
CS 530 — Principles of AI
Assignment One

Out: September 25, 2001
Due: October 11, 2001

Programming Exercises
These exercises may all be completed in the programming language of your choice. Problem 3
asks you to run your program on some data. The data is available in formats that can be read in
easily into a Lisp or Prolog interpreter. Of course, it is also available in simple text files that can be
conveniently read into a C or Java program.

Hand in printout of code for problems 1 and 2 and extra credit A. Handin output for problems
3 and writeup for extra credit B. The amount of extra credit given will be commensurate with the
amount of additional effort required to complete it.

Problem 1. Describe concrete data structures for models and policies as described in “Agents in
the Real World”, and implement the function OPTIMUM to compute the best policy in a model.

Describe is a cover term I use for the different ways you create data structures in different lan-
guages. In C or Java, you define the data structures (e.g., in .h or class files); in languages like Prolog
where you can introduce any mnemonic structured terms to hold data, you should add a comment
saying what terms you’re assuming; in a language like Lisp where all complex structures are stored
the same way, you describe data structures by defining functions that build and access particular
instances of those structures to represent your data. Describing the data structures is not asking for
something special, it’s just what you would do anyway. And of course your data structures can work
any way you see fit to organize your program.

Your implementation of OPTIMUM should work in the general case. However, the dog model
from “Agents in the Real World” would provide a good test case for your implementation.

Problem 2. Now we introduce two new representations.

• Model schemas are representations that give the structure of a model but not the numerical
parameters for probabilities and utilities.

• Histories are representations that describe a sample run of an agent, including a sequence of
actions and observations and the utility outcome that the agent achieves as a result.

Describe concrete data structures for model schemas and a collection of histories, and implement
a function TRAIN that estimates a model from a model schema and a collection of histories. In this
case the histories form training data for your program. One simple way to write TRAIN is to traverse
the model schema recursively, and keep track of the corresponding histories. At each stage, you can
estimate probabilities for a node the model by the relative frequency with observed values actually
occur in the training data. You can estimate utilities for the model by the average utility that you
obtain in the training data. For possible outcomes that never occur in the training data—and you
must handle this possibility—you can use a default utility of 0.5.

One way to test this function as you develop it is to use the data for Problem 3. There’s also a
sample data set of 100 trials generated according to the dog model from “Agents in the Real World”,
together with the actual parameter sets that you get from this data set.

1



Problem 3. With this assignment, the class web site contains three sets of test data files. Each data
set contains five example files. The first four files in each set involve a small amount of training
data (50–100 instances), while the last file involves a larger amount of training data (500-1000 in-
stances).

Each data file comes in three formats. In the vanilla format, each line of the file describes a
history. The history is reported as a sequence of observations or actions (character strings separated
by spaces) followed by the utility obtained on the history (a real number, as a string of digits). In
the lisp format, the file itself defines a variable that holds the training data as a list of lists. In other
words, each history is a list containing symbols for the observations and actions encountered and
ending with the utility obtained, and the histories appear consecutively in one big list. Finally, in the
prolog format, the file defines a unary predicate history; history(L) is true if L is a list describing
an element of the training set; the Prolog list takes the same form as the lisp list (modulo Prolog
syntax).

All of the histories are instances of this model schema:

1

look

try find

lose

toil

slog

finish

2

So sample elements might look like this

version statement
vanilla try find slog 0.4

lisp (setq t1 ’((try find slog 0.4) ...))
prolog history([try, find, slog, 0.4]).

All of the files in each set come from the same model with the same parameters. However, different
model parameters were used across the sets.

Use your answers to Problems 1 and 2 to automatically train a model from each file of data and
compute the optimal policy for each trained model. Note the variability in the answers and at least
think about why you are finding this variability (but see Extra Credit B).

2



Extra Credit A. Create a final representation for a performance model. The performance model
should include the standard deviation of observed utilities as well as the mean of observed utilities.
To complete this problem you need to implement two algorithms that work on performance models
in a general way.

First, implement a function that simulates a performance model by sampling. Choose actions at
random; choose observations with the probability predicted by the model. Generate outcomes with
a normal distribution with the specified mean and standard deviations (truncating negative values
to 0 and large values to 1). The following frankly mysterious algorithm generates such normally
distributed random variables, if the function r() generates a random variable uniformly distributed
between 0 and 1, µ is your mean and σ is your standard deviation:

repeat
x← 2∗ r()−1
y← 2∗ r()−1
r← x2 + y2

until 0< r < 1
return µ + σ∗ x∗

√
−2 ln(r)/r

Second, implement a function that learns a performance model from a model schema and his-
tory data. In this case, compared to problem 2, you need to also estimate the standard deviation
of performance. If ui is the utility on the ith trial, there are n trials, and u is your estimate of the
average utility, use the estimate S defined here:

S =

√
(∑i u2

i )−nu2

(n−1)

Again, do not worry if the formula is mysterious. Just note that it can be computed iteratively in a
nice way.

Extra Credit B. Present English arguments, including “back-of-the-envelope” calculations and/or
tabulations of results obtained using your code from Extra Credit A, to give an analysis of the prob-
ability of determining the optimal policy correctly for each of the three models of Problem 3 as the
amount of training data gradually increases. The ideal answer in each case would be a one- or two-
sentence description of what’s going on backed up by some illustrative numbers.

3


