Lecture 22
Kalman Filter

CS 520: Intro AI
Jingjin Yu | Rutgers
Kalman Filter: the Problem

Problem: estimate the state of a system \(\dot{x} = f(x, u) \) using noisy observations taken at discrete time steps, i.e.,

- System is at some state \(x_0 \), with initial control input \(u_0 \)
- After some \(\Delta_1 \) time, system is at a new state \(x_1 \)
- A noisy observation \(z_1 \) of \(x_1 \) is made
- ...
- System is at state \(x_t \) and we give it a control input \(u_t \)
- After some \(\Delta_t \) time, system is at a new state \(x_{t+1} \)
- A noisy observation \(z_{t+1} \) of \(x_{t+1} \) is made

Question: estimate the distribution of system state at \(t + 1 \) given observations \(z_1, \ldots, z_{t+1} \), written as \(P(X_{t+1}|z_{1:t+1}) \)

To simplify things a little, we do not consider control \(u_{1:t} \)

The system is at some state \(x \), but we are interested in the distribution \(X \)
Kalman Filter

⇒ **Filtering**: estimating state variables (e.g., position, velocity, acceleration, ...) from noisy observations over time.

⇒ **Kalman filter** is a **continuous** time **optimal** filter for **linear** systems with **Gaussian** noise

 ⇒ Continuous time: system variables, x, is continuous
 ⇒ E.g., position/velocity of a rocket, or temperature of a room

 ⇒ Linear system with Gaussian noises (ω_k, ν_k)
 ⇒ Motion: $x_{k+1} = F_k x_k + B_k u_k + \omega_k$
 ⇒ Observation: $z_k = H_k x_k + \nu_k$

⇒ Why Kalman filter?

 ⇒ Numerous applications, including
 ⇒ GPS navigation
 ⇒ Tracking of aircraft, missiles, submarines
 ⇒ Works well even if the linear assumption does not hold

Source: wikipedia
Application Scenario: GPS

How does GPS work?

- 20+ GPS satellites with known locations
- Synchronized clock
 - Actually uses (both special and general) theory of relativity
- Need at least four satellites to work
- A form of trilateration
- Lots of possible sources of disturbances
 - Clock
 - Atmosphere interference
 - Satellite locations
 - Multipath
 - ...

Without Kalman filtering, error can be tens of meters and jump around

- Can be highly problematic for GPS based navigation

Source: space.com
Bayesian Network Perspective

We may view the process as a Bayesian network

\[X_0 \rightarrow X_1 \rightarrow \cdots \rightarrow X_t \rightarrow X_{t+1} \]

\[Z_1 \rightarrow \cdots \rightarrow Z_t \rightarrow Z_{t+1} \]

\(X_t \) is the position of the system at time \(t \)

\(Z_t \) is the observation made at time \(t \) about \(X_t \)

Both are assumed to be linear with Gaussian noise

- Motion: \(x_{k+1} = F_k x_k + B_k u_k + \omega_k \)
- Observation: \(z_{k+1} = H_{k+1} x_{k+1} + \nu_{k+1} \)

We want to compute \(P(X_{t+1}|z_{1:t+1}) \)

Given \(X_t, X_{t+1} \) does not depend on \(X_{1:t-1} \) and \(z_{1:t} \) (Markov blanket)
Time Update

Kalman filtering has two iterative steps

\[P(X_{t+1}|z_{1:t}) \] from \[P(X_t|z_{1:t}) \]

\[P(X_{t+1}|z_{1:t+1}) \] from \[P(X_{t+1}|z_{1:t}) \] and \[P(z_{t+1}|X_{t+1}) \]

Time update

\[
P(X_{t+1}|z_{1:t}) = \int_{x_t} P(X_{t+1}, x_t|z_{1:t}) dx_t
\]

Marginalization over \(x_t \)

Definition of conditional probability

\[
= \int_{x_t} \frac{P(X_{t+1}, x_t, z_{1:t})}{P(z_{1:t})} dx_t
\]

Chain rule

\[
= \int_{x_t} \frac{P(X_{t+1}, x_t, z_{1:t})}{P(x_t, z_{1:t})} \frac{P(x_t, z_{1:t})}{P(z_{1:t})} dx_t
\]

\[
= \int_{x_t} P(X_{t+1}|x_t, z_{1:t}) P(x_t|z_{1:t}) dx_t
\]

Conditional independence of \(X_{t+1} \) over \(z_{1:t} \) given \(x_t \)

\[
= \int_{x_t} P(X_{t+1}|x_t) P(x_t|z_{1:t}) dx_t
\]

