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Summary

This paper explores goal-directed proof search in first-order multi-modal logic. The key issue
is to design a proof system that respects the modularity and locality of assumptions of many
modal logics. By forcing ambiguities to be considered independently, modular disjunctions
in particular can be used to construct efficiently executable specifications in reasoning tasks
involving partial information that otherwise might require prohibitive search. To achieve this
behavior requires prior proof-theoretic justifications of logic programming to be extended,
strengthened, and combined with proof-theoretic analyses of modal deduction in a novel way.
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1 Introduction

This paper explores the proof-theoretic interaction between the goal-directed application of log-
ical inferences anthformation-flow—that is, the possible connections between assumptions and
conclusions in proofs. My own starting-point for this exploration was the result of [Stone, 1999],
that intuitionistic sequent calculi can be formulated so as exhibit the characteristically intuition-
istic modularinformation-flow (as underlying the correspondence between proofs and programs
[Howard, 1980], for example) while nevertheless allowing logical inferences to be applied in any
order whatsoever. This raises the question whether it is possible to enforce this kind of modularity
incrementallyduring goal-directed proof search. Of course, the well-known flexibility of deduc-
tion in nonclassical logics [Fitting, 1972, Fitting, 1983, Wallen, 1990] is ample motivation for the
guestion.

1.1 Problem Statement

| begin by delineating the focus of the paper more precisely. | will work with a family of
first-order multi-modal logics in this paper. The generalization from intuitionistic logic re-
flects the utility of more general ways of structuring logical specifications [Baldoni et al., 1993,
Baldoni et al., 1998a], as well as the broader importance of expressive modality in practical knowl-
edge representation [McCarthy, 1993, McCarthy, 1997]. Qualitatively, what distinguishes the
logics | consider (for which formal definitions are provided in Section 2) is that they permit
rules of modal inference to be formulated in two equivalent ways [Fitting, 1972, Fitting, 1983,
Wallen, 1990]. I illustrate the alternatives for the case of S4, a logic that we can perhaps regard as
the pure modal logic of local and global modular assumptions [Giordano and Martelli, 1994].

1.1.1 Structural scope and modularity
The first formulation of modal inference is illustrated by the sequent inference figure below:

M — G,A*
r-oca Y

Such inferences set up a discipline of structural scope in proofs. Read upward, as a description of
proof search, the figure describes how to accomplish generic reasoning about a modal context, such
as the conclusiomG here. We have to transform the sequent we are considering, by restricting
our attention just to the generic modal statements in the sequent. Specificatlgntains the
formula occurrences of the formA in ', andA* contains the formula occurrences of the form

QA In A, The effect of the transformation is that we move from our current scope into a new,
nested scope in which just generic information is available. Figure 1 illustrates all the structurally-
scoped S4 sequent inferences that | will draw on in this motivating discussion; | refer the reader to
[Fitting, 1983, Wallen, 1990] for more details on structurally-scoped proof.

The ability to define structural scope is intimately connected with the ability to describe mod-
ular and local reasoning. In specifying reasoning, we can think of antecedent formulas in sequents
as program statements and succedent formulas in sequents as goals. In modal logics with structural
scope, a necessary gaab can be seen asmodulargoal because, as enforced by the structurally-
scoped inference figure, only program statements of the folcan contribute to its proof. In
other words, we cannot use the entire program to p@vather, we must use a designapedt of
the program: formulas of the formP. This is themodulewe use to prové&. Multi-modal logic



DISJUNCTION AND MODULAR PROOF SEARCH 3

M — G,A*
r— 0G,A

rG—A
OG> A

MP—GA
r—P>GA

r~GA [P-A
rGop—a 7

A=A rB—A
LAVB— A (V=)

S AA r—BA
> AAB.A (=A)

NA—AA (Axiom)

(—0)
(O —)

(—2)

Figure 1: Six inference figures and the axiom for structurally-scoped S4. After [Fitting, 1983,
Wallen, 1990]. Sequents are multisets of modal formulas; this formulation (though not others that
we will consider later) requires a structural rule of contraction. See Section 2.

allows us to name modules in a general way [Baldoni et al., 1993, Baldoni et al., 1998a].

In fragments of logic without the operatory, including S4 translations of intuitionistic formu-
las in particular, modularity bringlecality. A goal O(P > G) introduces docal assumptiorP.
The assumption is local in the sense that it can only contribute to the pré&afarid cannot con-
tribute to any other goal. We can motivate this locality in logical terms by examining the sequent
inferences fof — O) and(— D) in combination:

rpP—G
-—-P>G -
F—opP>56)4a "

(—2)

Observe that this logical fragment is constructed so that the succedent avnéddve(— O) is
empty, and so we introdudeinto a subproof wher& is the only goal.

Logical modularity and locality underlie the use of the proof theory of modal logic as
a declarative framework for structuring specifications, and thereby facilitating their design
and reuse [Miller, 1989, Giordano and Martelli, 1994, Baldoni et al., 1993, Baldoni et al., 1996,
Baldoni et al., 1998&]. Concretely, a goal that specifies the part of the program to be used in
its proof will give rise to the same operational behavior when other parts of the program change.
In this paper, | further emphasize that logical modularity and locality provide declarative tools for
constraining the complexity of proof search itself. My motivating example is the proof in Figure 2,

2The model theory of modal logic can also be used to structure specifications [Sakakibara, 1987].
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B,...— B,A A...—A D,...—D,C C,...—C

BBOA.. —A (5=) D.DoC,...—C (5=)

O O
A,—P'A B,D(BDA),_"A (VH)C,—VC D7D(DDC)7_’-C (\/—>
AVB,OBDA),...—~A (V=) CvD,0D>C),... —C (V-
O(AVE),OBOA),... — A E-=) GCVD),0(D5C),...—C E-
O(AVB),0(BDA),... — OA (=0) O(CVD),0(D>C),... — 0oC (=0
(= A

O(AvB),0(CvD),0(B>A),0(D>C)— (OA)A(OC)

Figure 2: This structurally-scoped S4 proof shows how the locality of modular assumptions lim-
its the possible interactions in proof. Ellipses mark points in sequents where | have suppressed
additional formula occurrences that no longer contribute to the inference.

which establishes that the conclusion
(OA) A (OC)

follows from the assumptions

O(AvVB),0(CvD),0(B>A),0(D>C)

The assumptions in this proof—the program statements—specify two ambiguities.Adher
B holds, and eithe€ or D holds. As part of the specification, we use modal operators to say how to
reason with these ambiguities: we haveAV B) andd(CV D). This means that the ambiguities
themselves argeneric we can use them to perform case analysis at any time. However, when we
reason about any particular case, we miakal assumptions—we will assunferather thandA
for example.

This specification limits the way case analyses in the proof interact. Consider our goal here:
(OA) A (OC). We must prove each conjunct separatebking generic informatignthat is, each
conjunct is proved in its own new nested scope. Thus, in the proof of Figure 2, we perform case
analysis fronTJ(AV B) within the nested scope farA, and perform case analysis fran{CV D)
within the nested scope faiC. Observe that the logic dictates the choice for us. For instance,
performing case analysis from(AV B) within the nested scope farC is useless—the assumption
of A andB cannot help here. Importantly, performing case analysis frgy B) at the initial,
outermost scope is also useless. Whatever assumptions we make will have to be discarded when
we try to prove the conjuncts, and consider only generic information. This specification therefore
cordons off the two ambiguities from one another in this proof problem. We have to consider the
ambiguities separately.

Effectively, it is part of themeaningof the specification of Figure 2 that proofs must be short.

A proof in this specification must be a combined record of independent steps, not an interacting
record with combined resolutions of ambiguities. To my knowledge, the possibility for this kind of

declarative search control in disjunctive modal specifications has not received comment previously.
But it seems to me to be one of the most exciting and unique uses for modal logic in representation
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r— GH A
r—oGH A
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OGS A
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r—GHA MPH— A
FGOPFSA

MAR A MBY—A
FLAVB = A

M AR A M B A
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(>—)

V=)

Figure 3: Six inference figures and the axiom for explicitly-scoped S4. See [Fitting, 1983,
Wallen, 1990, Stone, 1999]. The-~ O) inference is subject to an eigenvariable condition that
a is new. In the(d —) inference pv refers to any sequence of terms that extquolg a suffixv.

and problem-solving.

1.1.2 Explicit scope and goal-directed search
The second formulation of modal reasoning is illustrated by the sequent figure below:

r— Gl A
r—ocha ()

Such inferences institute an explicitly-scoped sequent calculus; each formula is tagged with a la-
bel indicating the modal context which it describes. These labels are sequences of terms, each of
which corresponds to an inference that changes scope. Superscripts are my notation for labels;
above u labels the scope of the succedent formufa. To reason about a generic modal formula,

we again introduce a new, nested scope in which just generic information is available; we now
label the formula with its new scope. Thus ab&ves labeledua; anda is subject to an eigenvari-

able condition—it cannot occur elsewhere in the sequent—and so represents a generic possibility.
At axioms, the scopes of premises and conclusions must match; therefore modal inferences can
dispense with destructive transformation of sequents.

Figure 3 illustrates the other explicitly-scoped S4 sequent inferences that | will draw on
in this motivating discussion. Explicitly-scoped proof systems have a long histopyeéiged
tableaus see [Fitting, 1983, Wallen, 1990] and references therein. Each label sequence can
be viewed as representing a possible world in possible-worlds semantics, so for example the
(— 0O) inference figure represents a transition from the world nameg toya new worldpa
that represents a generic possibility accessible fromThe more general study of such sys-
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tems has put them in a new proof-theoretic perspective recently. They are closely related to
semantics-based translation systems [Ohlbach, 1991, Nonnengart, 199%3peaheld deductive
systemgGabbay, 1996, Basin et al., 1998]. | use the texxplicitly-scopedrom [Stone, 1999]
because | continue to emphasize the extent to which the two formulations of reasoning represent
the same inferences, just in different ways.

The ability to define explicit scope is intimately connected with the ability to carry out goal-
directed proof. | adopt the perspective due to [Miller et al., 1991] that goal-directed proof simply
amounts to a specific strategy for constructing sequent calculus deductions. The strategy is first
to apply inferences that decompose goals to atoms and then to apply inferences that use a specific
program statement to match a specific goal. Proofs that respect this strategy areiciétied
On this strategy, logical connectives amount to explicit instructions for search, and this is in fact
what lets us view a logical formula concretely agsragram[Miller et al., 1991].

Unlike other, more procedural characterizations of algorithmic proof, such as [Gabbay, 1992],
this view largely abstracts away from the exact state of computations during search. The key
guestions are purely proof-theoretic. In particular, goal-directed proof is possible in a logic if and
only if any theorem has a uniform proof. In systems of structural scope, this is not possible, and we
must instead restrict our to inference in specific logical fragments, as described for the intuitionistic
case in, e.g., [Miller et al., 1991, Harland, 1994, Harland et al., 2800].

By contrast, systems of explicit scope can be lifted by a suitable analogue to the Herbrand-
Skolem-Gdel theorem for classical logic so thanhy pair of unrelated inferences can be in-
terchanged [Kleene, 1951, Wallen, 1990, Lincoln and Shankar, 1994, Stone, 1999]. Thus, unlike
systems of structural scope, systems of explicit scope pegemeral goal-directed reasoning.

If we adopt Miller’s characterization of uniform proof for sequent calculi with multiple con-
clusions [Miller, 1994, Miller, 1996], then any modal theorem has a uniform proof in a lifted,
explicitly-scoped inference system. Put another way, explicitly-scoped inference assimilates modal
proof to classical proof, and we know that uniformity is not really a restriction on classical
proof [Harland, 1997, Nadathur, 1998]. This is why my investigation emphasizes questions of
information-flow, such as modularity and locality, rather than questions of goal-directedgeroof

se

| will refer to the proof of Figure 4 to illustrate some of the properties of information-flow in
goal-directed search. The proof establishes the conclusion

F

from assumptions
AVB,CVD,ADFCDOF,(BAD)DF

First we must get clear on the reasoning Figure 4 represents. The assumptions in this proof
again specify two ambiguitiesAv B andC Vv D. In modal terms, these are local ambiguities

3A further case of structural control of inference that has attracted particular interest is linear logic, where linear dis-
junction must be understood to specify synchronization between concurrent processes rather than proof by case analy-
sis; see, e.g., [Andreoli, 1992, Hodas and Miller, 1994, Pym and Harland, 1994, Miller, 1996, Kobayashi et al., 1999].
The investigation of fragments of linear logic remains essential, as linear logic has no analogue of an explicitly-scoped
proof system, and so—unlike intuitionistic logic and modal logic—must be understood as a refinement of classical
logic rather than an extension to it [Girard, 1993].
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B,...— ....B D,...—/@ ..., (= A)
.
B.D,..—BAD Foo— . F
B,D,(BAD)DF,...— ...,F 5=)
C,...—...C (v )
.
B,CvD,(BAD)DF,... —...,.C,F F,..— ....F
B,CVD,COF,BAD)OF — .._F (>=)
A.. —>AF 2],
.
AvBCVD,COF,(BAD)DF —AF E,...—F
AVB,CVD,ASF,.COF,(BAD)OF —F (5=)

Figure 4: A goal-directed proof in which multiple cases are considered. Each case is displayed in
a separate block.

that introduce local assumptions; but actually, Figure 4 uses only classical connectives, and this
classical reasoning suffices for my discussion here. In Figure 4, the two ambiguities interact to
require inference for three separate cases: one case Wltale, one case wheis true, and

a final case wher8 andD are true together. (These cases are laid out separately in Figure 4.)
In goal-directed inference, we discover these cases by backward chaining from the mdi goal
through a series of implication&> F,C > F, and(BAD) D F.

Now we can describe the structure of the proof of Figure 4 more precisely. The inference is
segmented out into three chunks, one for each case. The chunks are indexed to indicate how they
should be assembled into a single proof-tree; the chunk in@eshould appear as a subtree
where the inde is used in chun@, and that chunk should in turn appear as a subtree where
the index 2] is used in chunkl]. We could imagine writing out that tree in ful—on an ample
blackboard! However, the chunks are actually natural units of the proof of Figure 4; they are what
Loveland callsblocks[Loveland, 1991, Nadathur and Loveland, 1995]. In generdlloak of a
derivation is a maximal tree of contiguous inferences in which the right subtree ofvany)
inference in the block is omitted. (Check this in Figure 4.) Each block presents reasoning that
describes a single case from the specification.

Within blocks, we can trace the progress of goal-directed reasoning, as follows. At each step,
our attention is directed to a distinguished goal formula—the current goal—and at most one distin-
guished program formula—the selected statement. For illustration, these distinguished formulas
are underlined in each sequent in Figure 4. Logical operations apply only to distinguished for-
mulas; we first decompose the goal down to atomic formulas, then select a program formula and
reason from it to establish the current goal.

