
CS 530 — Principles of AI
Written Exercises

Out: November 8, 2001
Due: November 20, 2001

Problem 1. The goal of this problem is to familiarize yourself with HMMs, and to get a sense of
some of the strengths and weaknesses of HMMs as models of the world.

We model the following situation. We are observing an agent. The agent has two coins, possi-
bly unfair; the agent starts with a specific coinc1. At each step, the agent selects a coin—perhaps
the same one as last time with some probability, perhaps the other one—and flips it. You get to
observe the result, which is either headsh or tailst. You do not know which coin was used, so you
do not know what state the agent winds up in.

Overall then we have an HMM which can be visualized as follows:

h: q1 p2,  t: q1 (1-p2)

h: (1-q1) p1,  t: (1-q1) (1-p1)

h: (1-q2) p2,  t: (1-q2) (1-p2)

h: q2 p1,  t: q2 (1-p1)

s1 s2

There are two states,s1 ands2, corresponding to the coin in use; there are two possible observations
h and t. There are four basic probabilistic parameters:p1 is the probability of seeing a head
in transitions that end in states1; p2 is the probability of seeing a head in transitions that end
in states2; q1 is the probability of moving to states2 when we start in states1, andq2 is the
probability of moving to states1 when we start in states2. Particular probabilities are assigned
to complete transitions by multiplying as appropriate, as shown in the diagram. For example,
P(s1 t−→ s2) = q1(1− p2) whereq1 gives the probability of the state change and(1− p2) is the
probability of observationt resulting.

1a. Suppose the coin ins1 alwayscomes up heads and that in states2 always comes up tails,
but that each state changes to the other (or stays the same) with probability .5. Draw a specialized
version of the HMM above to describe this situation, filling in specific numbers for the probabilities
and omitting transitions with zero probability.

1b. For a given sequence of heads and tailsw1,n of lengthn, how many paths through the HMM
of problem 1a generatew1,n with nonzero probability?

1c. For a given sequence of heads and tailsw1,n of lengthn, what is the probability of observing
w1,n according to the HMM model of problem 1a? Ie., give the numerical value ofP(w1,n).

1d. Now suppose the coins in statess1 ands2 are both fair: they come up heads or tails with
probability .5. Assume we switch from one state to the other with a common probabilityq. Again,
draw a specialized version of the introductory HMM to describe this situation, filling in specific
numbers for the probabilities and omitting transitions with zero probability.

1e.Use the following notation:

P(w1,k,Sk+1 = s1) = a
P(w1,k,Sk+1 = s2) = b
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In other words, suppose the probability of seeing the firstk symbols and being in states1 is a and
the probability of seeing the firstk symbols and being in states2 is b.

Use this notation to calculate

P(w1,k+1,Sk+2 = s1)
P(w1,k+1,Sk+2 = s2)

as a function ofa andb, assuming the HMM model of problem 1d.
1f. Use your answer to the previous problem to writeP(w1,k+1)—the probability of seeing the

first k+1 observations in the HMM model of problem 1d—as a function ofP(w1,k), the probability
of seeing the firstk observations.

1g. Therefore, what probability does this second model assign to the sequencew1,n?
1h. Jeff Siskind of NEC, in talks at RuCCS on using HMMs for action recognition, has com-

plained that the forward-backward or Baum-Welch training algorithm for HMMs was not doing
what he would have liked. It was learning “high frequency” information when learning a general
HMM network from his data. In other words, it was assigning meaning to states spuriously to
capture rapid changes of observations over time.

Use the examples of this problem to comment on Siskind’s difficulty.
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Problem 2. This problem offers a case study in the contrasts between using different models to
keep track of a changing environment. Our agent is interested in estimating the value of a variable
X at each point in time. You might think of this variable as the income or success that the agent is
achieving in each cycle of deliberation and action.X takes on one of two values over time: there
is a “normal mode” in which the value ofX is high and a “failure mode” in which the value ofX
is low.

Our agent acts in this environment in trials of a fixed length of time. In each trial, the environ-
ment starts out normal, but there may be a failure at any time; once there is a failure, the failure
persists until the end of the trial. At each stage, the agent makes an observation that gives noisy
information about the value ofX.

