h with another symbol whose corresponding occurrences will not
be unchecked, such as a constant c. Likewise, we might have a case in a relaxed
Herbrand tableau where a modal Herbrand term η which is not properly introduced
appears in the transition taken in a general modal inference (say to a necessary for-
mula 2iA); occurrences of η may be unchecked elsewhere in the tableau. In this
case we might rewrite the inference to use a special necessity inference and hence
introduce a different modal Herbrand term η′ whose corresponding occurrences will
not be unchecked.

Our reasoning about relaxed Herbrand tableaux therefore require results show-
ing that we can systematically vary the choice of certain kinds of symbols in
the proof. Such results resemble the pure variable result of the previous section.
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However, with relaxed Herbrand tableaux the replacement involves repercussions
throughout the proof in the structure of Herbrand terms; it is not surprising that the
such changes are possible, but the exact transformation required takes some techni-
cal effort to spell out precisely.

Accordingly, we need some further definitions. Say that a Herbrand term or Her-
brand prefix p is implicated in an expression E if p occurs in E or if some Herbrand
function fA depending on a formula A occurs in E and p is implicated in A. Say q is
independent of p if p is not implicated in q. Say q is type-compatible with p if when-
ever there is a derivation of S,ΞX .J then there is a derivation of S,ΞX[q/p].J[q/p].

Definition 45 (renaming) Let σ be a map taking finitely many Herbrand terms h
into a corresponding Herbrand term σ(h). Use σ(E) to describe the result of replac-
ing any top-level Herbrand term h in E for which σ(h) is defined by σ(h). We say σ is
a safe renaming from p to q just in case q is type-compatible with p, q is independent
of p, and if fA is a Herbrand function which depends on the associated formula A and
σ( fA(X)) is defined, then p is implicated in A and σ( fA(X)) = fσ(A[q/p])(σ(X[q/p])).

Observe that if σ safely renames from p to q, then since q is independent of p, σ(q) =
q. Moreover since q is type compatible with p, ΞX . J implies Ξσ(θ(X)).σ(θ(J)).

Lemma 24 (possibility of renaming) We are given a closed relaxed Herbrand
tableau, T , whose root carries the line L, such that no Herbrand term that occurs in
L is introduced by a Herbrand inference in T and no general inference with instance
x and no Herbrand rule introducing x lies on a path from the root to a Herbrand rule
introducing x. Suppose T has a unary inference R at the root which applies to prin-
cipal expression E to yield a side expression E′:

Σ0 .Γ0,E
Σ′0 .Γ0,E,E

′

T ′
R

Suppose some Herbrand term or Herbrand prefix p occurs in E′ but is not implicated
in the line Σ0 .Γ0,E. Now let q be type-compatible with p, independent of p, and
such that the figure:

Σ0 .Γ0,E
Σ′0[q/p],∆.Γ0,E,E′[q/p] R′

instantiates a tableau inference figure for principal expression E. Then we can con-
struct from T a new closed relaxed Herbrand tableau T∗, with the same root as T ,
containing corresponding inferences in a corresponding order to T , but in which p
does not occur. Any unchecked symbol occurrences in T∗ correspond to unchecked
symbol occurrences in T , but if Ξq ⊆ Σ′[q/p],∆ then there are no unchecked occur-
rences of q in T∗.

The proof is by induction on the structure of closed relaxed Herbrand tableaux. For
the induction hypothesis, we assume that if we have a subtableau of T of height
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h whose root carries Σ . Γ with Σ′0[q/p],∆ ⊆ Σ and we have a safe renaming σ
from p to q, then we can construct a corresponding subtableau whose root carries
σ(Σ[q/p]) .σ(Γ[q/p]). The base case, for a closure inference, is straightforward:
complementary formulas remain complementary under substitutions, so the infer-
ence remains a correct closure; since Σ′0[q/p],∆ ⊆ Σ, if Ξq ⊆ Σ′[q/p],∆, there are
no unchecked occurrences of q in the closure.

So we assume a subtableau of height h + 1 and consider case analysis on the
inference at the root. Translation of boolean inference is immediate. For a general
inference, such as necessity—

Σ.Γ, t2iA
µ
X

Σ.Γ, t2iA
µ
X , tA

ν
X,N,ν

T ′

—we obtain the revised proof T ′∗ by hypothesis and construct

σ(Σ[q/p]).σ(Γ[q/p]),σ((t2iA
µ
X)[q/p])

σ(Σ[q/p]).σ(Γ[q/p]),σ((t2iA
µ
X)[q/p]),σ((tAν

X,N,ν)[q/p])
T ′∗

We need only that there is a derivation of S,Ξσ((X,N,ν)[q/p]).σ(µ[q/p])/σ(ν[q/p]) :
i; this follows from the side condition on the untransformed general inference and
the fact that σ is a safe renaming.