There are two things to notice about this derivation. First, we usstart discipline when
handling disjunctive case analysis across blocks [Loveland, 1991, Nadathur and Loveland, 1995].
In each new block, the current goal is reset to the original §dal restart proof search. It is easy
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to see that it does not suffice, in general, to keep the current goal across blocks; in Figure 4, for
example, keeping the current goal would mean continuing to try to pkafeer we turn from the

case ofA to the case oB. The more general restart rule is however complete; in fact, the restart
rule is a powerful way to extend a goal-directed proof system to logics where a single proof must
sometimes analyze the same goal formula in qualitatively different ways [Gabbay and Reyle, 1984,
Gabbay, 1985, Gabbay, 1992].

Second, note when and how newly-assumed disjuncts are used in new blocks. For exam-
ple, B is assumed in bloc but it is not used until bIoc. By contrast,D is assumed in
block and used immediately there. Following [Loveland, 1991], | will refer to any use of
a disjunctive premise in the first block of case analysis where it is assumedascallation
| will also say that the inference that introduces the disjunct, and the new block it creates, are
canceled The proof of Figure 4 cannot be recast in terms of canceled inferences using the se-
qguent rules of Figure 3. Whichever casefof B or CV D is treated first cannot be canceled; the
second disjunct of the one must wait to be used until the second disjunct of the other is intro-
duced. This is a gap between Loveland’s original Near-Horn Prolog interpreter [Loveland, 1991],
which requires cancellations, and the generalized reformulation in terms of sequent calculi given
in [Nadathur and Loveland, 1995, Nadathur, 1998] and suggested in Figure 4. Loveland suggests
that cancellation is just an optimization, but we shall see that modal logic establishes an important
proof-theoretic link between cancellation and modularity.

1.1.3 On modular goal-directed proof search

As befits alternative proof methods for the same logic, structurally-scoped systems and explicitly-
scoped systems are very close. In fact, in the case of intuitionistic logic, they define not just the
same theorems but the same proofs [Stone, 1999]. This correspondence suggests that we use in-
sights about information-flow in structurally-scoped proofs—including the modularity and locality
exhibited by Figure 2—to restrict goal-directed proof-search in explicitly-scoped systems.

In fact, we know from [Stone, 1999] that we can sometimes enforce a straightforward require-
ment of locality in explicitly-scoped inferences, as follows. Assume that we have an explicitly-
scoped proof system for a logic with modularity and locality, with an eigenvariable condition on
(— 0O), and we work in a fragment of logic without negation (this again includes the S4 translation
of intuitionistic formulas). Then when we consider a sequent of this form in proof-search:

r—A

we apply inferences to a formulsin I only whenP is labeled with a prefix of a label of a formula
in A. That is, we can consider inferences®he I only when there is somé" € A. The prefix
relationship is required fdP to eventually contribute to the proof of adyformula. For example
here:

A BP,CY, D% — EP FY

We can consideA, B or CY, but notD®.

This invariant is weaker than one might want or expect for certain kinds of goal-directed search.
Specifically, we have seen that when we use goal-directed search as a model for logic program-
ming, we understand the interpreter to be working on at most one goal and one program statement
at a time. In this setting, we would like to require that the program statement must be able to
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contribute to the current goal. However, we must understand the result of [Stone, 1999] to require
only that the current program statement must contribusotoegoal, not necessarily thaurrent

one. In addition, we must take into account other, inactive goals, such as the goals that we may
potentially restart later in proof search. In the preceding example, e#nkre the current goal,

we might have to consider reasoning wthbecause of the possibility of a restart wi.

For most inferences, we can rule out their contribution to inactive goals, on independent
grounds. Most inferences from assumptions in goal-directed proofs must contribute to the cur-
rent goal or not at all. But there is one difficult case, which happens also the most meaningful one.
This is the case of disjunction itself, where only one disjunct contributes to the current goal. The
other disjunct may contribute to some other goal; we will set up a new proof problem by assuming
this disjunct and making some inactive goal active. Modularity and locality suggest that we should
be able now to select a goal that our newly-assumed disjunct could contribute to. In other words,
if the new disjunct iP* the next goal should take the for@" with p a prefix ofpv. Call this a
modular restart. The alternative is that there is no relationship of scope between the new disjunct
and the next goal.

Modular restarts would be quite powerful. For example, they would allow us to capture the
declarative search control illustrated in Figure 2. In an explicitly-scoped goal-directed proof cor-
responding to Figure 2, the case analysisioA v B) will look like this:

AY L — AT BY,...—= AT, ..
AVBY, . — AT, .
O(AVB),...— A%, ..

"y
00—

With modular restarts, we know we must continue to tAReas the current goal in the right top
(B?) subproof. In effect, we know to build a short proof in which ambiguities are considered
independently. We can cut down the space for proof search accordingly—for example, there will
be no question of introducing the other ambiguity frartC v D) in the new modular block. On

the other hand, without modular restarts, we are free to reconsider the initia{[@aah (OC)

at this stage; in subsequent search we will reconsider Bo# B) andO(C v D). Thus, even
though the logic guarantees that ambiguities do not interact in a proof, we still wind up considering
interacting ambiguities in proof search.

The main result of this paper is to provide an explicitly-scoped goal-directed proof system in
which modular restarts are complete. The proof system has modular restarts because, in the new
proof system, any proof can be presented in such a way that all disjunctions are canceled. Each
new disjunctP* therefore contributes to the proof of the restart goal in the current block, and so
we know to choose a restart gd@al’ that the new disjunct could contribute to.

It turns out that modular restarts are not automatic; you need to design the policy for disjunctive
inference to respect it. Figure 4 already makes the problem clear. How can we enforce cancella-
tions here? The sequent rules seem not to allow it. The new idea is simple actually—to allow a
new inference figure for disjunction that considers disjuncts out of their textual order:

rDH—A [CH—A
rLCvDHt—= A

V — %

This is the direct analogue of the Near-Horn Prolog inference scheme, which can proceed by
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Q) - '7Q Ea" - )

B.CCOF,...— ....F (D—))
D,...—....D
.-~ B  BCYDCOF.— D /7%
BCVD,CSF, . — BAD TV~

B.CVD,COF,(BAD)OF,...— ....F (5-)

A..—AF y

.

AVBCVD.COF BAD OF —AF )E,...—>E

AVB,CVD,ASF,.COF,(BAD)OF —F (5-)

Figure 5: A reanalysis of the proof of Figure 4 to enforce cancellations. We rewrite pln
whichB is canceled, to use the new disjunctive inference figure; « thus becomes the second

block after{1]. At the same time, we introduce a simplified bI which uses the assumption
C, without disjunction at all.

matching any of the heads of a disjunctive clause at any time [Loveland, 1991]. The new sequent
rule will allow us to reanalyze the constitution of higher blocks so that, wherever we use the new
disjunct in the original proof, we can always reanalyze it as part of the current block. Figure 5
demonstrates this reanalysis for Figure 4. In fact, demonstrating the generality of such reanalysis
will prove to be quite involved. Explicitly-scoped inferences with an eigenvariable condition give
blocks in modal proofs an inherently hierarchical structure, because of the different modal scopes
that are introduced and the local assumptions that are made. Loveland’s construction for cancel-
lations, by contrast, assumes that the structure of blocks is flat. Instead, we must use the natural
tools of the sequent calculus to develop suitable constructions for reanalyzed inferences.

1.2 The results and their context

The problem sketched in Section 1.1 is a pure problem of modal proof. Accordingly, all the proof
systems | consider will describe sound and complete inference under the usual Kripke semantics
for modal logic [Kripke, 1963, Fitting, 1983]. | will not consider interactions of disjunction with
negation-by-failure and other operational features of of logic programming proof-search systems.
For such issues in disjunctive logic programming, see for example [Lobo et al., 1992]. Nor will |
attempt to describe a minimal model or fixed-point construction in which exactly the consequences
of a modal program hold, as in [Orgun and Wadge, 1992].

Moreover, my interest is in specific fragments of specific modal logics in partiddizdularity
andlocality allow consideration of the logics T, K and K4 in addition to S4, but are not compatible
with such logics as S5, temporal logics with symmetric past and future operators [Gabbay, 1987],
the logic of context of [McCarthy and Bugal994] or the modal logic of named addresses of
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[Kobayashi et al., 1999]. For example, in S50A is true at any world, the@A is true at all
worlds; thus the logic prohibits making such an assumption locally. To see the problem, observe,
for example, thati(OA D B) v DA is a theorem of S5. Modal proofs in such cases require global
restarts [Gabbay and Olivetti, 1998]ocality further rules out logical fragments with possibility

or negation. Such fragments can be used to pose goals about that access otherwise local assump-
tions, as in the theorem(A D B) v ¢A of all normal modal logics. (Goal-directed proof of this
theorem also involves a global restart.) Moreover, such fragments make it more difficult to enforce
modularity as well, since they do not permit an eigenvariable conditigr-atl) inferences in
goal-directed proofs. My investigation therefore sticks closely to the treatments of logical mod-
ularity and locality originally explored in [Miller, 1989, Giordano and Martelli, 1994]. Indeed, |
continue to restrict implications and universal quantifiers in goals to strict statements of the form
O(P D G) andDvxG.

The basic strategy that | adopt is to start with a relatively straightforward proof system, and
gradually to narrow the formulation of its inference rules—preserving soundness and complete-
ness with respect to the underlying semantics—until we have a proof system, SCLP, with the
desired characteristics, namely goal-directed search and modular restarts. | have been particularly
influenced by Lincoln and Shankar’s presentation of proof-theoretic results in terms of simple
transformations among successive proof systems [Lincoln and Shankar, 1994]; and by Andreoli’s
construction of focusing sequent calculi that embody the discipline of goal-directed proof directly
in the form of inference figures [Andreoli, 1992].

However, the correct design of the final proof system requires a variety of proof-theoretic ideas
about logic programming to be extended, strengthened, and combined with proof-theoretic results
about modal logic in a novel way. To describe logic programming, we start with the idea of
uniform proof search described in [Miller et al., 1991] and extended to multiple-conclusion calculi
in [Miller, 1994]. To derive a uniform proof system in the presence of indefinite information in
assumptions, however, we can no longer use the familiar quantifier rules used in previous logic
programming research, which simply introduce fresh parameters; we must apply a generalization
of Herbrand’s Theorem [Lincoln and Shankar, 1994] and work with quantifier rules that introduce
structured terms. The calculus of Herbrand terms, SCL, lifts the explicitly-scoped proof systems
considered in Section 1.1.2 and [Fitting, 1983, Wallen, 1990]. The key property of SCL is that
inferences can be freely interchanged. This allows arbitrary proofs to be transformed easily into
uniform proofs.

The modularbehavior of this uniform system depends on the further proof-theoretic analyses
of path-based sequent calculi adapted, in part, from [Stone, 1999]. These analyses establish that
path representations enforce modularity and locality in the uses of formulas in proofs, even with
otherwise classical reasoning. Hence, although path-based calculi obscure the natural modularity
of modal inference, they do not eliminate it. | finish with a streamlined uniform proof system that
takes advantage of these results; as a consequence, proof search in this calculus can dynamically
exploit the local use of modular assumptions.

The justification of this new proof system makes much of a strategy originally due to
[Kleene, 1951], in which the inferences in a proof are reordered so as to satisfy a global invari-
ant. The strategy achieves termination despite generous copying and deepening of inferences by a
judicious choice of transformations within a double induction. In our cases, these transformations
are guided by the constraints of uniform proof, and by the cancellations of disjunctive assumptions
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that we know we must maintain in proofs, to achieve modularity. This provides an analogue of
Loveland’s transformations on restart proofs [Loveland, 1991] in the sequent calculus setting.

Of course, modal logic is not just a modular logic. Modal logic provides a general, declar-
ative formalism for specifying change over time, the knowledge of agents, and other special-
purpose domains [Prior, 1967, Hintikka, 1971, Schild, 1991]. Goal-directed systems for modal
proof are often motivated by such specifications [rasidel Cerro, 1986, Debart et al., 1992,
Baldoni et al., 1993, Baldoni et al., 1996]. In generalizing goal-directed modal proof to indefi-
nite specifications, SCLP can play an important role in applying modal formalisms to planning,
information-gathering and communication [Stone, 1998a, Stone, 2000]. Even when content, not
modularity, is primary, the modular treatment of disjunction limits the size of proofs and the kinds
of interactions that must be considered in proof search. Such constraints are crucial to the use
of logical techniques in applications that require automatic assessment of incomplete information,
such as planning and natural language generation. The interest of these more general applications
helps explain why | pursue this investigation in the full first-order language.

1.3 Outline

The structure of the rest of this paper is as follows. | begin by presenting first-order multi-modal
logic in Section 2. | consider syntax (Section 2.1), semantics (Section 2.2), and finally proof
(Section 2.3); | describe the explicitly-scoped Herbrand proof system for modal logic that is my
starting point. Section 2.4 shows that this calculus offers a suitable framework for goal-directed
proof because uniform proof search in this calculus is complete.

Section 3 describes and justifies a modular goal-directed proof system, as advertised in Sec-
tion 1.1. | introduce the calculus itself in Section 3.1, along with key definitions and examples.
Then in Sections 3.2—-3.4 | outline how this sequent calculus is derived in stages from the calculus
of Section 2. Full details are provided in an appendix.

Finally, Section 4 offers a broader assessment of these results. | consider some further opti-
mizations that the new sequent calculus invites in Section 4.1, and briefly conclude in Section 4.2
with some applications of first-order multi-modal inference that the new sequent calculus suggests.

2 First-order multi-modal deduction
| begin by supporting the informal presentation of first-order multi-modal logic from Section 1
more explicitly. | will adopt a number of techniques that are individually quite familiar. | allow an
arbitrary number of modal operators and a flexible regime for relating different modal operators
to one another, following many applied investigations [Debart et al., 1992, Baldoni et al., 1993,
Baldoni et al., 1996, Baldoni et al., 1998b]. | use prefix terms for worlds and sequent calcu-
lus inference, following the comprehensive treatment of the first-order modal logic using pre-
fix terms and analytic tableaux (or, seen upside-down, in the cut-free sequent calculus) of
[Fitting and Mendelsohn, 1998]. | factor out reasoning about accessibility into side conditions
on inference rules, similar to the proof-theoretic view of [Basin et al., 1998], in which reasoning
about accessibility and boolean reasoning are clearly distinguished. And | use Herbrand terms
to reason correctly about parameterized instances of formulas, avoiding the usual eigenvariable
condition on quantifier (and modal) rules, as in [Lincoln and Shankar, 1994].

Though the techniques are routine, the combination is still somewhat unusual. Re-
search in modal logic—whether the investigation is more mathematical e[G662,
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Massacci, 1998b, Massacci, 1998a, §dr999] or primarily concerns algorithms for proof
search [Otten and Kreitz, 1996, Beckert and&d997, Schmidt, 1998]—is dominated by the
study of the propositional logic of a single modal operator (or accessibility relation). More-
over, researchers who have investigated modal logic in a first-order setting have tended
to jump directly into a discussion of particular theorem-proving strategies, particularly
resolution [Jackson and Reichgelt, 1987, Wallen, 1990, Catach, 1991, Frisch and Scherl, 1991,
Auffray and Enjalbert, 1992, Nonnengart, 1993, Ohlbach, 1993].

