
Foundations of Language Interaction
HANDOUT THREE

June 7, 2001
M. Stone

mdstone@cs.rutgers.edu

1 Introduction
Today we consider the interaction of KNOWLEDGE and INTENTIONS.

(1) Last week, we characterized a plan as an argument that demonstrates how performing a
sequence of actions in the current circumstances leads to desired effects.

A rational agent need not make all its decisions immediately. It can instead defer choices to later
steps of deliberation. Plans can and should guide these later choices, but only if they anticipate the
new reasons to act afforded by the agent’s increased future information. Our new account of plans
follows [Stone, 1998]; those of you unsatisfied with [Davis, 1994] as a guide to today’s meeting
may want to consult this paper.

(2) agitate State Goals Intentions :-

perceive State Beliefs,
update State Beliefs Goals Intentions
NewIntentions,
!,
act State Goals NewIntentions.

Today’s objective is to extend the representations of intentions used by our classic agent simula-
tor, showing how to REPRESENT knowledge and choice, and how to formalize INFERENCES about
knowledge and choice in plans.

2 Representing knowledge
Recall that fact was the type of statements in the agent’s knowledge base; the agent’s knowledge
base was a list of facts. We now add three new declarations.

(3) a kind agent, object type.
b type k agent -> fact -> fact.
c type sm (object -> list fact) -> fact.

k REPRESENTS knowledge:

(4) a If a is an agent, (k a) is a function from facts to facts; this is called a MODAL

OPERATOR.
b use [A] to write (k a) in logic.
c (k a f) represents the fact that agent a knows fact f.

1



sm is indispensible for SPECIFYING knowledge.

(5) a (sm P) represents the fact that there is an object x for which all the facts in (P x)
are true.

b Use λProlog’s function syntax to make this look more like ∃xP(x): (sm x\ P x).
c Illustrates HIGHER-ORDER ABSTRACT SYNTAX. Use λ-abstraction to represent bound

variables in the OBJECT LOGIC of fact-expressions as bound variables in λProlog, the
META-LOGIC.

d To substitute an object-level term for an object-level bound variable, use meta-level
function application.

Some key formulas, from [Hintikka, 1971].

(6) a type food object -> fact.
b sm x\(k self food x)::nil = ∃x[SELF] f x
c k self (sm x\ food x::nil) = [SELF]∃x f x

(6b) means that there is a specific object x about which you know that it’s food. (6b) is an INDEF-
INITE SPECIFICATION of what you know—it constrains what you know but does not say exactly
what you know (it doesn’t say what that x is that you know is food). (6c) means that you know that
there is some food. (6c) says exactly what you know, but indicates that you have only INDEFINITE

KNOWLEDGE—you don’t actually know what the food is, specifically.

3 Plans and proof
Suppose you want to achieve a goal G at some point.

(7) a You need to choose a specific action x, based on your knowledge. Your knowledge
should tell you that x brings it about that (BIAT) you know G.

b Prove ∃x[SELF](x BIAT [SELF]G).

Suppose you want to achieve a goal G, and you get to choose two actions. You need to choose the
first now, but you don’t need to choose the second until your next cycle of perception and action.

(8) a You need to choose a specific action y, based on your knowledge. Your knowledge
should tell you that y brings it about that you can achieve G in the sense of (7)
afterwards.

b Prove ∃y[SELF](y BIAT ∃x[SELF](x BIAT [SELF]G))

I can’t resist a peek ahead to collaboration! Suppose you and a friend want to achieve G; you act
first, then the other goes.

(9) a You need to choose a specific action y, based on your knowledge. Your knowledge
should tell you that y brings it about that the other can achieve G afterwards.

b Prove ∃y[SELF](y BIAT ∃x[OTHER](x BIAT [SHARED]G))

We will presume that you COORDINATE on starting: as part of the collaboration you both know the
proof and have agreed to act as it lays out. At the end [SHARED] ensures that you can coordinate
on stopping.