In all, then, within a trial, the agent might see a pattern of observations such as that shown
below.
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2a. Suppose our agent is designed to keep track of the value ofX by just updating a run-
ning estimate. This corresponds to a coarse, general model in which the agent assumes that the
actual value ofX is more similar to the values seen in more recent observations. One algorithm
for computing this estimate (related to so-calledreinforcement learningalgorithms) works as fol-
lows. Initially the system’s estimate ofX, X̂ is the first data pointw1. Thereafter, on making an
observationXi , the system updateŝX by

X̂← wi/3+2X̂/3

Thus, we writewi for the reward observed on stepi, and writewi, j for the sequence of rewards
observed on stepsi through j, as we have commonly done for sequences of observations. Use a
graph such as that above to describe how the agent’s estimate changes over time according to this
algorithm.
2b. Now we consider an alternative design for our agent: it has a model of failure, and reasons by
finding the best estimates for this model given the evidence it has. We design the model to interpret
a set of data like those graphed above. There may be a failure after any such stept—refer to this
event asF = t. Another possible kind of hypothesis is that there is no failure before stept—refer to
this event asF ≥ t. So aftern steps, the agent must consider alternative hypothesesF = 1, F = 2,
. . .F = n−1, F ≥ n.

Note that we stop atn−1 because we will only be able to detect whether there was a failure
after observationn once we have obtained observationn+1! Note also that the first try is always
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a successful case: we can only hypothesize a failure that starts afterwards! By the way, these
assumptions mirror the assumptions that we have been making for HMMs, too. For the rest of the
problem, however, we will diverge from HMM theory.

We assume that the model assigns a prior probability to each of the following hypotheses:

P(F = 1), . . . ,P(F = n−1),P(F ≥ n)

Regard this as a prior distributionP(F) for variableF.
We also formalize a probabilistic model of our observations as follows. For anyi and j, wi is

conditionally independent ofwj givenF , rs andr f . If there is no failure before stepi, the reward
on stepi is normally distributed with meanrs (for success) and varianceσ2 = 1. on the other hand,
if there is a failure after any step up to stepi−1, the reward on stepi is normally distributed with
meanr f (for failure) and (again) varianceσ2 = 1.

We can summarize this mathematically as follows:

F ≥ i⇒ wi ∼ N(rs,1)
F < i⇒ wi ∼ N(r f ,1)

Specifically, this gives us the second ingredient of the model:

p(wi |F, rs, r f ) =




ce−
(wi−r f )2

2 if F = t andt < i

ce−
(wi−rs)2

2 otherwise

We assume priors forrs andr f that are uniformly distributed on some interval, sop(rs) = p(r f ) =
h.

The rest of problem 2b walks you through the derivation of the maximum a posteriori joint
estimate forF, rs and r f given a sequence of observationsw1,n. Before proceeding, note that
the formalization developed so far just spells out some details that are implicit in the problem
statement, and that you probably used to interpret the graphs above. Your intuitions provide a
good sense of what kind of answers to expect here.
b1. Use Bayes’s theorem to find an expression for the quantityp(F, rs, r f |w1,n) in terms of
p(w1,n|F, rs, r f ) (and other things).
b2. Use the independence assumptions to rewrite your answer to b1 in terms of the parameters of
the model just outlined, expanding the conditional definition ofp(wi |F, rs, r f ). (Use two product
operators.)
b3. Rewrite your answer to b2, dropping all constant factors in anticipation of maximization, and
take the logarithm.
b4. What value ofrs maximizes the quantity described in your answer to b3? This is the best
estimate ofrs.
b5. Find the best estimate forr f the analogous way—noting that forF ≥ n, you actually have no
evidence aboutr f .
b6. SinceF is a discrete set of hypotheses, you have to maximize by enumerating the alternatives.
What estimation procedure results?
2c. Suppose the failure occurs after observationn−1. The question we want to address is how
different thenth observation has to be from previous observations in order to recognize the failure
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immediately using the model. In other words, when do we prefer the hypothesisF = n−1 to the
hypothesisF ≥ n (using our best estimates forrs andr f ) based on thenth data point? Provide an
answer, using the rough assumption that we have enough data that the average of the firstn−1
observations is about the same as the average of the firstn observations.
2d. Use a graph such as that sketched initally to describe how the agent’s estimate changes over
time according to the algorithm derived in problem 2b; assume the criterion in problem 2c is met
at the moment of failure when the value ofX changes. Contrast this with the coarse model of
problem 2a.
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