2.1 Syntax

Our language depends ors@gnatureincluding a suitable set of atomic consta@t¢éand suitable
predicate symbols and modalities). We then consider program statements of the syntactic category
D(C) and goals of the categofy(C) defined recursively as in (1); we refer to the union of these

two languages ak(C). (1) makes explicit the conditions observed in Section 1.2; there is no
possibility or negation, and universal and hypothetical goals must be modal.

(1) G:=A|[M|G|GAG|GVG|[M](VXG) | 3G| [M](D > G)
D:=A|[MD|DAD|DVD|V¥xD|3xD|GD>D

In (1), A schematizes an atomic formula; atomic formulas take the fo(au, ..., ax) wherep; is
a predicate symbol of arity and eaclhg; is either a variable or an atomic constant in theGet
We assume some initial non-empty set of const&@& ST But it will be convenient to consider
languages in which a countably infinite numberpaframetersare included in the language to
supplement the symbols in CONST.

In (1), [M] schematizes a modal operator of necessity; intuitively, such modal operators allow
a specification to manipulate constrained sources of information. That is, a program statement
[M]D explicitly indicates thaD holds in the constrained source of information associated with
the operatofm]. Conversely, a gogdM]|G can be satisfied only whe@ is established by using
information from the constrained source associated {with

We will work in a multi-modal logic, in which any finite numben of distinct necessity op-
erators ormodalitiesmay be admitted. (Necessity operators will also be writtenlas 0;.) In
addition to ordinary program statements, a specification may contain any of the following axiom
schemes describing the modalities to be used in program statements and goals:

(2) OipDp veridicality (VER)
Ojp D 0;0;p  positive introspectio(p!)
OipD> Ojp inclusion(INC)

These axioms describe the nature of the information that an operator provides, and spell out re-
lationships among the different sources of information in a specificativgr)(is needed for
information that correctly reflects the world1}, for information that provides a complete picture
of how things might be; andNc), for a source of informatiorj, that elaborates on information
from another source, Because we use this explicit axiomatization, we can take the names of the
modal operators as arbitrary.

We appeal to the usual notions fsée and boundoccurrences of variables in formulas; we
likewise invoke thedepthof a formula—the largest number of nested logical connectives in it.
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2.2 Semantics

As is standard, we describe the models for the modal language in two steps. The first step is to set
upframesthat describe the structure of any model; a full model can then be obtained by combining
a frame with a way of assigning interpretations to formulas in a frame.

Definition 1 (Frame) A frameconsists of a tupléw,R ,D) where:w is a non-empty set gfos-
sible worlds R names a family of m binargccessibilityrelations onw, a relationR ; for each
modality i; andD is adomain functiormapping members @f to non-empty sets.

Within the frameF , the functionD induces a seb (F ), called thedomain of the frameas
U{D(w) | w e w}. In order to simplify the treatment of constant symbols, it is also convenient to
define a set of objects that all the domains of the different possible worlds have in common, the
common domain of the frante: C(F ) = n{D(w) | w € w}. We effectively insist tha€ (F ) be
non-empty as well, since CONST is non-empty and each symbol in CONST must be interpreted
by an element of (F ).

The intermediate level of frames is useful in characterizing the meanings of modal operators
and modal quantification. In particular, simply by putting constraint®gror onD at the level
of frames, we can obtain representative classes of models in which certain general patterns of
inference are validated. The constraints we will avail ourselves of are introduced in Definition 2.

Definition 2 Let(w,R ,D) be aframe We say the frame is:
o reflexiveat i if wR ;w for every we w;

e transitiveat i if, for any ww’ € w, wR ;w”’ whenever there is a’'v& w such that R ;w and
wWR wW’;

e narrowingfromito jif wR ;W implies wR ;W for all w,w’ € w;

e increasing domaiif for all w,w € w, D(w) C D (w') whenever there is some accessibility
relationship vk ;w'.

Our scheme for using the constraints of Definition 2 depends on establishing a regimenfior the
modalities in the language, describing the inferences that should relate them. The regime is defined
as follows.

Definition 3 (Regime) A regimeis a tuple (A,N ,Q), where: A is a function mapping each
modality into one of the symbols K, K4, T and $4;is a (strict) partial order on the modali-
ties; andQ is the symboincreasing

The reader will recognize the symbols in the imagéoés the classic names for modal logics
of a single modality.$4 is for modalities that are subject tel] and (/R). T is for modalities

that are subject just tovER). K4 is for modalities that are subject just teiY. K is modalities
subject to neither axiom. The interactions specifiedikg) are determined by the partial order on
modalities:j <iwhenOjp D O;p. This meaning for these symbols can be enforced by considering
only frames thatespecthe givenregime
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Definition 4 (Respect) LetF = (w,R ;D) be a frame, and le$ = (A,N,Q) be a regime. We
sayF respect$ whenever the following conditions are met for all modalities i and j:

e If A(i)is T or S4 therR ; is reflexive.

e If A(i) is K4 or S4 therR  is transitive.

e If j <iaccording toN thenF is narrowing fromito j.
e If Q isincreasingthenF is increasing domain.

From now on, we assume that some regfine (A, N ,Q ) is fixed, and restrict our attention to
frames that respeét. Informally, now, a model consists of a frame together with an interpretation.

Definition 5 (Interpretation) J is aninterpretationin a frame(w,R ,D) if J satisfies these two
conditions:

1. J assigns to each n-place relation symbelamd each possible world w w some n-ary
relation on the domain of the franig(F ).

2. J assigns to each constant symbol ¢ some element of the common domain of tHg(frame

Thus we can define modeloverS thus:

Definition 6 (Model) A first-order kmodal modebver a regiméS is a tuple(w,R ,D,J) where
(w,R D) is a frame that respecs andJ is an interpretation ilw,R ;D).

To define truth in a model, we need the usual notion of assignments and variants:

Definition 7 (Assignment) Let M = (w,R ,D,J) be a model (that respects the regi®e An
assignmenin M is a mapping g that assigns to each variable x some men{s¢ofthe domain
of the frame of the mod® ((w,R ,D)).

In proofs, we interpret formulas not just in the ordinary langula@® with a given set of modali-
ties, relations, constants and variables, but in an expanded lang(@gd®) which also includes

a setP of first-orderparameterswe will want to use the same models for this interpretation. Over
L(CUP), we suppose that an assignmenMnalso assigns some memlggp) of the domain of
the frame ofM to each parametqrin P.

Definition 8 (Variants) Let g and ¢ be two assignments in a mod&l = (w,R ;D J); ¢’ is
an xvariant ofg at a worldw € w if g and d agree on all variables except possibly for x and
g(x) € D(w).

Definition 9 (Truth in a model) LetM = (w,R ,D,J) be a model. Then the formula Atisie at
world w of modelM on assignmerdg—writtenM , wi—q A—just in case the clause below selected
by syntactic structure of A is satisfied:

e Aisp(ty,...,tn): ThenM ,wi—g A justin casgey,...en) € J(pi,w), where for eachif g is
J (tj) if tj is a constant and @) otherwise.
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Ais By ABy: ThenM ,wi—g A just in case botiM ,wi—g By andM ,wi—¢ Bo.

Ais B VB ThenM ,wi—g A justin case eitheM ,wi—g B or M ,wi—g B;.

Ais0;B: ThenM ,wi—g A just in case for everywe w, if wWR ;W thenM ,w i—¢ B.

Ais¥xB: ThenM ,wi—g A just in case for every x-variant gf g at w,M ,wi—¢ B.

Ais3xB: ThenM ,wi—g A justin case there is some x-variaritag g at w withM ,wi—¢ B.

By a sentencave mean a formula of (CONST) in which no variables occur free. For any
sentencé\, modelM and worldw of M, a simple induction on depth guarantees tatwi—q A
for some assignmeutin M exactly wherM ,wi—¢ A for all assignmentgin M. In this case, we
can write simplyM ,wi— A and say thaf\istrue inM at w.

Definition 10 (Valid) Let A be a sentence ald = (w,R ,D,J) be a model. A isalid in M if
for every world we w, M ,wi— A. A isvalid (on the regimgA,N ,Q)) if A is valid in any model
M that respects the regime.

2.3 Proof theory

We now present our basic deductive system—a cut-free path-based sequent calculus for multi-
modal deduction which uses Herbrand terms to reason correctly about parameterized instances
of formulas. Since this calculus represents our bbféer] sequent calculukr modal logic, we

refer to it as SCL here. Our starting point is Theorem 1 that SCL provides a sound and complete
characterization of valid formulas.

SCL has the advantage that inferences can be freely interchanged, allowing arbitrary proofs to
be transformed easily into goal-directed proofs; we show in Theorem 2, presented in Section 2.4,
how to obtain goal-directed proofs in this calculus. The very same flexibility of inference, however,
means that this calculus neither respects nor represents the potential of modal inference to give
proofs an explicitly modular structure.

The basic constituent in SCL isteacked, prefixed formulaThe formulas extend the basic
language®(C) andG(C) of definitions and goals defined in (1) by allowing additional terms—
representing arbitrary witnesses of first order quantifiers, and arbitrary transitions of modal ac-
cessibility among possible worlds—to be introduced into formulas for the purposes of proof. We
begin by assuming two countable sets of symbols: ddset first-order Herbrand functionand
Y of modal Herbrand functionsWe can now define seiy of first-order Herbrand termsky- of
modal Herbrand termsandll(ky) of Herbrand prefixeby mutual recursion:

Definition 11 (Herbrand terms and prefixes) Assume thatot is a Herbrand prefix and let
t1,...,tn be a sequence (possibly empty), where egishetither an element of C, a first-order Her-
brand term, or a Herbrand prefix. Then if h is a first-order Herbrand function thenta, . .., tp)

is afirst-order Herbrand termif ) is a modal Herbrand function them(to,ts,...,t,) is a modal
Herbrand termA Herbrand prefixs any finite sequence of modal Herbrand terms.

The rationale behind the use of a Herbrand téfiX) at an existential inferende goes like this.
At existential inferences, we need to reason about a generic individual. We need to have a suitable
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representation for a generic individual fB Regardless of the order in which inferences are
applied in a sequent deduction, there will be some parameters that must occur in the sequent where
R applies. For example, some parameters must appear here as a result of the instantiations that
must take place in deriving the formula to whiBhapplies. We must be sure that the individual

we introduce forR is different from all these parameters. The terksvhich are supplied as

an argument to the Herbrand tehtX) identify these parameters indirectly. The structifX)
therefore serves as a placeholder for a new parameter that could be chosen to be different from
each of the terms iX. The structuren(X) thus packs all the information required to allow the
inferences in the proof to be reordered and an appropriate parameter chosen so that the inference
atRis truly generic.

In modal deduction, of course, we need generic individuals at modal inferences as well as
existential ones. Modal Herbrand inference therefore requires that we introduce Herbrand terms
to describe transitions among possible worlds and Herbrand prefixes to name possible worlds, in
addition to introducing first-order Herbrand terms to represent first-order parameters. In this case,
the argumentX to Herbrand terms must mix first-order Herbrand terms and Herbrand prefixes,
since logical formulas can encode dependencies among first-order and modal parameters.

A prefixed formulas now an expression of the forA with A a formula and1 a Herbrand
prefix—we useD(CU Py)™v) andG(CU Ry)™v) to refer to prefixed definitions and prefixed
goals. For Herbrand calculi, formulas must alsataekedto indicate the sequence of instantia-
tions that has taken place in the derivation of the formula.

Definition 12 (Tracked expressions)If E denotes the expressions of some class, thetrabked
expression®f that class are expressions of the formwdere e is an expression of E and | is a
finite sequence (possibly empty) of elementsloPg UM (Ky).

We say that a tracked expressigriracksa termt just in casé occurs as a subterm of some term
inl.

In order to reason correctly about multiple modal operators, we need to keep track of the kinds
of accessibility that any modal transition represents. To endow the system with correct first-order
reasoning on increasing domains, we also need to keep track of the worlds where first-order terms
are introduced. We use the following notation to record these judgmpgpts: i indicates that
world v is accessible from world by the accessibility relation for modality andt : p indicates
that the entity associated with tetrexists at worldu.

It is convenient to keep track of this information by anticipating the restricted reasoning re-
quired for our fragment (C) and exploiting the structure of Herbrand terms, as follows. It is
clear that there are countably many first-order Herbrand terms, Herbrand prefixes, and formulas in
L(CUP4). We can therefore describe a correspondence as followsislf formula of the form
VxB or 3xB andu is a natural number, we define a corresponding first-order Herbrand fu&tion
so that each first-order Herbrand functiornjisfor someA and no first-order Herbrand function is
h}z'\ andh} for distinctA andB or distinctu andv. Likewise, ifA is a formula of the formJ;B and
uis a natural number, we define a corresponding modal Herbrand fumgtisa that each modal
Herbrand function is)} for someA and no modal Herbrand functioniig, andny for distinctA
andB or distinctu andv. (Indexing Herbrand functions by natural numbers means that adapting a
Herbrand proof to respect an eigenvariable condition can be as simple as reindexing its Herbrand
functions.) Now we have:
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Definition 13 (Herbrand typings) A Herbrand typing for the languadg€C U P ) (under a corre-
spondence as just described) is aSeaif statements, each of which takes one of two forms:

1. p/pn :iwhere: pis a Herbrand prefix anglis a modal Herbrand term of the fornk (1
and A is0JjB.

2. t: pwheret is a first-order Herbrand term of the forrguh. . .).

A sequence of modal and first-order Herbrand terms X determines a Herbrand Bpjrognsist-
ing of the appropriate ygun : i for each modal Herbrand term that occurs in X (possibly as a
subterm) and the appropriate:hu for each first-order Herbrand term h that occurs in X (possibly
as a subterm).

Definition 14 (Typings) Suppose thaE is a Herbrand typing over a languagé@UP)"®), and
that S = (A,N ,increasing is a modal regime. We define the relation that E idexived typ-
ing from = with respect taS, written S,=>E, as the smallest relation satisfying the following
conditions:

K).S,Zpp/v:iifp/v:ie=.
o (T).S,=vp/u:iif A(i)is T or S4, and p occurs iB.

(
(
e (4).S,=vpy/viiifp/p:ie=, S;=o /v :i,andA(i) is K4 or S4.
*
(
(

Inc). S,=>p/v:iif S,=>p/v: jand j<iaccording toN .

V). S,=pt:pift:pe=.

e (I).S,=pt:vif S,=pp/v:iforsomeiand,=>t: .

Inspection of these rules shows tlaE= > p/v ;i only if v andp occur in=. Moreover, given
these rules, an easy induction on the length of typing derivations giveS tBatp/v : i only if

v =’ for some prefiw’. Thus, suppose th8t = /v : i for some Herbrand typing: each step
in the derivation must concern some prefixwéand thusS, =, > /v :i. These invariants permit
some simplifications in reasoning in the fragmef€ U P) over more expressive modal regimes
containing other modal operators and other uses of connectives.