2



4 Formalizing Deductions
(10) a Suppose you have a bunch of premises Fs including sm x\(C x), and you’re trying

to prove G. And let w be a symbol that doesn’t occur in Fs or G. If you can prove G
from Fs together with C w then you can prove G from Fs.

b If the subproof with w is Plan w, then the overall proof is whatever Fs C Plan.
c type whatever

list fact -> (object -> list fact) -> (object -> plan) ->
plan.

(11) a Suppose you have a bunch of premises Fs which all take the form k Agent F, and
you’re trying to prove k Agent G. If you can prove G from Fs then you can prove k
Agent G from Fs.

b If the subproof is Plan, then the overall proof is know Agent Fs Plan.
c type know

agent -> list fact -> plan -> plan.

(12) a If you want to prove an existential statement, just prove an instance. We will only have
to prove existential statements which quantify over the action the agent chooses.

b If the subproof is Plan and the action selected is Action, the overall proof is find
Action Plan.

c type find action -> plan -> plan.

Here’s a plan that assumes that we know of something that it’s food. We plan to eat it, and thereby
to sate our hunger.

(13) (whatever ((sm x\ k self (food x)::nil)::nil)
(x\ k self (food x)::nil)
(f\(find ((k self (food f))::nil)

(eat f)
(know self ((k self (food f))::nil)
(step ((food f)::nil)
self (eat f)
(know self ((k self full)::nil)
(finish (full::nil)))))))

As always, we keep only the premises we need to continue. We also assume that if anyone knows
something, it’s true. (Remember we’re using this inference to guide deliberation, so if we have
reason to disbelieve something that a plan may depend on, we should thrash out the discrepancy
now rather than assess what we would otherwise expect about mental states.)

3



(14) (find look
(know self
((k self (sm x\((food x)::nil)))::nil)
(whatever ((sm x\((food x)::nil))::nil)
(x\((food x)::nil))
(f\(step ((food f)::nil)

self look
(find (eat f)
(know self ((k self (food f))::nil)
(step ((food f)::nil)
self (eat f)
(know self ((k self full)::nil)
(finish (full::nil)))))))))))

(14) shows the kind of reasoning involved in (13) would appear as a subplan of a larger plan that
describes first getting more information, then what you’ll do in the future once you have that infor-
mation.

5 Using Plans
Finding the next action:

(15) Scan down into the plan structure until you find the first step operation. (The agent
should be self.) Do the specified action.

Finding the intention for the next round of deliberation

(16) Scan down into the plan structure until you find the first know operation after your
current step. (The agent should be self.) Save this as your intention for next time.

Handling indefinite information.

(17) When you reach a substructure of the form whatever PF, create a new,
unspecified value with some variable X and process PF X.

For the case of plan (14).

(18) a Next action is look
b Subplan is (know self ((k self (food X1))::nil)

(step ((food X1)::nil)
self (eat X1)
(know self ((k self full)::nil)
(finish (full::nil)))))

c Logic variable X1 replaces bound variable f in plan instance.

4



Monitoring plan execution—actually, same as before:

(19) update Facts Plan Plan :-

circ Plan C, entail all Facts C.

In this case, Facts gives the specific knowledge you have

(20) know self food o7

And the circumstances C is an indefinite specification of this knowledge, involving variables:

(21) know self food X1

As in any query processing, when you establish that (20) entails (21), you compute the substitution
X1 = o7. Thus after the call to update succeeds in clause (19), our current intention is as in
(22).

(22) (know self ((k self (food o7))::nil)
(step ((food o7)::nil)
self (eat o7)
(know self ((k self full)::nil)
(finish (full::nil)))))

From (22) we get

(23) a Next action: eat o7
b Next plan: (know self ((k self full)::nil)

(finish (full::nil)))

References
[Davis, 1994] Davis, E. (1994). Knowledge preconditions for plans. Journal of Logic and Com-

putation, 4(5):721–766.

[Hintikka, 1971] Hintikka, J. (1971). Semantics for propositional attitudes. In Linsky, editor, Ref-
erence and Modality, pages 145–167. Oxford.

[Stone, 1998] Stone, M. (1998). Abductive planning with sensing. In AAAI, pages 631–636, Madi-
son, WI.

5