Finally, consider a Herbrand inference such as possibility:

Σ.Γ, t3iA
µ
X

Σ,µ/µη : i.Γ, t3iA
µ
X , tA

µη
X,µη

T ′

There are two cases. If p is not implicated in A, then σ(A[q/p]) = A and we can
construct

σ(Σ[q/p]).σ(Γ[q/p]),σ((t3iA
µ
X)[q/p])

σ((Σ,µ/µη : i)[q/p]).σ(Γ[q/p]),σ((t3iA
µ
X)[q/p]),σ((tAµη

X,µη)[q/p])
T ′∗

(We use T ′∗ obtained by the induction hypothesis.) Otherwise, p is implicated in A;
hence η takes the form ηA(. . .); we consider σ′ exactly like σ except σ′(ηA(µ,X)) =
ησ(A)(σ′(µ[q/p]),σ′(X[q/p]))). By assumption on the form of the overall deriva-
tion T , ηA(µ,X) does not occur in the root; hence σ′ remains a safe renaming. We
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can apply the induction hypothesis and construct:

σ(Σ[q/p]).σ(Γ[q/p]),σ((t3iA
µ
X)[q/p])

σ′((Σ,µ/µη : i)[q/p]).σ′(Γ[q/p]),σ′((t3iA
µ
X)[q/p]),σ′((tAµη

X,µη)[q/p])
T ′∗

5.2 Specialized Closure Conditions for Modalities
We can now reformulate closure conditions for restricted modal logics, using
Lemma 24 as a tool for rewriting symbols in relaxed Herbrand proofs.

First we observe, as hinted in section 5.1, that unchecked occurrences of first-
order terms are not a problem. Define a condition ΦF(Σ,uAµ

X) true just in case ΞX\Σ
is a set of statements of the form t : µ. Then in a relaxed Herbrand tableau that sat-
isfies ΦF , all unchecked occurrences of terms are occurrences of first-order terms.

Lemma 25 Let T be a relaxed Herbrand tableau that satisfies ΦF, with a root that
carries no Herbrand terms and with the ordering property that no general inference
with instance x and no Herbrand rule introducing x lies on a path from the root to a
Herbrand rule introducing x. Then we can transform T into a corresponding Her-
brand tableau T∗ by substitutions of symbols.

Proof. By induction on the number of unchecked occurrences of first-order symbols
in T . If there are none, we in fact have a Herbrand tableau. Suppose the claim is
true for T with n occurrences or fewer, and consider T with n + 1. Consider any
such symbol h, and consider an inference which introduces h on a branch containing
unchecked occurrences of h, such that there are no other inferences which introduce
h closer to the root. This must be a general inference; call it R and schematize it as
in Lemma 24:

Σ0 .Γ0,E
Σ′0 .Γ0,E,E′

T ′
R

The conditions on T and R ensure that h is not implicated in the line Σ0 .Γ0,E—h
could be implicated here only if some rule closer to the root introduced h or if h was
implicated in the root itself. So consider any constant symbol from the language c.
c is type-compatible with h (since c is defined at all worlds); c is independent of h
(since c contains no Herbrand symbols); and the figure below is a correct tableau
inference:

Σ0 .Γ0,E
[c/p]Σ′0,∆.Γ0,E,E′[c/p] R′

The conditions of Lemma 24 apply to give a new proof with strictly fewer unchecked
occurrences of first-order symbols.
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Second, we observe that unchecked occurrences of modal terms are not a
problem—provided that all modalities are serial (or reflexive). Define a condition
ΦS(Σ,uAµ

X) true just in case ΞX\Σ is a set of statements of the form µ/µη : i.

Lemma 26 Consider a regime where no modalities are assigned non-serial types
K, KB, K4, K5 or K45. Let T be a relaxed Herbrand tableau that satisfies ΦS with a
root that carries no Herbrand terms and with the ordering property that no general
inference with instance x and no Herbrand rule introducing x lies on a path from the
root to a Herbrand rule introducing x. Then we can transform T into a correspond-
ing Herbrand tableau T∗ by substitutions of symbols.