These definitions allow us to describe the modal Herbrand sequent calculus precisely. This
calculus, SCL, is given in Definition 15. Note that for this fragment of modal logic, it suffices
to consider sequents of the fortn— I, whereA is a multiset of prefixed definitions (from
D(CUPy)T®Y), andT is a multiset of prefixed goals (fros(C U Py)™(KY)). Note also that
S,=>p/v:ionlyifvis of the formuv'.

Definition 15 (Herbrand sequent calculus) For basic first-order multi-modal Herbrand deduc-
tions in our fragment over a reginfe we will use the sequent rules defined here, which comprise
the system SCL. The rules consist of an axiom rule and recursive rules—each recursive rule re-
lates abasesequent below to one or mospursequents above; it applies to the base in virtue of

an occurrence of a distinguished tracked, prefixed formula in the sequent; we refer to this as the
principal expressiolr simply theprincipal of the inference. Similarly, each of the sequent rules
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introduces new expressions onto each spur, which we refer to asdéexpressionsf the rule.
We will also refer to the two named expression occurrences at axioms psaribgal expressions
or principalsof the axiom. Now we have:

1. axiom—A atomic:
A A — T A,

N

conjunctive:
A ANBY AL BY —T
AANBY —T

A — T, AvBY, AL, BY
A —T,AVBY

AN — T ADBY, BY
AN—T,ADBY

(A=)

(= V)

(—2)

w

. disjunctive:
A — T ANBY, AL A— T ANBY,BY
A—T,ANBL (

A AV By A —-T A AV By, BY —T
AAVBY —T

AADBY — AL T AADBY,BY —T
AADBYy —T

—>/\)

(V=)

(>—)

IN

. possibility—wherg is ngiA(p,X) for some u:

A— T, O~ A
A—T,OA

(—0)

5. necessity—subject to the side condifioiy, > p/pv : i:

A, OiAGAY Ly — T
A DAY, —T

C—)

6. existential—subject to the side condition that hiihX) for By the principal of the rule
(either3xA orvxA) and some u:
A, 3XA A/, — T A — T, WxA, Alh/X |
AIxA—T G2 T a—=rwa Y

~

universal—subject to the side condit®re; >t : p:

DY AL Xy  — T A — T, 3IXALAL/X .
A — (V= A—T.xA 3
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A S-proof orS-derivation for a sequet —= I is a tree built by application of these inference
figures (in such a way that any side conditions are met for re§iywith instances of the axiom as
leaves and with the sequelt—> I at the root. A tree similarly constructed except for containing
some arbitrary sequeftas a leaf is @erivation from S

| state the correctness theorem for this proof theory in a way that highlights the continuity with
previous work on modal logic, particularly [Fitting, 1983].

Theorem 1 (Soundness and Completenes§uppose there is ab-proof for a sequent—- A.
Then A is valid. Conversely, if there is Beproof for the sequent— A then there is a modd/l
(that respect§) and world w such thal ,wi~ A.

| merely sketch a proof here, which involves simply applying the standard techniques of
[Fitting, 1983, Lincoln and Shankar, 1994]. It is convenient to prove an intermediate result, using
slightly modified sequent calculus SCE which imposes an eigenvariable condition on the possi-
bility and existential rules-&+-must be new. We can show the soundness of SCE by adapting the
arguments presented in [Fitting, 1983, 2.3] and [Fitting and Mendelsohn, 1998, 5.3]. Meanwhile,
we can follow [Fitting, 1983] in developing the completeness argument in terrasadytic con-
sistency propertiefor the modal language. This argument can be seen as a formalization of the
motivation for sequent calculi in the systematic search for models. Now, modal formulas may
be satisfied only in infinite models, so the completeness theorem effectively requires us to con-
sider infinite sequences of applications of sequent rules. In moving to infinite sets in this way, we
must formally move from deductions, viewed as syntactic objects, to a more abstract, algebraic
characterization of sets of modal formulas.

We can now establish the correctness of SCL by syntactic methods, which relate SCL proofs to
SCE proofs. Suppode andA contains sentences bf CONST) (labeled with the empty prefix).
Completeness is immediate: if there is an SCE prooflfor— A, that very proof is also an
SCL proof of[ — A. Conversely, the soundness theorem says that if there is an SCL proof of
I — A, then there is an SCE proof for—= A. We establish this by simply adapting the general
Herbrand theorem of [Lincoln and Shankar, 1994] to SCE. The idea behind the soundness result is
that the structure of Herbrand terms provides enough information to reconfigure an SCL proof (by
an inductive process of interchanges of inference, like that considered next in Section 2.4) so that
equivalents of the eigenvariable conditions are enforced. The SCL proof may then be reindexed to
respect SCE'’s eigenvariable requiremefts.

2.4 Permutability of inference and uniform proofs

Our syntactic methods for reasoning about derivations expéoinutability of inference-the gen-

eral ability to transform derivations so that inferences are interchanged [Kleene, 1951]. To develop
the notion of permutability of inference, we need to make some observations about the SCL se-
qguentrules. First, the reasoning that is performed in subderivations is reasoning about subformulas
(and vice versa). That is, in any spur sequent, the occurrence of the principal expression and the
side expression all correspond to—or as we shall aeybased ir-the occurrence of the prin-

cipal expression in the base sequent. Likewise, each of the remaining expressions in #re spur
based inan occurrence of an identical expression in the base. Here, as in [Kleene, 1951], we are
assuming amnalysisof each inference to specify this correspondence in the case where the same
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expression has multiple occurrences in the base or in a spur. Thus, our proof techniques, where
they involve copying derivations, sometimes involve (implicit) reanalyses of inferences.

Now, in any derivation, the spur of one inference serves as the base &mljasentinference
or an axiom. We can therefore associate any tracked prefixed formula occugrenaay sequent
in the derivation with the occurrence in the root érd-sequeftwhich E is based in. A similar
notion can relate inferences, as follows. Suppg@s$ethe inference at the root of a (sub)derivation,
andL is another inference in the (sub)derivation. Ther based iman expressiok in the spur of
O if the principal expression df is based irE; L is based in Qtself if E is a side expression of
O. An important special case is that of an axiom based in an infe®@nbteeffect, such an axiom
marks a contribution that inferen€econtributes to completing the deduction.

To define interchanges of inference, we appeal to the two basic operatioostcdctionand
weakeningwhich we cast as transformations on proofs. (In other proof systems, contraction and
weakening may be introduced as explgtituctural rules)

Lemma 1 (Weakening) Let D be an SCL proof, lef\; be a finite multiset of tracked prefixed
definitions and lef ¢ be a finite multiset of tracked prefixed goals (in the same languad)as
Denote byAg+ D + g a derivation exactly likeD, except that where any node I carries
A — T, the corresponding node if\g + D + g carries A,Ag — I,[g. (Whenlg or g is
empty, we drop the correspondingfrom the notation.) TheAg+ D + g is also an SCL proof.

Lemma 2 (Contraction) LetD be an SCL proof whose root carriés— I ,E,E. Then we can
construct an SCL prodD’ whose root carriedd — I, E, whose height is at most the height of

D and where there is a one-to-one correspondence (also preserving order of inferences) that takes
any inference oD’ to an inference with the same principal and side expressioh3.ifWe can
likewise transform an SCL pro@¥ whose root carried\, E,E — I into an SCL prooD’ whose

root carriesA,E —T.

These lemmas follow from straightforward induction on the structure of derivations. These con-
sequences continue to hold, suitably adapted, for the intermediate proof systems that we will con-
struct from SCL in later sections.

Now consider two adjacent inferences in a derivation, a base infefRacel an inferenc&
(whose base is a spur &). If Sis not based irR, we may replace the derivation rooted at the
base ofR by a new derivation of the same end-sequent in wiS&pplies at the roofR applies
adjacent, and the remaining subderivations are copied from the original derivation (but possibly
weakened to reflect the availability of additional logical premises). Performing such a replacement
constitutes an interchange of rulBsand S and demonstrates the permutability®ver S, see
[Kleene, 1951]. SCL is formulated so that any such pair of inferences may be exchanged in this
way.

We also observe that we can correctly introduce an abbreviation for goal occurrences of
0i(A D B) by a single formuldA >; B) and the consolidation of corresponding inferences;)
and(—D) into a single figuré —>;), while retaining unrestricted interchange of inference. Again
when the inference applies to princimiﬂ, the figure is formulated using for na (p, X) as:

rAN, — BYn A>i BY,A
r—A>B},A

— >
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We will refer to the calculus using—>j) in place of(— O;) and(—D>) as SCLI, and consider
SCLI in the sequel.

[Miller, 1994, Miller, 1996] uses Definition 16 to characteraastract logic programming lan-
guages

Definition 16 A cut-free sequent prodd is uniform if for for every subprooD’ of D and for
every non-atomic formula occurrence B in the right-hand side of the end-sequBhtiudre is a
proof D” that is equal todD’ up to a permutation of inferences and is such that the base inference
in D” introduces the top-level logical connective of B.

Definition 17 A logic with a sequent calculus proof system isadstract logic programming lan-
guagef restricting to uniform proofs does not lose completeness.

It is easy to show that the sequent calculi SCL and SCLI are abstract logic programming languages
in this sense. In fact, by this definiti@verySCL or SCLI derivation is uniform.

To anticipate our analysis of permutability in later sections, let us introduce the notion of an
eagerderivation in SCL or SCLI.

Definition 18 Consider a derivatio®D containing a right inference R that applies to principal E.

R isdelayedexactly when there is a subderivati® of D where: D’ contains R;D’ has a left
inference L at the root; and the principal E of R is based in an occurrence of E in the end-sequent
of D’.

Consider this schematic diagram of such a subderivddion

l
E.. -

On an intuitive conception of a sequent proof as a record of proof search constructed from root
upwardsRis delayed in that we have waitedhto applyR until after consulting the program by
applyingL, when we might have appliddearlier. Thus, we will also say in the circumstances of
Definition 18 thatR is delayedwith respect to L

Definition 19 D is eagerexactly when it contains no delayed applications of right rules.

By transforming any derivatioD into an eager derivatioD’ by permutations of inferences, we
make it clear that reasoning about goals can always precede reasoning with program statements,
and thereby provide a starting point for further analysis of goal-directed proof search.

Theorem 2 Any SCL(I) derivatiorD is equal to an eager derivatioD’ up to permutations of
inferences.

The proof follows [Kleene, 1951, Theorem 2]. A double induction transforms each derivation
into an eager one; the inner induction rectifies the final rule of a derivation whose subderivations
are eager by an interchange of inferences (and induction) [Kleene, 1951, Lemma 10]; the outer
one rectifies a derivation by rectifying the furthest violation from the root (and induction). See
Appendix A.®
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3 Modular goal-directed proof search

3.1 Overview

Eager derivations do not make a satisfactory specification for goal-directed proof in a logic pro-
gramming sense, because they do not embody a particularly directed search strategy. For one thing,
eager derivations are free to work in parallel on different disjuncts of a goal using different program
statements; in logic programming we waggmentsn which a single program statement and a
single goal is in force. Moreover, eager derivations can reuse work across separate case analyses;
in logic programming we warttlockswhere particular cases are investigated separately. Finally,
because of their classical formulation, eager derivations do not enforce or exploit any modularity
in their underlying logic. Our task is to remedy these faults of eager derivations.

Our result takes the form of an alternative sequent calculus SCLP which is equivalent to SCL.
SCLP enforces a strictly goal-directed proof search through the structure of its inferences. First,
SCLP sequents take the form

HuU—V;A

We understand to specify the global program ardto specify the global restart goals; both are
multisets of tracked, prefixed formuldd.is at most one tracked, prefix formula, representing the
current program statement; is at most one tracked, prefixed formula, representing the current
goal.

Logical rules apply only to the current program statement and the current goal. In addition, if
there is a current program statemeénthen the current goAM must be an atomic formula. Thus,
the interpreter first breaks the goal down into its components. Once an atomic goal is derived,
the program is consulted; the selected program statement is decomposed and matched against the
current goal by applicable logical rules. The form of the—) figure ensures that the interpreter
continues to work on at most one goal at any time; this gives SCLP proofs their segment structure.
Meanwhile, the form of thé€\V —) figures specify no current goal in its second case. The new
current goal can then be chosen flexibly from possible restart goals. This gives SCLP proofs their
block structure.

The new inferences are presented in Definition 20 and 21. Definition 20 shows the rules for
decomposing program statements; Definition 21 shows the rules for decomposing goals.

Definition 20 (Logic programming calculus—programs) The following inference figures de-
scribe the logic programming sequent calculus SCLP as it applies to program statements.

1. axiom—A atomic:
A — AV:A

2. decision (program consultation)—again A atomic:

M Py Py —= AV A

Pl — AV:A decide

3. conjunctive:
M Py — AV;A
LPAQY — A A

N —L
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Mok — A);A
MPAQY — AVA " TR

4. disjunctive:

MP — AV r,Q—A
M PVQE — AVA Vo
rQ — AVA rP;—A
MPVQE — AVA R
5. implication:
M — QA M Py — AV A
QoPY — AVA o

6. necessity—subject to the side condition that there is a typing deriv&tiy p/pv : i:

[P — AVA
rOPYy — AV A

0 —

7. existential—subject to the side condition that hlig.fy, X) for some u:

CiP/X)S p — AViA
M 3Ix Py — AV A

—

8. universal—subject to the side condition that there is a typing derivatign, >t : p:

[ P[t/X5  — AV A
MV Py —= AV A

—

Definition 21 (Logic programming calculus—goals) The following inference figures describe
the logic programming sequent calculus SCLP as it applies to goals.

1. restart:
; — Gy; Gy, A
F— GL.A restart
2. conjunctive goals:
M — Fi;A r— GA

[, — FAGLA -
3. disjunctive goals:
M — FLA
r—FvGha "t

r— GY:A
—FvGLA VR
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4. necessary goals—wheneis nx (U, X) for A§‘< the principal of the rule and for some u for
whichn}y does not occur im or I":
I = GX s Gy &

X,un’ X'~ o
[ — F> GL.A Hi o

r;—»e;f?n;egf?m,A
M — 0,G%; A

— 0

5. universal goals—subject to the side condition that Hjjg.fu, X) for some u:

r;— Glh/x% ;A
I — VX.Gy: A

—

6. existential goals—subject to the side condition that there is a typing derivitiinp, >t : p:

I, — G[t/x ;A
M — IxGL:A

Inspection of the figures of Definitions 20 and 21 reveals the following generalization of mod-
ularity and locality: in any derivation, the label of the current program statement must be a prefix
of the label of the current goal. Moreover, goal labels are always extended with novel symbols,
because of the eigenvariable condition in the O) figure. Inductively, these facts determine a
strong invariant—consider a block beginning with a restart inference whose spur is

M, — Gy A

and consider any expressi@ﬁ in . If pis not a prefix ofv, thenp will not be a prefix of the label
of any goal formula in the block. ThLR‘(1 cannot be used in the block. (Compare [Stone, 1999,
Lemma 2].)

This is why the (restart) rule of SCLP can be made modular, so that it limits the work that
is reanalyzed to the scope of the ambiguity just introduced. We must simply show that the new
disjunct will contribute to its restart goal. In particular, define canceled blocks as in Definition 23.