Transition model

\[x_{k+1} = A_{k+1} x_k + B_{k+1} u_k + \omega_{k+1} \]

\[P(X_t|z_{1:t}), \text{ from previous computation or } x_0 \]
Measurement Update

\[P(X_{t+1}|z_{1:t+1}) \text{ from } P(X_{t+1}|z_{1:t}) \text{ and } P(z_{t+1}|X_{t+1}) \]

\[
P(X_{t+1}|z_{1:t+1}) = \frac{P(X_{t+1}, z_{1:t}, z_{t+1})}{P(z_{1:t+1})} \\
= \frac{P(z_{t+1}|X_{t+1}, z_{1:t})P(X_{t+1}, z_{1:t})}{P(z_{1:t+1})} \\
= P(z_{t+1}|X_{t+1}) \frac{P(X_{t+1}, z_{1:t})}{P(z_{1:t+1})} \\
= P(z_{t+1}|X_{t+1})P(X_{t+1}|z_{1:t}) \frac{P(z_{1:t})}{P(z_{1:t+1})} \\
= \alpha P(z_{t+1}|X_{t+1})P(X_{t+1}|z_{1:t})
\]

Definition of conditional probability

Product rule

Conditional independence of \(z_{t+1}\) over \(z_{1:t}\) given \(X_{t+1}\)

\[
\frac{P(z_{1:t})}{P(z_{1:t+1})} \text{ is a normalization term}
\]

Measurement (sensor) model

Directly from time update
Putting it together

⇒ Two iterative steps

⇒ Time update: \(P(X_{t+1} | z_{1:t}) = \int_{x_t} P(X_{t+1} | x_t) P(x_t | z_{1:t}) dx_t \)

⇒ Measurement update: \(P(X_{t+1} | z_{1:t+1}) = \alpha P(z_{t+1} | X_{t+1}) P(X_{t+1} | z_{1:t}) \)

⇒ Key observation

⇒ \(P(X_{t+1} | z_{1:t}) \) is Gaussian if \(P(X_{t+1} | x_t) \) and \(P(x_t | z_{1:t}) \) are both Gaussian

⇒ \(P(X_{t+1} | z_{1:t+1}) \) is Gaussian when \(P(z_{t+1} | X_{t+1}) \) and \(P(X_{t+1} | z_{1:t}) \) are Gaussian

⇒ This enables Kalman filter to compactly represent the system’s state

⇒ Only need a Gaussian distribution, i.e., \(N(X, \Sigma) \)

⇒ \(X \) is the state vector mean

⇒ \(\Sigma \) is the covariance matrix
A One Dimensional Example (from Textbook)

⇒ Consider 1D random walk, for 1D, $N(X, \Sigma)$ is simply $N(\mu, \sigma^2)$

⇒ $x_0 \sim N(\mu_0, \sigma_0^2)$, i.e., $P(x_0) = \alpha \exp\left(-\frac{1}{2} \left(\frac{(x_0-\mu_0)^2}{\sigma_0^2} \right) \right)$

⇒ Transition model: $P(x_{t+1}|x_t) = \alpha \exp\left(-\frac{1}{2} \left(\frac{(x_{t+1}-x_t)^2}{\sigma_x^2} \right) \right)$

⇒ If $x_{t+1} = x_t + \nu \Delta t$, then $P(x_{t+1}|x_t) = \alpha \exp\left(-\frac{1}{2} \left(\frac{(x_{t+1}-(x_t+\Delta t))}{\sigma_{t+1}^2} \right) \right)$

⇒ Sensor model: $P(z_t|x_t) = \alpha \exp\left(-\frac{1}{2} \left(\frac{(z_t-x_t)^2}{\sigma_z^2} \right) \right)$

⇒ Time update for x_1

$$P(x_1) = \int_{-\infty}^{\infty} P(x_1|x_0)P(x_0)dx_0$$

$$= \int_{-\infty}^{\infty} \alpha \exp\left(-\frac{1}{2} \left(\frac{(x_0-\mu_0)^2}{\sigma_0^2} \right) \right) \exp\left(-\frac{1}{2} \left(\frac{(x_1-x_0)^2}{\sigma_x^2} \right) \right) dx_0$$

$$= \alpha \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2} \left(\frac{(x_0-\mu_0)^2}{\sigma_0^2} \right) \right) \exp\left(-\frac{1}{2} \left(\frac{(x_1-x_0)^2}{\sigma_x^2} \right) \right) dx_0$$

$$= \alpha \exp\left(-\frac{1}{2} \left(\frac{(x_1-\mu_0)^2}{\sigma_0^2 + \sigma_x^2} \right) \right)$$