Proof. By induction on the number of unchecked occurrences of modal Herbrand
symbols in T . If there are none, we in fact have a Herbrand tableau. Suppose the
claim is true for T with n occurrences or fewer, and consider T with n + 1. There
must be some symbol η on a branch that contains unchecked occurrences of η with
the property that no other such symbol occurs closer to the root of the tableau than
η. Consider the closest inference to the root on this branch which introduces η. This
must be a general inference; call it R and schematize it as in Lemma 24:

Σ0 .Γ0,E
Σ′0 .Γ0,E,E

′

T ′
R

The conditions on T and R ensure that η is not implicated in the line Σ0 .Γ0,E—η
could be implicated here only if some rule closer to the root introduced η or if η was
implicated in the root itself. The typing missing for η is some statement µ/µη : i;
the conditions on T and R also ensure that Ξµ ⊆ Σ0 as per the proof of Theorem 3.
We consider two cases, depending on whether i is serial or reflexive. If i is serial, we
can introduce an appropriate η′ here so that the figure below instantiates the special
necessity inference:

Σ0 .Γ0,E
Σ′0[η′/η],∆.Γ0,E,E

′[η′/η] R′

η′ is type-compatible with η; η′ is independent of η since it is constructed from a
different Herbrand function from and arguments that are independent of η.

Otherwise, if i is reflexive, we can simply replace the prefix µη by the prefix µ,
and retain a general inference. µη is type-compatible with µ, since µ/µ : i is deriv-
able; µ is independent of η as guaranteed by the structure of T and the choice of R.
For the same reason, Ξµ ⊆ Σ0.

In either case, the conditions of Lemma 24 now apply to give a new proof with
strictly fewer unchecked occurrences of modal Herbrand terms.
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5.3 Streamlining Tracking Terms
The final optimizations depend on an observation about typing for modalities that
are neither euclidean nor symmetric.

Lemma 27 (Prefix typing) Consider a regime in which no euclidean or symmetric
modalities (of classes KB, K5, K45, KD5, KD45 B or S5) occur. Then if ΞX .µ/ν : i
then Ξν .µ/ν : i and µ is a prefix of ν.

Proof. Observe that if µ is a prefix of ν then µ occurs in Ξν and Ξµ ⊆ Ξν. The base
cases are the inference figures (K) and (T): the claim follows directly from the form
of the judgments involved µ/µη : i (where µ must be a subterm of η) and µ/µ : i. The
inductive cases are the (Inc) and (4) inference figures. (Inc) follows immediately
from the induction hypopethesis. For (4), we have ΞX .µ/µ′ : i and ΞX .µ′/ν : i.
We apply the induction hypothesis to the second; we obtain Ξν.µ′/ν : i plus the fact
that µ′ occurs in Ξν. This means Ξµ′ ⊆Ξν so by applying the induction hypothesis to
the first component typing derivation, we get Ξν.µ/µ′ : i and µ occurs in Ξν. Since
µ is a prefix of µ′ and µ′ is a prefix of ν, µ is a prefix of ν.

In regimes where no modalities are euclidean or symmetric, we now observe that
we can use restricted general inference figures which do not permit free choice of
tracking terms. For example, in place of the necessity figure:

Σ.Γ, t2iP
µ
X

Σ.Γ, t2iP
µ
X , tP

ν
X,N,ν

we can now use the restricted necessity figure:

Σ.Γ, t2iP
µ
X

Σ.Γ, t2iP
µ
X , tP

ν
X,ν

That is, the only change is the elimination of the choice of tracking terms N system-
atically in the necessity, extra special necessity and universal inferences.

Since the new inferences are restrictions of the usual Herbrand inferences, the
Herbrand soundness theorem continues to apply; we need only adapt the Herbrand
completeness theorem, Theorem 4, to show that ground proofs can be transformed
into Herbrand proofs using these inferences.

Recall that the inductive hypothesis of the proof of Theorem 4 is that the typing
Σ on each tableau line is rewritten to a Herbrand typing σ(Σ) for the line. In rewrit-
ing general inferences, we have from the ground proof that any typing conditions
are met—for example in the case of a necessity inference S,Σ.µ/ν : i. Therefore
S,σ(Σ) .σ(µ)/σ(ν) : i. By Lemma 27, it follows that S,Ξσ(ν) .σ(µ)/σ(ν) : i and
hence the restricted tracking of side formulas in the Herbrand proof suffices.
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5.4 Specialized Closure Conditions for Fragments
We can also exploit the prefix result to obtain an analogue of Lemma 2 of
[Stone, 1999b], when no modalities are euclidean or symmetric and when no log-
ical statements contain negation or possibility.