Definition 22 (Linked) An expression E in a sequent in an SCLU derivaiidnis linked if the
principal formula of an axiom in the same block[®fas that sequent is based in E. An inference
R islinkedin D if some side expression of R is linked in each spur of R. A derivation or block is
linked iff all of the inferences in it are linked.

Definition 23 (Canceled) A block iscanceledf it contains the root oD, or if the side expression
E of the(v —) inference whose spur is the root of the block is linked.

Thus a canceled block includes a use of any disjunctive case introduced in the block. The key fact
about SCLP is that it suffices to consider only canceled blocks in proof search.
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.:C—CF
—————— (decide)
G GF L F—FF
C...COF —F,F (5=)
(decide)

CoFC...;,—F;F
AVB,CVD,ADFCDOF,(BAD)DFB,C,—;F

(restart)

..;B—=B;F ~ ..,CvD—D;F _
B —» pE (decide)—= 5 ———pF  (decide)
A
€vDB..;—BADF = )...;F—>F;F
CVvD,B,...;(BAD)DF —F;F (D_T)
CVD,(BAD)OF,B,...,— F;F (decide)

AVB,CVD,ADF,COF, (BAD)OF,B,—;F (restart)

(V—r)

. A—=AF
AVB—AF (VU
(decide)

AVB,...,— AF CE e EF

: F =~ (5-)

AVB,...,ADF —F;F '
AVB,ADF,...;—F;F (decide)
AVB,CVD,ASFCSF,(BAD)SF,—F (estar)

Figure 6: The SCLP presentation of the proof of Figure 5.

Theorem 3 Let ' and A be multisets of tracked prefixed expression in which each formula is
tracked by the empty set and prefixed by the empty prefix. There is a proofef A in SCL
exactly when there is a proof 6f —; A in SCLP in which every block is canceled.

The discussion of the following subsections represents an outline of the proof of this result. The
strategy is to transform eager proofs from SCL to SCLP by a series of refinements of sequent rules
that make the logic programming strategy explicit. We give force to the idea that the interpreter
has a current goal and current program statement, in Section 3.2. Then we create blocks for case
analysis, in Section 3.3. Finally, we enforce modularity, in Section 3.4. See also Appendix B.
Figure 6 shows how the proof of Figure 5 is recast in SCLP. Figure 6 extends Figure 5 to make
the bookkeeping of goal-directed proof explicit. In Figure 6, the informal underline of Figure 5 is
gone, and instead the current goal and the current program statement are displayed at distinguished
positions in sequents. New (restart) and (decide) inferences mark the consideration of new goals
and new program statements. Of course, the logical content of the two inferences is identical.
Applying Definition 23, bloc is canceled because it contains the root; there is no new disjunct
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...;BY—B%;... .
BT BDOAY — AT, (5-)
B 0(BOA) — AT, (E=)
(decide)

O(BDA),BT, — A% ...
O(AVB),0(B5 A),0(CVD),0(D 5 C),BY, —; AT, (0A) A (oC) (estar)

DF;— DF;... {@edd®) o | .
DF,...;D>CP—CF; (5=)
DF,. ;0D >C) —CF;... (B=)
(decide)

0(D > C),DF;—=CF; ...

6] O(AVE),O(B > A),D(CVD),0(D 5C),DF; —:CF, (DA A (5C) (restary
AT e AT 5 LCP—=CP;..

...;A\/B“—»AO‘;...(V_M ...;CVvDP —CB: ... (V=)
...;O(AVB) — A% ... (D__)) ...;0(CvD)—CF;... (D_f)
OAVE), ., — AY, . (decide)meypy———¢p,— (decide)
O(AVB),...,— OA,... (=0) O(CVD),...,— 0OC;... (=0)
O(AVE),0(CVD),...,— (OA) A (CC);... (=A)

(restart)

O(AVB),0(B > A),0(CVD),0(D 5 C), —; (UA) A (OC)

Figure 7: The SCLP presentation of the proof of Figure 2. We suppress tracking of formulas and
hide the internal structure of Herbrand terms.

to discharge here. BIo is canceled: the inference whose spur is the root of bkis
the (V —) and its side expression is an occurrenceéBpthe new disjunct in the block. This
occurrence is linked in the block because of the leftmost axionB — B; F which is based in
it; the inferenceg vV — ) is linked in the block for the same reason. Similarly blis canceled
because the new disjurCt(the side expression of tier —R) inference whose spur is the root of

block } contributes to the leftmost axiom.;C — C; F in the block.

Figure 7 shows how the proof of Figure 2 is recast in SCLP. The most dramatic change here
is that the inferences of Figure 7 are segmented out into three blocks. Another change is the
discipline of explicit scope; we introduce a suitable temnto represent the generic context in
which we proveA and another suitable terfito represent the generic context in which we prove
OC. Correspondingly, we transition toin usingd(AV B) and transition t@ in usingd(C vV D).

In the (restarts) df5] and] 6] the changes interact. |B] we pick the modular resta#® in order to
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permit a contribution by the new assumpti8t In @ we pick the modular resta@® in order to
permit a contribution by the new assumptidf.

3.2 Segment structure

Our first task is to formalize goal-directed search that directs attention to a single goal at atime. To

distinguish such goals, we begin with a trick that for now is purely formal—introduciragtau-

lated SCLI. We represent assumptions as a pair with I encoding the global program ahden-

coding local program statements; eventually local statements will be processed only in the current

segment and then discarded. (Compare the similar notation and treatment from [Girard, 1993].)

Similarly, we represent goals as a paji©, with © encoding the restart goals aAdncoding the

local goals; ultimately, we will also describe inference rules which will diséatzetween seg-

ments. With this representation, principal formulas of logical rules are local formulaspi,;

so are the side formulas—with these exceptions{theéJ) and(—>) rules augmenil instead of

I (when they add a new program statement) @idstead ofA (when they add new restart goals).
New (decide) and (restart) rules keep this change general; they allow a global formula—a

program statement or restart goal—to be selected and added to the local state.

AL T A —- A0
MAGT — A0

n,r — A,GY; 0,6y
M;r — A;0,G%

(decide) (restart)

Lemma 3 (Articulation) Every SCLI deduction can be converted into an articulated SCLI deduc-
tion with an end-sequent of the foill) —; © in such a way that if the initial derivation is eager
then so is the resulting derivation (and vice versa).

Proof. Straightforward structural inductioM.
The next step is to introduce an inference fig(me—>) that imposes aegmenstructure on
derivations, thus:
n,— Ay, A0 n;r,A>BY,By — A0
M;r,ADBY — A0

(>—9)

Definition 24 (Segment) A segmentn a derivationD is a maximal tree of contiguous inferences
in which the left subtree of aryp—S) inference is omitted.

The distinctive feature of théo— ) figure is that the local results inferred from the program are
discarded in the subderivation where the new goal is introduced. In an eager derivation, this will
begin a new segment where first the new goal will be considered and then a new program statement
will be selected to establish that goal.

We will define two calculi using>—%). The first, SCLS, eliminates the>—) inference of
the articulated SCLI and instead has—S). The second, SCLV, is a calculus like the articulated
SCLI but also allowg>—5); (D—) and(>—5) can appear anywhere in an SCLV derivation. We
introduce SCLYV to facilitate the incremental transformation of articulated SCLI proofs into SCLS
proofs.

Lemma 4 An eager articulated SCLI derivation whose end-sequent is of the form

MNn:— A0
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can be transformed to an eager SCLS derivation of the same end-sequent.

Proof. We proceed with an inductive construction that elimindtes-) inferences in favor of
(>—"%) inferences one at a time. See Appendix 1.

3.3 Block structure

We now revise how we perform case analysis from assumptions. We introduce new rules where all
local work is discarded in the subderivation written on the right. This corresponds to a sequent of
the forml; —=; ©. In addition, somglobalwork may be discarded in the right subderivation; this
helps clarify the structure of derivations. Accordingly, there may be additional formula occurrences
N’ and@ in the base sequent that are not copied up to the right subderivation. Finally, the right
subderivation may address either the (textually) first disjunct or the second disjunct. This leads to
the two inference figures below.

MM AVBE AH — A:O, @ neh—:0
M., AVB — 4,0, VL
M,N:T AVBY BY — A:Q, @ M,A% —:Q

—R

O,0.F,AVB" — A.0,0

We call these inferencdsiocking (v —) inferences, oV —B) inferences. We will appeal to
two calculi in which these inferences appear. The first, SCLU, permits both ordinary) and

(v —B) inferences, without restriction. SCLU is convenient for describing transformations be-
tween proofs. The second, SCLB, perntits—B) inferences but not ordinaryv — ) inferences.

Blocks are more than just boundaries in the proof; they provide a locus for enforcing modular-
ity. We will ensure that a disjunct contributes inferences to the new block where it is introduced.
Thanks to this contribution, we can narrow down the choice of goals to restart in a modular way.

This result is made possible only by maintaining the right structure as we intrgduee®)
inferences. We use path prefixes to make explicit connections between program statements and any
goals that they help establish. The key notionss@nning simplicityandbalancefor sequents.
Spanned, simple and balanced sequents represent a consistent evolution of the state of proof search,
which records a full set of restart goals and the corresponding assumptions, with no redundancy.

Definition 25 (Carrier) Thecarrierof a non-empty Herbrand prefixis B‘j{]m ifnis r]},i>iB(u, X)
and otherwise, when is N ,(1,X), is A,

Definition 26 (Spanned) Say one multiset of tracked prefixed formuldsis spannedy another,
O, if for every expression occurrencéim M and every non-empty prefixof 1 there is an occur-
rence of the carrier ob in ©. It is easy to see there is a minimal &that spand1 and that such
O spans itself. A sequent;T — A; O is spannedf N is spanned by, I is spanned by, A
is spanned by and© is spanned by. A derivation or block ispannedf every sequentin it is
spanned.

Definition 27 (Simple) A multiset¥ is simpleif no expression occurs multiple times ¥ a
sequent of the forfl;[ — A; © is simpleif 1 and® are simple. A derivation or block @mple
iff every sequent initis simple.
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Definition 28 (Balanced) A pair of multisets of tracked, prefixed formulds® is balancedf

e foranyn = n‘é>ic(u,X), n occurs in® exactly when the expressiorﬁt’]ﬁ] occurs inll and
exactly when the expressiom occurs in©; and

e for anyn =ng (K X), n occurs in© exactly when the expressioétﬁh occurs in®.

A sequenkl;T — A; © is balancedf the pairl1, @ is balanced. A block or derivation salanced
if every sequent in the block is balanced.

We use the notion of aisolated blockto obtain an even stronger characterization of proof
search that proceeds in a well-regimented way. In an isolated block, the only expressions preserved
across a blocking inference are those that are in some sense intrinsic to the restart problem created
by that inference. Specifically, each nested block must begin with the same end-sequent as the
outer block, except for additional program statements that have to be added in order to introduce
the newly-assumed disjunct, and the further goal and program statements required to obtain a
balanced and spanned sequent.

Definition 29 (Isolated) LetD be an SCLU derivation, and I& be a block oD. Write the end-
sequent oB asl; — A; © and consider the right subproof of sorfe —8) inference L at the
boundary oB has an end-sequent of the fofih E; —; @'. Theexportedexpressions ifl’, My,
consist of the occurrences of expressions Flfrsuch that either is F based in an occurrence of
F in M or is based in an occurrence of F as the side expression of an inference in which E is also
based.

B is isolatedif the right subproof of eaclly —B) inference L at the boundary & has an
end-sequent of the forfi’, E; —; ® meeting the following conditions: E is the side-expression
of L; @ is the minimal multiset of expressions which spBfAsE, © and included; and I’ is the
smallest multiset includin@;, E for whichl’, @' is balancedD is isolatediff every block oD is
isolated.

Isolation allows us to keep close tabs on the uses of formulas within blocks, which is important
for establishing modularity later. In particular, isolation provides a key notion in formalizing the
obvious fact that an inference that makes no contribution to an SCLU derivation can be omitted.
Finally at this stage, we refine the form of proofs which we are willing to count as goal-directed.
Now it will often happen that, while each block of a derivation may be eager, the derivation as a
whole will not be eager. As observed in [Nadathur and Loveland, 1995], derivations with blocks
can nevertheless be seen as eager throughout by reconstructing the (restart) rule as backchaining
against the negation of a subgoal. But we will simply conshdeckwise eagederivations from
now on.

Definition 30 (Blockwise delayed)R is blockwise delayedkxactly when there is a tree of con-
tiguous inference®’ within a single block oD where: D’ contains R;D’ has a left inference L
at the root; and the principal E of R is based in an occurrence of E in the end-sequeht of

Definition 31 (Blockwise eager)D is blockwise eageexactly when it contains no blockwise de-
layed applications of right rules.
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Obviously, we can use weakening to transform an SCLB or SCLU derivation into a SCLS
derivation, so the blocking inference figures are sound. The completeness of SCLB is a conse-
guence of Lemma 5.

Lemma 5 We are given a blockwise eager SCLS derivabowhose end-sequent is spanned and
balanced and takes the form:
n,—;0

We transfornD into a blockwise eager SCLB derivation in which every block is canceled, linked,
isolated, simple, balanced and spanned.

Proof. We can transform individual blocks to achieve a streamlined form, which already implicitly
reflects the logic programming search strategy of focused search on particular goals and program
statements. By pursuing a suitable ordering strategy as we inductively repeat this inductive trans-
formation, we can create the desired SCLB proofs with an overall modular block structure. See
Appendix B.2®

3.4 Modularity

We now derive SCLP from SCLB. SCLP proofs can be rewritten to SCLB rules by a weakening
transformation. Conversely, rewriting SCLB proofs to SCLP proofs is accomplished by induction
on the structure of proofs. The transformation is possible because multiple formulas in sequents
are needed only for passing ambiguities and work done across branches in the search; this is ruled
out by the use ofv —P), (v —B) and(>—5).

Lemma 6 Given a blockwise eager SCLB derivatibn with end-sequent
n,—;0

in which every block is linked, simple and spanned, we can construct a corresponding SCLP
derivation of the same end-sequent in which every block remains linked.

Proof. By induction on the structure of proofs. See Appendix ®.3.

4 Assessment and conclusions
To execute modal specifications requires leveraging both the flexibility of efficient classical
theorem-proving and the distinctive modularity of modal logic. This is a significant problem be-
cause the two are at odds. On the one hand, flexible search strategies impose no constraints on
the relationships among inferences. By ignoring modularity, they can leave open inappropriate
possibilities for search. On the other hand, brute-force modular systems may place such strong
constraints on the order in which search must proceed that it becomes impossible to guide that
search in a predictable, goal-directed way. In this paper, we have explored one strategy for bal-
ancing the flexibility of classical goal-directed search with the modularity of modal logic. This
strategy culminates in the development of a modular logic programming sequent calculus SCLP.
[Stone, 1998Db] describes a preliminary implementation of proof search in SCLP as a logic pro-
gramming interpretebIALUP. | close by summarizingow (Section 4.1) and no less importantly
why (Section 4.2) | developed this implementation.