Note: the normalization constant αs are different in different expressions!
A One Dimensional Example (from Textbook)

⇒ Measurement update for x_1

$$P(x_1|z_1) = \alpha P(z_1|x_1)P(x_1) = \alpha \exp \left(-\frac{1}{2} \left(\frac{(z_1 - x_1)^2}{\sigma_z^2} \right) \right) \exp \left(-\frac{1}{2} \left(\frac{(x_1 - \mu_0)^2}{\sigma_0^2 + \sigma_x^2} \right) \right)$$

$$= \alpha \exp \left(-\frac{1}{2} \left(\frac{(x_1 - \mu_1)^2}{\sigma_1^2} \right) \right)$$

⇒ In general, $x_{t+1} \sim N(\mu_{t+1}, \sigma_{t+1}^2)$ with

$$\mu_{t+1} = \frac{(\sigma_t^2 + \sigma_x^2)z_{t+1} + \sigma_z^2 \mu_0}{\sigma_t^2 + \sigma_x^2 + \sigma_z^2}$$

$$\sigma_{t+1}^2 = \frac{(\sigma_t^2 + \sigma_x^2)\sigma_z^2}{\sigma_t^2 + \sigma_x^2 + \sigma_z^2}$$
A One Dimensional Example (from Textbook)

\[\mu_0 = 0.0, \sigma_0 = 0 \]
\[\sigma_x = 2.0 \]
\[z_i = 2.5, \sigma_z = 1.0 \]
General Case

⇒ In general, \(P(x) = N(\mu, \Sigma)(x) = \alpha \exp \left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right) \)

⇒ Transition model: \(P(x_{t+1}|x_t) = N(Fx_t, \Sigma_x)(x_{t+1}) \)

 ⇒ \(F \) is a matrix describing the linear transition model

 ⇒ \(\Sigma_x \) is the covariance matrix modeling transition noise

 ⇒ This models the system \(x_{t+1} = Fx_t + \omega_t \) and ignores control \(u_t \)

⇒ Sensor model: \(P(z_t|x_t) = N(Hx_t, \Sigma_z)(z_t) \)

 ⇒ \(H \) is a matrix describing the sensor model

 ⇒ \(\Sigma_z \) is the covariance matrix modeling measurement noise

⇒ Update rule: \(x_{t+1} \sim N(\mu_{t+1}, \Sigma_{t+1}) \)

 ⇒ \(\mu_{t+1} = F\mu_t + K_{t+1}(z_{t+1} - HF\mu_t) \)

 ⇒ \(\Sigma_{t+1} = (I - K_{t+1}H)(FS_tF^T + \Sigma) \)

 ⇒ Kalman gain: \(K_{t+1} = (FS_tF^T + \Sigma_x)H^T(H(FS_tF^T + \Sigma_x)H^T + \Sigma_z)^{-1} \)
Filtering versus Smoothing

- Kalman filtering is an “online” process, i.e., $P(x_t | z_{1:t})$
- If we know all the data from 1, ..., t, ..., T, then we can do better with Kalman smoothing, i.e., we can compute $P(x_t | z_{1:T})$

- With more data, smoothing yields better results
Extensions: Extended Kalman Filter (EKF)

⇒ Kalman filter applies to only linear systems, i.e.,

\[x_{t+1} = Fx_t + Bu_t + \omega_t, \quad z_{t+1} = H_{t+1}x_{t+1} + v_{t+1} \]

with \(F, B, H \) being matrices with no dependency on \(x \)

⇒ Most systems are non-linear, i.e.,

\[x_{t+1} = f(x_t, u_t, \omega_t), \quad z_t = h(x_t, \nu_t) \]

⇒ One way to overcome the limitation is to linearize the system

⇒ E.g., using Taylor expansion around \(x_t, u_t, \omega_t \) and take the first order terms

⇒ Apply KF over the linearized transition and measurement models

⇒ This is the Extended Kalman Filter (EKF)
Unscented Kalman Filter (UKF) and Particle Filter

- EKF will not work well if the system is highly non-linear

 - In this case, we simply sample the distribution with weights
 - Then, propagate the resulting samples through the non-linear system
 - UKF generates samples deterministically, PF does so randomly

Source: http://www.inference.phy.cam.ac.uk/tcs27/talks/sampling.html