Lemma 28 (Irrelevance) Let T be a relaxed Herbrand tableau with inferences or-
dered so that no Herbrand term that occurs in L is introduced by a Herbrand infer-
ence in T and no general inference with instance x and no Herbrand rule introduc-
ing x lies on a path from the root to a Herbrand rule introducing x. Suppose the root
of T carries a line Σ.Γ,Γ∗,∆ where all the Γ and Γ∗ expressions are of the form tE
and the ∆ expressions are of the form fE, where no operators of possibility or nega-
tion occur in Γ, Γ∗ or ∆ and where for every uAµ

X ∈ Γ∗ there is no uBµ
Y ∈ ∆ such that

µ is a prefix of ν. Then T can be transformed into a relaxed Herbrand tableau of
Σ.Γ,∆.

The proof is a straightforward induction on the structure of proofs. A few key obser-
vations, based on Lemma 27 and the logical fragment, allow the proof presented in
[Stone, 1999b] to go through. First, modal Herbrand inferences are associated only
with negative statements, while modal general inferences are associated only with
positive statements. Second, consider those Herbrand inferences, e.g.:

Σ.Γ,∆, f2iA
µ
X

Σ,µ/µη : i.Γ,∆, f2iA
µ
X , fA

µη
X

The order of inferences ensures that η is new, so if a formula is not associated with
a prefix of µ, it’s not associated with a prefix of µη either. Finally, consider those
general inferences, e.g.:

Σ.Γ,∆, t2iA
µ
X

Σ,µ/µη : i.Γ,∆, t2iA
µ
X , tA

ν
X

The typing requires that µ be a prefix of ν so if µ is not a prefix of some ∆ formula,
then ν is not either. These observations allow inferences to Γ∗ formulas to be induc-
tively discarded.

Lemma 28 provides an alternative method to eliminate the modal side conditions
on closure rules. We assume the streamlined tracking system of section 5.3, in which
every tracked formula is the result of an explicit instantiation.

Lemma 29 Let T be a relaxed Herbrand tableau, such that the root of T carries a
line Σ.Γ,Γ∗,∆ where all the Γ and Γ are of the form tE and the ∆ are of the form
fE, where no operators of possibility or negation occur in Γ, Γ∗ or ∆ and where for
every uAµ

X ∈ Γ∗ there is no uBµ
Y ∈ ∆ such that µ is a prefix of ν. Then T can be

transformed into a ground proof of Σ.Γ,∆.
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Proof. Transform T to a reordered T ∗, then apply Lemma 25 to eliminate
unchecked first-order terms. We next apply Lemma 28 to eliminate certain formulas
and inferences from the proof. I claim that the resulting relaxed Herbrand tableau
has no unchecked modal terms either. By the form of tracking, any untracked modal
Herbrand term occurrence η is associated with some general inference R at which η
is the instantiated parameter. Because the occurrence is untracked, there can be no
corresponding Herbrand inference involving η closer to the root. This in turn means
the inference R must involve a positive side expression tAµη

X where µη is not a prefix
of ν for any negative expression fBν

Y . This is a impossible, for such an inference R
would have been eliminated from the tableau by the application of Lemma 28.

5.5 A final observation
Consider either of the systems studied in Section 5.2 or 5.4, in which the side con-
dition on closure rules are eliminated. We conclude by observing that such systems
allow the form of sequents themselves to be streamlined. Construct a typeless ver-
sion of these calculi in which tableau lines take the simple form Γ, where Γ is (as
always) a multiset of signed tracked prefixed formulas—here we eliminate the typ-
ing Σ from the sequent. The tableau rules for the typeless calculi are obtained like-
wise by simply omitting Σ (and changes to Σ) from the formulation of the original
inference rules.

The typeless calculi are sensible because the side condition on tableau rules—
on the closure inference particularly—no longer depend on Σ in the original calcluli.
The side conditions on inference rules therefore remain unchanged by the simplifi-
cation to the typeless system.

It is therefore straightforward to show by induction that the typeless calculi are
equivalent in provability to the original systems. To transform an original tableau to
a typeless tableau, one simply erases the typing Σ on each tableau line in the tableau.
Conversely, starting from a typing Σ and a typeless tableau, one simply inductively
redecorates the tableau with typings derived from Σ according to the original tableau
rules.
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