32 DISJUNCTION AND MODULAR PROOF SEARCH

4.1 Implementation
An effective implementation of SCLP requires further treatmentsdfcationandsearch contral

In general, to implement first-order sequent calculus proof search, welifuke inference
figures. That is, we adapt the inferences that require instantiation to specific terms so that they
introducelogic variablesinstead. As we construct the proof, we accumutaiastraintson the
values of these variables—for example, we get constraints when an axiom link in the proof re-
quires two formulas to be identical. In the lifted system, each proof we find represents the set of
ground proofs that you get by replacing the variables with values that satisfy the constraints. Lift-
ing is the essence of the resolution procedure [Robinson, 1965] but can be regarded as a general
metatheoretical strategy. [Lincoln and Shankar, 1994, Voronkov, 1996] offer particularly general
discussions of this strategy at its most sophisticated.

For first-order modal inference in prefixed calculi, lifting introduces two kinds of logic vari-
ables, and two corresponding kinds of constraints. First-order quantifiers introduce logic vari-
ables over individuals, subject to the familiar constraints that give rise to term unification prob-
lems. Modal inferences, meanwhile, introduce logic variables over prefixes, subject to path
equations. This leads to specialized problems of equational unification; good solutions are
known for the general setting of multi-modal logic; see for example [Auffray and Enjalbert, 1992,
Debart et al., 1992, Otten and Kreitz, 1996, Schmidt, 1998].

The logical fragment of SCLP makes path equations particularly simple. Inspection of the
SCLP proof rules shows that, at any point in proof search, we have enough path constraints to
determinegroundsubstitutions for all the path variables in the sequent except possibly for variables
in the current program statement that are about to be unified with a goal. In many cases, this makes
path equations easy to solve—a compact representation of all possible solutions can be computed
in polynomial time. The details are beyond the scope of this paper, but see [Stone, 1998b].

Search control is the other issue. An implementation has to make commitments about what
statements to try and what rules to use to process those statements. The fact that SCLP program
and goal statements are labeled with ground prefixes means that we can easily test that a statement’s
label is a prefix of the goal label before attempting to match the statement and the goal. We can
also identify an atomic subformula of the statement nondeterministically deetddand commit
to match that head with the goal. Before doing so, we can for example test that the head and the
goal share the same predicate symbol.

In the case of disjunction, we also want to make sure that we avoid reporting duplicate proofs,
despite the duplicate rules for disjunction that we have. Loveland considers a number of heuristics
for this [Loveland, 1991], and we expect that they apply in SCLP as well as in Near-Horn Prolog.
But here is another heuristic. As motivated in Section 1.0V3:>R) is required only for cancel-
lation. When we use it, we expect to cancel an assumption BlikeFigure 5) that could not be
canceled otherwise. We can make this precdise:~r) should only be used in a restart block, and
the assumption that is canceled in that block ought not to be used in the subsequent restart block
initiated by the(\V —R) inference. Otherwise, we will independently construct an alternative proof
that usegVv — ) instead. Naturally, the kind of block analysis illustrated in the proof of Theorem 3
can be used to show that this restriction is complete.
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4.2 Applications in modal representation

In classical logic, indefinite information is a bit exotic. Rather than developing an indefinite spec-
ification, we much prefer to collect the additional information required to describe the world in a
precise, definite way. This is not true at all with modal specifications. Modal specifications get
much of their interest from their ability to contrast different perspectives or sources of information.
What one source of information represents with specific, definite information, another source rep-
resents with abstract, indefinite information. Computation from modal specifications involves the
coordinated exchange of information between these sources.

In particular, problems ofplanning [Stone, 1998a] and problems afommunication
[Stone, 2000] depend on indefinite modal specifications. In planning, one agergchbd-
uler, has to allocate a task to another agent, ékecutive (The executive may just be the
scheduler at a later point in time!) It is unrealistic to expect that the scheduler will lkexew
actly what the executivewill do; this almost certainly requires information that is not avail-
able to the scheduler. Rather, the scheduler should merely know what the exemanive
do. This means that, to be useful, the scheduler must havadafinite modal specification
that abstractly describes the information that will be available to the executive. For exam-
ples, see [Moore, 1985, Morgenstern, 1987, Scherl and Levesque, 1993, Davis, 1994] as well as
[Stone, 1998a].

In communication, the task of one agent, sjeakeris to formulate an utterance that allows
another agent, thigearer, to answer a question. There are many cases where the speaker does not
have enough information to answer the question directly. However, the speaker can still design an
utterance that allows the hearer to infer the right answer, because the hearer knows something the
speaker does not. Concretely, a user of a computer interface might want to know what action to
take next. The right answer might be for the user to igloeinto a certain text box. The speaker
might know to sayenter your user IDeven if the speaker does not know what the user ID is. Again,
the speaker can make such choices meaningfully only from an indefinite modal specification that
says what the hearer knows abstractly but not definitely. See [Stone, 2000] for a worked-out formal
case study.

A Proof of Theorem 2

Any SCL(l) derivatiorD is equal to an eager derivatidd’ up to permutations of inferences.
The proof depends on a generalization of delayed inferences, which we camisphaced

inferences since we intend to eliminate them. We assume an overall derilgtenmd consider a

right inferenceR that applies to principdE within some subderivatioD’ of D.

Definition 32 We say a right inference R igght-basedn an inference Rn D if R=R or R is

based on Rand every inference on which R is based above and includiig&right inference.
Then R igmisplacedn D’ exactly when there are inferences M anldriRD’ such that, irD, M is

based on an inference L, R is right-based dnaRd R is delayed with respect to L.

In this case we will also saR is misplacedwith respect to M We can abstract a key case of
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misplaced inferences by the following schematic derivation:

R
Right inferences and infe{-
encesR not based in
R delayed wri_ { ...E... R
(M based in.) !
E.. ©

This schematic derivation shows informally hamisplaced inferenceselp provide an inductive
characterization of the inferences that stand in the way of obtaining an eager derivation. In an eager
derivation, it will be impossible foR to appear above. For R cannot be delayed with respect
to L, but onceR’ andL are interchanged, we will obtain a new delayed inferenceRhatbased
in, until finally we must interchangke andR. Of course, to do this, we must first intercharige
with themisplacednferences, such ad, which stand betweeR andL and cannot themselves be
interchanged witl. because they are based.in

Observe that the relatidRis misplaced with respect td is asymmetrical. To see this, suppose
Ris misplaced with respect ¥. By definition,Ris right-based o which is delayed with respect
to a left inference. on whichM is based. Meanwhile, fdvl to be misplaced with respect R
by definition, we must hav# right-based orM’ and R based in some left ruler. Any such
M’ would have to be based insince no left inferences intervene betwédrandM’; M’ must
thus appeainsidea schematic like that above. At the same time, since no left inferences intervene
betweerRandR/, R would have to be based in any sugk which must thus appeautsidesuch a
schematic, closer to the root of the overall derivation. Accordingly, any kgechust occur closer
to the root ofD thanL; meanwhile the principal df1’ is introduced further from the root thdn
So we will not haveM’ delayed with respect tog.

Call R badly misplacedh D’ if Ris misplaced with respect td andM occurs closer to the
root thanR. A subderivatiorD’ with no badly misplaced inferences will be callgood An overall
good derivation is also eager, since any delayed inference is badly misplaced.

We can now present the proof in full using a lemma.

Lemma 7 Consider a subderivatioD’ of an overall derivatiorD, with the property thaD’ has
good immediate subderivations and that ends in inference M. FrorD’ we can construct a
derivation with the same end-sequent that is good.

Proof. The assumption that the immediate subderivatiori‘oére good is a very powerful one.
For suppose that some inference is badly misplaced with respect to some deflren we can
only have some rul® badly misplaced with respect td—anything else would contradict that
assumption.

In fact, we can show that some suRmust be adjacent thl. Consider an inferencs that
intervenes betweeR andM: we will show thatS must be badly misplaced with respeciMatoo.
By the definition of misplaced\l is based on some left rulein D, Ris right-based ok, and
R is delayed with respect tb. Now consider the inferences th@is based on above. If any
of these is a left inferenck/, or Sis itself a left inference, theR is also misplaced with respect
to S—indeed, badly misplaced. This contradicts the assumption that the subderivatidharef
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good. So none of these inferences can be a left inference, which i@eaasight inference that is
right-based on some inferen8eabovelL. S must be delayed with respectlto HenceSis badly
misplaced with respect td.

Now we can proceed after [Kleene, 1951, Lemma 10]. Defingthdeof D’ as the number of
badly misplaced inferences IB'. We show by induction on the grade tHat can be transformed
to a good one.

The base case is a derivation of grade 0. This cas®hiself good. Thus, suppose the lemma
holds for derivations of gradg and consideD’ of gradeg+ 1. By the argument just given, one
immediate subderivation—call D”—must end with an inferencB which is badly misplaced
with respect taMl. Such arR of course cannot be basedhh so we interchange inferencBsand
M. In the result, the subderivation(s) endingvinsatisfy the condition of the lemma with grage
or less. By applying the induction hypothesis, we can replace these subderivations with good ones.
By asymmetryM is not now badly misplaced with respectRpnor can any of the other inferences
be badly misplaced with respect® since they were not so in the original derivation. It follows
that the result is a good derivatidh.

Now, continuing the proof of Theorem 2, define tieuctanceof D to be the number of
rule applicationsR such that the subderivatiddg of D rooted inR is not good. We proceed by
induction on reluctance. If reluctance is z€elbjs itself good.

Now suppose the theorem holds for derivations of reluctalhe®md consideD of reluctance
d+ 1. SinceD is finite, there must be a highest infererResuch that some inference is badly
misplaced with respect f in the subderivatiofr rooted atR. This Dy satisfies the condition of
Lemma 7. Therefore thiBg can be replaced with a corresponding eager derivation, giving a new
derivation of smaller reluctance. The induction hypothesis then shows that the resulting derivation
can be made eagd®.

B Proof of Theorem 3

Letl" andA be multisets of tracked prefixed expressions in which each formula is tracked by the
empty set and prefixed by the empty prefix. There is a prdofe# A in SCL exactly when there

is a proof ofl ; —; A in SCLP in which every block is canceled.

Proof. As observed already in Section 2.4, there is an SCL prodf ef> A exactly when
there is an SCLI proof df — A. By Theorem 2 of Section 2.4, there is an SCLI proof of> A
exactly when there is amagerSCLI proof of —= A. By Lemma 3, there is an eager SCLI proof
of  — A exactly when there is an eager articulated SCLI prodf,ef—=;A. And by Lemma 4,
there is an eager articulated SCLI proofof—-; A exactly when there is an eager SCLS proof of
M —A.

Continuing through the argument, By the Contraction Lemma, we may assume without loss of
generality thal'; —; A is a simple sequent. We know from its lack of prefixes that the sequent
I, —;Ais also spanned and balanced. By Lemma 5 of Section B.2.3, then, there is an eager
SCLS proof of ; —; A exactly when there is a blockwise eager SCLB derivatioh;of=;Ain
which every block is canceled, linked, isolated, simple, balanced and spanned. And by Lemma 6,
there is a blockwise eager SCLB derivatiomof—; A in which every block is canceled, linked,
isolated, simple, balanced and spanned exactly when there is an SCLP derivdtjonefA in
which every inference is linked. And if every inference is linked, every block is canc®led.
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B.1 Proof of Lemma 4
We show in this section that an articulated SCLI proof with end-seduent>;© corresponds
to an SCLS proof with end-sequeft —=; 0, and vice versa. In fact, to transform SCLS to
articulated SCLI we have a simple structural induction which replécesS) with (>—) using
the weakening lemma; the soundness of SCLS over SCLI then follows by Lemma 3. Thus, here
we are primarily concerned with completeness of a new sequent inference figure.

The use of(>—%) in eager derivations ensures that the processing of each new goal refers
directly to global program statements. To formalize this idea, we introduce the notiofiesha
inference.

Definition 33 (Fresh) Let D be an SCLV derivation. An inference RDhis freshexactly when
R is a right inference and the path from R to the root never follows the left spur of any)
inference.

Lemma 8 LetD be an eager SCLV derivation with an end-sequent of the form
Mn:— A0

and consider a subderivatiod’ of D rooted in a fresh inference R. Then the end-sequebY of
also has the form

I—Il; N A/, G)/
for somell’, A" and@'.

Proof. Suppose otherwise, and consider a maxibaivhose end-sequent contains a non-empty
multiset of local statemenfs. We can describ®’ equivalently as the subderivation Bf that is
rooted in a lowest fresh inferenéewhen the end-sequent Bf contains some local statemerf.
cannot be the first inference bf, so there must be an inferen8én D immediately belovR. If S
is a left rule, then the fact th& is eager leads to a contradictidRmust be based i8, or elseR
will be delayed. This mearfSis an implication inference; but given thRts fresh,R must appear
along the branch of>—S) without local statements. Meanwhile, %is a right rule, it follows
from the formulation of the rules that if the end-sequenbDafhas non-empty local statements
then the end-sequent BY. must also. This contradicts the assumption Rt first. ®

Now we proceed with the proof of Lemma 4. We assume an eager SCLV deriatiith
such an end-sequent; we show that we can transform it into an eager SCLS dei/atiiih the
same end-sequent. The proof is by induction on the number of occurrences-gfinferences in
D.

In the base case, there are (m—) inferences an@’ is justD.

Suppose the claim holds for derivations whére—) is used fewer than times, and suppose
D is a derivation in whichi>—) is usedn times. Choose an inferenteof (>—) with no other
(>—) inference closer to the root @; we must rewrite the left subderivation lato match the
(>—"%) inference figure. We distinguish a subderivatidh of D as a function ofL and draw
on the inferences iD’ to replace this subderivation—in particular, we idenfly as the largest
subderivation oD containingL but no right inferences or segment boundaries below
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Using Lemma 8, we develop a schemdXfthus:
DA DB
n;r,A>BY — AL A0 n;r,A>BY,BY — A0 .
M;r,AD> By — A0

DL :
n,— A0
(Segment boundary or right rule)

We supposé. applies to an expressioh D BY; the left subderivation of, DA adds the goa;
the right,DB, uses the assumptid The subderivation dD’ from the end-sequent afabstracts
the left inferences performed elsewhere in this segment (and any subgoals that these inferences
trigger). We notate this tree of inferend®$. By Lemma 8,D’ ends with a sequent of the form
M, — A; ©. Because of the form of the intervening rules, we have the same sucde@eatL,
as well as the same global statemdmts

We useD"' to construct an eager SCLS derivatidrcorresponding td#; we will substitute
the result for the left subtree htto revisel to fit the (5—5) figure. In outline, the derivation we
aim for is an eager SCLS version of: A

D
Dt + AL

The problem is that iD” is rooted in a right inference t, we will not obtain an eager derivation
when we reassemble The SCLS derivatiod we use is actually constructed by recursion on the
structure ofDA, applying this kind of transformation at appropriate junctures. At each stage, we
call the subderivation dD* we are considerin®’A.

For the base case, this subderivation is an axiom, and we construct this subderivation as a result.
If DA ends in a right rule, the construction proceeds inductively by constructing corresponding
subderivations and recombining them by the same right rule. With a right inference here, the
resulting derivation must be eager since the subderivations are eager.

If DA ends in a left inference, the construction is not inductive. We observdtiatas an
end-sequent of the form

n,n;—AN;0,0

(The inventory of expressions can only be expanded, and that only in certain places, as we follow
right inferences to reacB’?.) So we first weake®" by the needed additional expressiong’—

on the left andY (locally) and®’ (globally) on the right; then we identify the open leaDr with
D’A, obtaining a larger derivatioD, defined as:

D/A
M+D*t+A +4,0

Any delayed inference i, would in fact be delayed iD'A, so this is an eager derivation. The
result has, moreover, fewer than(>—) inferences, since it omits at ledsfrom D’. Then the
induction hypothesis applies to give the needed SCLS derivAtion

Given the derivatiod\ so constructed, we substitiAefor DA in D. The resulD* is an eager



38 DISJUNCTION AND MODULAR PROOF SEARCH

derivation;D* contains ar{>—°) inference corresponding toand therefore contains fewer than

nuses of D—). The induction hypothesis applies to transfdorhto the needed overall derivation.
|

B.2 Proof of Lemmab5

B.2.1 Replacing Herbrand terms

To begin, it is convenient to observe that the use of indexed Herbrand terms allows us to rename
Herbrand terms in a proof under certain conditions.

Lemma 9 (Substitution) LetD be an SCLU derivation with end-sequent
n,—=;0

in which no Herbrand terms or Herbrand prefixes appear; consider a spanned simple subderiva-
tion D’ in which a modal Herbrand functiony occurs in some sequent, but does not occur in the
end-sequent. Lety be a Herbrand function that does not occurlih Then we can construct a
proof D* containing corresponding inferences in a corresponding ordddtbut in which Her-

brand terms and Herbrand prefixes are adjusted so Kf)gis used in place offy precisely in the
subderivation corresponding {0’.

Theproof is by induction on the structure of derivations. A complex substitution may be required,
because the Herbrand calculus may require not only the replacemeyt itself but also the
replacement of Herbrand terms that depend indirectlyjrit is convenient to begin by replacing

any first-order Herbrand term not introduced by=a—) or (— V) inference by a distinguished
constantco—starting with leaves of the derivation and working downward. This replacement is

to ensure that each first-order and modal Herbrand terlh ismdetermined from an expression in

the end-sequent dD by a finite number of steps of inference. We continue with the systematic
replacement offy and its dependents. In both cases, the forid @hsures that a finite substitution

can systematically rename all these Herbrand terms as required. We use the fact that each sequent
is simple and spanned to extend this substitution inductively upward. Because each sequent is
spanned the substitution does not need to be extendéd-at) inferences; because each sequent

is simple the substitution can be extended freshly-atd) and(—>) inferences. Finally, the form

of first-order Herbrand terms ensures that a finite extension of the substitution suffi¢es for

and(VY —) inferences®.

B.2.2 Rectifying blocks
The transformation of individual blocks appeals to the following definitionegiuired elements
of proofs.

Definition 34 (Required) Given a derivatiorD with end-sequent
mnr—Ano

we say that an expression occurrence Eaimr I is requirediff either it is linked or some block
in D is adjacent to the root block and has an end-sequent

I—Il; _»_’el
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in which’ or @ contains an expression occurrence based in E.

Lemma 10 (Rectification) We are given a blockwise eager SCLU derivatidrsuch that: every
block inD is canceled and isolated; every blocklihother than the root is spanned, linked, bal-
anced and simple; and the end-sequeriDadf balanced. We transforid to an SCLU derivation

D’ in which every block is canceled, linked, isolated, balanced and simple and every block other
than the root is spanned. Every blockM other than the root block is identical to a block[Of

and the inferences in the root blockBf correspond to inferences in the same ordebir{and so

D’ is blockwise eager). If the end-sequenbois spanned theD’ is spanned and isolated.

Proof. We describe a transformation that establishes the following inductive property Qiven
There are simple multisef$yy C M and®y C ©, together with multisets’ C ' andA’ C A such
that: any®’ that span$ly includes®y; and for any simpl€l’ with My, C M’ C M and any simple
©@ with @ C © such thaf1’ and®@’ are spanned b§’ and the paifl’, @ is balanced, there isla’

in which every block is canceled, linked, balanced, balanced and simple, with end-sequent:

n;r’' — n; e

In this D’, each expression iR’ is linked; each expression v is linked; eachly expression
that occurs i1’ is required and eac®)y expression that occurs @' is linked. Every block in
D’ other than the root block is identical to a block[df and the inferences in the root block[of
correspond to inferences in the same orddDirFinally, if I andA’ are spanned b§’ thenD' is
spanned; iD is linked thenD’ contains all the axioms d.
At axioms, forD of

M;r,AL — AL A0
My andOy are empty, whild™”’ = Al andd’ = A, Assume we are given simpl& from M and
simple®’ from © with M’ and®’ spanned b¥'. We construcD’ of

n'; Al — Ay, 0

If Aﬁ‘( is spanned b’, this axiom is spanned too; the remaining conditions are immediate.
At inferences, consider as a representative ¢gaser). D ends:

Dl D2
n;r,AvBL, Ay — A0 n;r,AvBY, By — A0
M7, AVBf — 4,0

The blocks ofD; andD, either contain the root or are blocks frdon the Herbrand prefixes in the
end-sequents dP; andD, occur with the same distribution as . Therefore we can apply the
induction hypothesis to g€tm1, ©wm1, '} andA] for D1; we can apply it to gefiiyz, ©wm2, ', and
A, for D». To transformD itself, we perform case analysis 6f andl™.

If "} does not contain an occurrenceﬁéﬁ‘, thenMy =M1, O = Oma, ' =T7 andA’ = A;
D] suffices to carry through the induction hypothesis.

Similarly, if [}, does not contain an occurrenceEﬁﬁf, thenMy = Mu2, O = Owmz, ' =T
andA’ = AY; D) suffices to carry through the induction hypothesis.
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Otherwise, we will set uply = NMy1 UMy2 and®@y = Oy1 U Ow2 (as sets); by the inductive
characterization offly1, My2, ©m1 andGy2, any@ that spans bothly, andMy2 includes both
Om1 andBOpy2. We also set up’ as the multiset containing at least one occurreno@\oBE( and
as many expression occurrences of any expression as either are foIU’pQAﬁ] or are found in
F’Z\B“; we set upd’ as the multiset containing as many expression occurrences of any expression
as are found in eithek] or A5.

To continue, we now consider simpl# from M and simple® from © such thatMy; C
n’, Ny C MY, M’ and @' are spanned b®’, and the paifll’,@ is balanced. We know th&’
includes®y. We can apply the inductive property to transfoibn and D, into derivations with
the inductive property:

D1 D>
n,;r; — Ao N, r, — 00

We weakerthe lowest bloclof D] on the left by the expressions in™ and not already i’ and

on the right by the expressionsii and not already id', giving D;". We similarly weaken the

lowest block ofD on the left by the expressions in™ and not already i}, and on the right by

the expressions ia* and not already i}, giving D, . Only the lowest blocks are affected by the
weakening transformations, so other blocks remain canceled, linked, spanned, isolated and simple;
the lowest block in each case remains canceled. The lowest blocks also remain linked since no
inferences are added; and they remain simple (and balanced) because no weakening occurs in the
global areas. Construf)’ as

Dy Dy
n;r+ Ay — A+, 0 n;r+,By — A+, 0
N, r-— AT @

The end-sequent is simple and balanced so the root block is simple and balanced; the inference is
linked sinceAy andBY are linked in the subderivations, so the root block is linked. The root block
remains canceled as always.

Any My expression is required here because it is required eithBxfirn virtue of its mem-
bership inMy or in D in virtue of its membership ifilyy; likewise any®y expression is linked
here because it is linked either ihf in virtue of its membership i®y1 or in D2+ in virtue of
its membership i®y2. Thus, except for the spanning conditional, we have shown everything we
need of thisD’,

Finally, then, ifl” and4’ is spanned by, A} andA), are spanned b@’ andl™}| andl?, are
spanned byd' in the resulting (spanned) subderivatiddg and D5. This shows that the end-
sequent oD’ is also spanned, 40’ itself is spanned.

This reasoning is representative of the construction required algo\fe¥), (3 —), (V —),

(= A), (= V), (= 3), (—V), (decide) and (restart). It applies also far—>), with the obvious
caveat that we do not weaken the left subderivation to match local left expressions, since the form
of the (O—%) inference requires there to be none.
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Next we have v —B); we consider the representative casé\of-£). D ends:

Dl D2
Mo, M; T, AVBY, Al —= A; 00,0 Mo, BY; — O
Mo, M, T, AVBY — A;0,0

We treat this specially to respect the block boundary befdse In particular, we apply the in-
duction hypothesis t®1 (as we may since its end-sequent has the same distribution of Herbrand
prefixes as does that &), to getlu1, ©um1, [} andA]. If A§‘< does not occur i, we let
Mm = MNu1, Om = Owme, ' =T andA’ = A}; any derivatiorD] constructed from appropriaf@/
and@’ suffices to carry through the induction hypothesis.

Otherwise, we geflly = Mu1 UM (as a set)Py = Omy; any @' that spansly also spans
Mm1 and so include®y. A’ = A} andl™’ containd™) with the occurrence o@& removed, together
with an occurrence oAV B if I} does not already contain such an expression.

Assume simplél’ with My € M’ C M and simple®’ with @ C © with M’ and®’ spanned by
@ and the paifl’,®@ balanced. As before, we must ha®g included in@'. We therefore obtain
D1 by the inductive property; we then weakiy locally within the lowest block by v B§‘< on the
left if necessary, to obtain a good derivatio.

The neededD’ is now constructed as:

D; D>
n,r AL — N e Mo, BY; — @o
N, — N0

We first argue that the construction instantiates(the-2) inference rule. Every Herbrand prefix
in Moe andB§‘< occursinf’ orl’, soMge andB§‘< are spanned b§’. But because the root block D
is isolated[Tge andB§‘< are spanned minimally b®g. Thus®g C @'. Mge C My by construction;
by isolationlMg is the smallest set such that the pairfdd, ©g is balanced. But sincB’,@' is
balanced[1g C I,

Now we show thaD’ so constructed has the needed properties. The end-sequent is simple and
balanced so the root block is simple and balanced. The inference is IiA&eid:Iinked inDj by
the induction hypothesiﬁg‘< is linked inD2 becausd), begins a new block which by assumption
is canceled. The root block remains canceled as always. Apyexpression is required here
because either a corresponding expresBighin the new block at the left subderivation is based
on it, or because it is required D]. Every®y, is linked because it is linked iD;.

Finally, if " andA’ are spanned b@’, thenA; andl™; are spanned b@). The new subderiva-
tion D; is therefore spanned by the inductive property; this ensures that the overall derivation is
spanned.

Next considefC —). D ends:

D,
M7, OAG ALy — A0
M;r,OA — A0
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As always, we apply the induction hypothesidlg (as we may since the Herbrand prefixedon
and® formulas remain the same) to obtdiy1, ©m1, [y andA;. If A§‘<‘fw does not occur iy, we
let My = Mu1, ©w = Ou1, ' =T andA’ = A}; any subderivatiolD; obtained by the inductive
property suffices to witness the inductive propertyfar

Otherwise we obtai’ by extendingl™} by the principal expressioiAE‘( if necessary and
eliminating the side expressioﬁ;‘fw; My = Mu1, ©m = Om1 andA’ = A}, (Since these are
common to the subderivation, aﬂﬂ/ that spandly; includes®y.) Now we consideill” with
My C M’ CNand® with @ C ©, N’ and® spanned byd' and the paifl’,®@ balanced. As
always, we hav®y C ©'. We obtainD; usingln’ and®’, and weaken the lowest block by local
formulas; calling the resulD;", we can produc®’ by the following construction:

Dy
n,r A, — N0
n,r—AnN,e

Everything is largely as before. The key new reasoning comes when we assurfieahdt\’

are spanned b@'. We must argue thdt’, A}, is in fact spanned b@'. SinceAy’,,, is linked

in D;", there must be an axiom in this block which is baseﬂﬁfhv; indeed, since the expression
occurs as a local antecedent, this axiom must occur within the segment. This axiom must pair
expressions prefixed by a pgthwherepv is a prefix of/. But becausd®’ remains blockwise
eager, no inferences apply & or @ formulas within the segment (nor can they in this fragment
augment the\' or @ formulas within the segment); therefore sofeexpression is associated
with Herbrand prefix/. But sinced\’ is spanned b®’, we have that every prefix of is associated
with some®’ expression; so every prefix pb is associated with son@® expression. Thub;" is
spanned and in turD’ is spanned.

We have one last representative class of inferencBs if— O) and(—>). We illustrate with
the case wherB ends in(—>):

D,
M,AL LT — A A> B;0,BY
Mmr— AA>BY;0

We begin by applying the induction hypothesidg (as we can, given the symmetric extension
of M and® by labeled expressions). We obtdw1, Mu1, '} andA]; we consider alternative
cases in response @ and®y;. First we supposBﬁ'}m ¢ ©. It follows by our assumption about
D thatA>“<’]m ¢ I either, nor doeg occur in®. For this case, we start by defining an overa
andOy: Oy is Oy1 with any occurrence cBif]m eliminated;My is MNMy1 with any occurrence of
A{f]m eliminated. My, contains no occurrences pfj, sincell does not; thus given the inductive
property of©uq andlMy1, any @ that spansly spansOy. We define™” andA’ so thatl”’ =T}
and/’ containsA] together with an occurrence 8f>; B, providedA] does not already contain
one anoBk‘(’?m € Om1 orAkl('?m € Mu1. So, assume we are given simplewith My C M’ C N and
simple@’ with @ C © (and so@y C @) such thafl’ and®’ are spanned b§’ and the paifl’, @

is balanced.
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We consider whetheBl, . € ©w1 or AL, € M. If neither, we apply the induction hypoth-
esis toD; for the case tha®] is © and[] is M’. The resulting derivatioD] serves a®’.

Otherwise,Bﬁf}m € Omy or A%‘m € Mpu1; we apply the inductive property &, for the case
that®) is @', Byf}m andl} is I'I’,A?{?m (clearly} and®] are spanned b@) assuming1’ and®’
are spanned bg'; the pair17, ©] is also balanced given its symmetric extensionﬁtﬂ}m € Om1,
by the inductive property it is linked. W\ X € Mvt, it is required, but we shall show that it is in

fact linked. By the definition of being requwed the other possibility is that there is a block adjacent
to the root block oD} with end-sequent

I_IH, E, - G)//

in which the(v —B) inferenceR that bounds the block is basedEnand”, E or ©” contains an
expression occurrence basedﬁfﬂm. But since the original block is isolated in the origirhy it
is E that must be based i}, . But thenRis based irA}!, . andRis linked: in particular its side
expression in the left spur) must be Iinked;Aﬁ@m is linked too.
Thus we can weakeD; in its lowest block if necessary by > B§‘< as a local right formula
(in ), producingD;"; D;" remains good by the same argument as the earlier cases. Thus we can
constructD’ as:
D+
1
N, AT —= & A > B OB,
n;r— Ao

The end-sequent here is simple and balanced, so the whole root block is simple and balanced.
The new inference is linked (in virtue of the linked occurrence of one side express@[}]—er

Bﬁ’(’}m) so the whole root block is linked. The root block is of course canceled. Each element of
My is required because it is an elementhyji; and required in the immediate subderivation; each
element of©y, is linked, because it is an element®fy; and therefore linked in the immediate
subderivation.

To conclude the case, suppose the end-sequdntispanned and that andA’ are spanned
by @'; it follows that same property applies B so the subderivation is spanned. Then the end-
sequent must also be spanned.

The alternative case h&” € O. By assumption, it also ha(%f] e . We therefore deflne
an overalllly and®y directly asl'l M1 and®y1, respectively; S|m|IarIy' '=T]andd" =A]. To
construct the needdd’ for appropriate’l’ and®’, we simply apply the mductlon hypothesis to
D for the case tha®] is © and[1} is M. The resulting derivatio®; suffices.

Having completed the induction, we argue that we can obtain an od2fdHlat is isolated,
assuming the origindD is not only isolated but spanned. Apply the inductive resuDtéor the
casell’ =M and®@ = ©; sincel’ C I andA’ C A we obtain a spanned derivatiéi ending

nr'—n;0
Consider the end-sequent of any block other than the rdot;it is

Mo, E;—: 00
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where a corresponding block occurshih | argue by contradiction that for arfy € Mg either
F € M orF is based in an occurrence Bfas the side expression of an inferencéihin which
E is also based. (This will show th&Y’ is isolated.) So consider an exceptiofal SinceD is
isolated, ifF ¢ I, F is based in an occurrence Bfas the side expression of an inferenc®irn
which E is also based; this inference introduces some path symidiich occurs in the label of
F andE. In D, E can not be based in such an inference; otherWiseould also be based in that
inference, sinc®’ is simple. (We have assumed thrats not based in such an inference.) But in
this case the expression in the end-sequebt'afn whichE is based must contaim Because the
end-sequent dD’ is spanned the form di and® is constrained ilD, F must occur if1. This is
absurd®

We conclude Section B.2.2 by observing some facts about this construction. Fii3tdeta
derivation obtained by the construction of Lemma 10, and supPpése weakened (in a spanned
and balanced way) tB” by adding occurrences of global expressions that either already occur in
the end-sequent @’ or never occur as global expressionfih Then a straightforward induction
shows thaD’ is obtained again fror®” by the construction of Lemma 10.

Second, observe thatld’ is a derivation obtained by the construction of Lemma 10, @fid
is obtained fronD” by the renaming of Herbrand prefixes (as in Lemma 9), then straightforward
induction shows thdD” is obtained again fror®” by the construction of Lemma 10.

Third, letD’ be a derivation for which the construction of Lemma 10 yields itself.\Lé a
prefix and let thd1; © be the smallest balanced pair wh@&@eontains all the carriers of prefixes
of v introduced inD’. Suppose each expressionlinand © has the property that at most one
inference ofD’ has an occurrence of that expression as a side expression. Consider a derivation
D’ obtained fronD’ by weakening globally by (on the left) and by® (on the right). LeD* be
the result of applying the construction of Lemma 1@%. ThenD* contains any subderivation
of D’ whose end-sequent contaifisand © as global formulas. Again this is a straightforward
induction; the base case considers a subderivatid' afhose end-sequent contaiisand© as
global formulas; in this case we apply the first observation. Unary inferences extend the claim
immediately. At binary inferences, one subderivation must be unchanged, by the first observation:
sincell and© are introduced on a unique path, edé¢rand ® formula never occurs or already
occurs in the end-sequent in that subderivation. Thus the other subderivation necessarily appears
in the derivation obtained by the construction of Lemma 10.

B.2.3 Block conversion
We now have the background required to perform the conversion to block structure, and complete
the proof of Lemma 5.
We are given a blockwise eager SCLS derivafibnvhose end-sequent is spanned and bal-
anced and takes the form:
n,—;0

We can transfornD into a blockwise eager SCLB derivation in which every block is canceled,
linked, isolated, simple, balanced and spanned.

Proof. Our induction hypothesis is stronger than the lemma. We assume a blockwise eager
SCLU derivatiorD with end-sequent of the form

Mn,—-:0
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in which every block is canceled, linked, isolated, simple, balanced and spanned, such that that
the subproof rooted at arfyy —) inference inD is an SCLS derivation. And we identify a dis-
tinguished expression occurrengein the end-sequent dD which is linked. By Lemma 10, it
is straightforward to obtain such a derivation from the SCLS derivation (containing only a single
block) that we have assumed. We transfddninto a blockwise eager SCLB derivation in which
every block is canceled, linked, isolated, simple, balanced and spanned and inBmMsiciso
linked; we perform induction on the number©f —) inferences irD.

In the base case there are (Wo—) inferences, s® itself is an SCLB derivation.

In the inductive case, we assuidewith n (V —) inferences, and assume the hypothesis true
for derivations with fewer. We find an applicatidnof (\V —) with no other closer to the root of
D. We will transformD to eliminatel.

Let D’ denote the smallest subderivation®fcontaining the full block oD in which L oc-
curs. Explicitly, D’ may beD itself; otherwise,D’ is rooted at the right subderivation of the
highest(\V —B) inference below.—an inference we will refer to ad. In either case, our assump-
tions allow us to identify a distinguished linked expresdfoim the end-sequent &)’: either the
assumed from D, or the side expression of the inferert¢¢assumed canceled). Supp@seBY,
is the principal ofL. We can apply Lemma 9 to rename/ BY, to AV BY in such a way that each
symbol inp that is introduced i’ is introduced by a unique inference there. Now we can infer
the following schema fob':

DA DB
Mo, F,M;T,Av By, Al —= A;00,0 Mo,F,M;T,AvBY, BY — A;00,0 .
Mo, F,M;T,AVBY — A;00,0
DL
Mo, F; —; 00

That is, the subderivation dD’ below L isD'; the right subderivation above (in which B is
assumed) iDB; the left isDA.

We will use the inferences frof®' to construct alternative smaller derivations in place of
DA andDB. By @, indicate the minimal set of formulas required in additiorG@to spanAk;
by M’ indicate the minimal set of formulas required in additiontg, F andAi to ensure that
the pair given bylg, M’, F,A§‘< and®g, @' is balanced. (This is well-defined because the sequent
Mo,F — ©g is already spanned and balanced.) Now we can construct two new subderivations
D’A andD’B given respectively as follows:

n'+Ay + DA+
Mo, F, M, 1", AT AV BY, A — A;00,0,0
Mo, F, M, T, AL T, AVBY — A; 00,0,
n'+A +D-+ &
Mo, F, M, AL —=: 00, @

decide
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N'+BY% +DB 10
Mo,F,M, M, BY; T, BV BY, By — A;00,0,0
Mo,F, M, 17, BY;T,BVBY — A;00,0,0
n'+BY +DL+ &
Mo, F,MN’,BY; —; 00,0

decide

That is, we weake®* andD® by global versions of the side expression of infereintieroughout
their lowest blockswe apply a (decide) inference to obtain a new subderivation to substitute for
the subderivation rooted atin D'. We weaken by sufficient additional formulas globally in the
lowest blockd$o ensure that the end-sequents of these derivations are balanced and spanned.
Since we have changed only the lowest block here, and have ensured that this block remains
isolated and canceled, we can now apply Lemma 10 to obtain corresponding derii2ftiamsi
DF’ in which every block is canceled, linked, isolated, simple, balanced and spanned. In light
of our first observation about the construction of Lemma 10, we can see that the inferences of
DA are preserved up to the new (decide) inference. And in light of our third observation about
the construction of Lemma 10, given the unique inferences introdu@iand (g, this (decide)
inference must be preserved Df*. ThusA{ is linked in D} and for analogous reasoB is
linked in DB. These derivations satisfy the induction hypothesis as deductions with fewer than
n (V —) inferences; we can apply the induction hypothesis \Atthand B§‘< as the distinguished
linked formulas to preserve. This results in SCLB derivati@rendB with the same end-sequents
asDA andD’B, in which every block is canceled, linked, isolated, simple and spanned, and in
which respectivelyd, andBY are linked.
We need only one oA andB to reconstrucD’ using blocking inferences. For example, we
obtain a proof usingv —>E) by usingB in place ofDB as schematized below:

DA B
Mo, F,M;T,AvBY, Al — A;00,0 Mo, F,N’,BY — ©o,@ 5
Mo, F,M;T,AVBY — A,00,0 L
DL
Mo,F; —;O0

In a complementary way, we obtain a proof usfrg—2) by usingA in place ofD* as schematized
below:

DB A
Mo, F,M;T,AvBY, By — A;00,0 Mo, F, N, Al — 09,0 5
Mo, F, M1, AVBY — A, O, 0 VL
DL
Mo, F; —; 00

Note that the root block is isolated in both cases, because we have added only as many formulas
to N’ and@’ as are necessary to obtain a balanced, spanned sequent; the remaining expressions
originate in the end-sequent of the previous block, which we know was isolated. Thus, in both
cases, we have blockwise eager derivations in which every block is canceled, isolated, simple,
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balanced and spanned, in which fewer tmafy —) inferences are used, and in which only the
root block may fail to be linked. We thus need to apply the construction of Lemma 10 again
to ensure that the root block is linked. It is possible for the distinguished occurrerfeenof

to be linked in one of the resulting derivations, but not both. To see this, consider applying the
construction of Lemma 10 tD’ itself, as a test: the result will d8’ sinceD’ is linked. Starting

from D” andD® and axioms elsewhere, each inferenc®incorresponds to an inference in the
alternative derivations schematized above. We can argue by straightforward induction that no
formula is linked in the reconstructdd’ unless it is also linked in the one of the corresponding
reconstructed alternative derivations. Afds linked inD’.

Call the derivation in whiclF is linked D”; we substitutdD” for D’ in D. SinceF remains
linked in D”, when we do so, we obtain a blockwise eager SCLU derivation with an appropriate
end-sequent, with fewer origingl/ —) inferences, and in which every block remains canceled,
linked, isolated, simple, balanced and spanned, and in which-) inferences lie at the root
of SCLS derivations. Applying the induction hypothesis to the result gives the required SCLB
derivation.®

B.3 Proof of Lemma 6
We are given a blockwise eager SCLB derivafibywith end-sequent

Mnr—Ao

in which every block is linked, simple and spanned. We construct an SCLP derilddtidrvhich
four additional properties hold:

e the end-sequent @’ takes the form
n,r'—a,0
with/ C T andA’ C A;

e D’ contains in each segment or block all and only the axioms of the corresponding segment
or block ofD;

e wheneveD’ contains a sequent of the form
nsr—r,o
F is the only right formula on which an axiom in that block is based; and
e wheneveD’ contains a sequent of the form
n*F — A% 0
then F is the only left formula on which an axiom in that segment is based.

In the base cas®) is
M;r,Ay — B},A0
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andD’is

M;Ay —B';0
Supposing the claim true for proofs of heightconsider a prooD with heighth+1. We consider
cases for the different rules with whiéh could end.

The treatment of — A) is representative of the case analysis for the right rules other than
(—>). D ends

M, — AL AABY, A0 N, — BY,AABY, A0
M,— AABY.AO —A

(It is a consequence of Lemma 8 that in the initial derivation there is an empty local area.) We
simply apply the induction hypotheses to the immediate subderivations. If the resulting derivations
end with (restart), consider the immediate subderivation of the results, otherwise consider the
results themselves. These derivations end

Nn,—C;0
M. — D;©

We must haveC = A; we know from the structure dd thatA is linked, andA could not be linked
in D unlessC = A sinceD’ shows that all of the axioms i@ derive fromC. For the same reason
D = B. So we can combine the resulting proofs by(an A) inference to give the needé&d.

The case of —>) proceeds similarly, but relies on an additional observatidmends

D
s O A> BYGBY L © -
M;— A,A>i B};0

M, Al

We apply the induction hypothesis i and eliminate any final (restart) inference. This gives us
a derivationD; of

M,Ay — EiBY,,, ©

If we know that theB-side expression of this inference is linked in this block, then we can conclude,
as before, thek is an occurrence of the expressBﬁ@m. We show this as follows. We know from
the structure oD only thatoneof the A-expression and tHg-expression must be linked. However,
it is straightforward to show that no left expressiﬁ#ﬂm is linked in an SCLP derivation with a
local goalCy unlessyn is a prefix ofv. (The argument is a straightforward variant for example
of [Stone, 1999, Lemma 2].) Sind8 is simple and spanned, must be neka‘{}m is the only
expression whose associated path termumaas a prefix.

Thus, we construdD’ using an SCLP inference as

T .
M A% = By B ©

Now suppos@® ends in a left rule other thafp—>) or (v —B). We take(A —) as a repre-
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sentative case; thd is:
D
n;r,AABY, AL BY — A0
M;F,AABY — A;0
Apply the induction hypothesis 0. If the result ends in a (decide) inference, ¥t be the im-

mediate subderivation of the result; otherwisel)¢tbe the result itselfD] is an SCLP derivation
with an end-sequent of the form:

N —

MmE—F,0

E must be a side expression of the inference in question,(here); otherwise the corresponding
inference could not have been linkeddn One of the inference figurég. — ) and(A —g) must
apply depending on which side expressibis. For concrete illustration, we suppdsés A§‘<; then
we construcD’ as:

D/

1
n;Al, —F;0
MAABY —F,0" 7t

Next, we supposB ends in(>—%), as follows:

Dl D2
n,— A,A,0 n,r,A>BY, By — A0

DS
M ASBY — A0

We begin by applying the induction hypothesis to the subderivdlignAfter stripping off any
(restart), we obtain an SCLP derivatibi with end-sequent

Nn—C;0

By the usual linking argument, the expressiomust be identical tcAg‘(. We then apply the
induction hypothesis also to the right subderivation. Again, after stripping off any (decide), we get
an SCLP derivatio, with end-sequent

NN:Db—E:;©

By the usual linking argumenb must in fact be identical tB§‘<. Thus we obtain the needédf
by combining the two derivations by the SCI(B—) rule:

D; D;
n,— A0 n;sf —E;0
MASBY —E;0 -7

Finally, for (v —B), we consider the representative cas®ads schematized below:
D1 D2
n;r,A, — A0 n'.B,—@
MF,AVBY — A0 VoL
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We begin by applying the induction hypothesisDg, the subderivation in the current block; if
necessary, we strip off any initial (decide) inference, obtailigwith an end-sequent that by
linking takes the form:

m;Al —E;0

Next, we apply the induction hypothesis to the other subderivation. Since both local areas are
empty in the input subderivation, they remain empty in the result subderivation: thid2jweih
end-sequent:

n’,BY; —; @
The two subderivations can be recombined by the SCLP-) inference to obtain the needed
D’
D; D>
n;A, —E;© n',B; —;©
M AVBS, — E,0 VoL
|
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