Games

- Tic-tac-toe
- Backgammon
- Monopoly
- Chess
- The Chinese version
- The Japanese version
Just This Past Week (January 28th)...

At last — a computer program that can beat a champion Go player

Google masters Go
Deep-learning software excels at complex ancient board game.
Why are We Fascinated with Games?

Games are “benchmarks” of human intelligence

Model real world competitive and cooperative behaviors

- Monopoly games: bargaining, cooperation, competition
- Chess, go: competition, strategy

But much simplified

- Chess has 32 pieces and a board with 64 positions
- Ideal for mathematical study as well as applying computational techniques

We will cover

- The MinMax algorithm (also known as minimax, MM...)
- Alpha-beta pruning
- Stochastic games & partially observable games
Focus: Alternating 2-Player Games

- Such games are **sequential** with the players taking turns.
- The game ends with a **terminal state** with **utilities** for both players.
- **Zero-sum games**: one player’s utility is the negation of the other player’s utility – hence summed utility is zero.
- **Non zero-sum games**: total utility is non-zero; e.g., in soccer qualifying matches, 3 points for win, 1 point for draw, 0 for loss.
Game versus Search (That We Learned So Far)

⇒ Games fall into a category of search problems that we have touched on – those with non-deterministic actions
 ⇒ In fact, we may assume we always face the worst outcome after we make a choice
 ⇒ This is known as *adversarial search*

⇒ The process of playing a two player game
 ⇒ Assuming Max and Min are playing a zero-sum game
 ⇒ At a step k of the sequential game, Max wants to maximize her utility
 ⇒ At step $k + 1$, Min wants to maximize his utility, which means minimizing Min’s utility
 ⇒ The process continues until the game reaches a terminal state
 ⇒ This gives us a game (search) tree for the game
Example: Game Tree for Tic-Tac-Toe

Basically, the MinMax algorithm seeks to go from the leaves and collect the best choice at the top.
A Two-Ply Game Tree Example

⇒ Suppose Max and Min play according to the following game tree

⇒ The last layer shows the terminal states with utilities for Max
⇒ From here, Min minimizes the utility
⇒ Max then maximizes among Min’s choices
⇒ This is the gist of the MinMax algorithm
The MinMax (or Minimax) Algorithm

function MINIMAX-DECISION(state) returns an action
 return \arg \max_{a \in \text{ACTIONS}(s)} \text{MIN-VALUE}(<\text{RESULT}(\text{state}, a)>)

function MAX-VALUE(state) returns a utility value
 if TERMINAL-TEST(state) then return \text{UTILITY}(\text{state})
 v \leftarrow -\infty
 for each a in \text{ACTIONS}(\text{state}) do
 v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(<\text{RESULT}(\text{state}, a)>)
 return v

function MIN-VALUE(state) returns a utility value
 if TERMINAL-TEST(state) then return \text{UTILITY}(\text{state})
 v \leftarrow \infty
 for each a in \text{ACTIONS}(\text{state}) do
 v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(<\text{RESULT}(\text{state}, a)>)
 return v

⇒ Basically, do \text{Max} \{ \text{Min} \{ \text{Max} \{ \text{Min} \{ \ldots \} \} \} \} until hits terminal states
The MinMax (or Minimax) Algorithm

⇒ To summarize, MinMax does

\[
\text{MINIMAX}(s) = \begin{cases}
 \text{UTILITY}(s) & \text{if TERMINAL-TEST}(s) \\
 \max_{a \in \text{Actions}(s)} \text{MINIMAX} (\text{RESULT}(s, a)) & \text{if PLAYER}(s) = \text{MAX} \\
 \min_{a \in \text{Actions}(s)} \text{MINIMAX} (\text{RESULT}(s, a)) & \text{if PLAYER}(s) = \text{MIN}
\end{cases}
\]

⇒ This can be used to compute optimal strategies when the game tree is reasonably shallow

⇒ An optimal strategy is one that gives the best utility if playing against an optimal opponent (i.e., always making utility-minimizing decisions)

⇒ Using an optimal strategy against a non-optimal opponent will not yield lower utility for Max

⇒ Example of an optimal strategy for a game...
Optimal Strategy for Tic-Tac-Toe, Visualized

http://xkcd.com/832/
A three player game is rather different, e.g.,

- Each player has an individual utility
- Not possible for player C to minimize utility of both A and B
- Natural strategy is for C to maximize his/her own utility
- Same for other players
Alpha-Beta Pruning (Exact) Heuristic

- Visit all terminal states in MinMax is unnecessary
- Keep track of
 - α – the value of the best choice (highest value) so far for Max
 - β – the value of the best choice (lowest value) so far for Min
Alpha-Beta Pruning, General Case

- Keep track of
 - α – the value of the best choice (highest value) so far for Max
 - β – the value of the best choice (lowest value) so far for Min

- Say Min node m has the best choice for Max, which is α
 - If another Min node n has successor with utility $\alpha' \leq \alpha$
 - Then Max cannot do better than $\alpha' \leq \alpha$ on n
 - This is because Min will minimize over n
 - Such branches (under node n) can be safely truncated
 - Optimality is not affected

- Similarly, if a Max node has the best choice β for Min
 - If a later Max node has a larger β', the node is a useless branch
 - An upper stream Min node will only pick β, not β'
MinMax with Alpha-Beta Pruning

function ALPHA-BETA-SEARCH(state) returns an action
 \[v \leftarrow \text{MAX-VALUE}(state, -\infty, +\infty) \]
 return the action in ACTIONS(state) with value \(v \)

function MAX-VALUE(state, \(\alpha \), \(\beta \)) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 \[v \leftarrow -\infty \]
 for each \(a \) in ACTIONS(state) do
 \[v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(ext{RESULT}(s,a), \alpha, \beta)) \]
 if \(v \geq \beta \) then return \(v \) // Pruning
 \[\alpha \leftarrow \text{MAX}(\alpha, v) \] // Update
 return \(v \)

function MIN-VALUE(state, \(\alpha \), \(\beta \)) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 \[v \leftarrow +\infty \]
 for each \(a \) in ACTIONS(state) do
 \[v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(ext{RESULT}(s,a), \alpha, \beta)) \]
 if \(v \leq \alpha \) then return \(v \) // Pruning
 \[\beta \leftarrow \text{MIN}(\beta, v) \] // Update
 return \(v \)
Properties of Alpha-Beta Pruning

- Alpha-beta pruning does not affect optimality
- With proper ordering (big if here) of node expansion, alpha-beta pruning examines $O(b^{m/2})$ nodes instead of $O(b^m)$ for MinMax
- This means much larger problems can be tackled with the same amount of computation time
- The best order is generally not possible in practice
Imperfect Real-Time Decisions

- MinMax and alpha-beta pruning are optimal
 - Requires full game tree to all reach terminal states
 - Impractical in practice, e.g., chess game
 - Possible positions $\sim 10^{43}$
 - Complexity of 10^{120} assuming 40 pairs of moves (typical game)
 - This is known as the Shannon number (after Claude Shannon)
 - Impossible to remember or compute for moderately complex games

- To play actual games, one needs to make imperfect real-time decisions
 - Human players can evaluate the situation of a game board
 - This may be abstracted as a heuristic value function
Evaluation function

- Replaces terminal states with evaluation functions
- These functions must be computed quickly
- A common evaluation function

\[\text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

- E.g., for chess, a naïve evaluation function may have \(w_i f_i(s) \) for a game piece \(i \).
 - \(w_i \) may represent the “power” of the piece, e.g., \(w_{\text{pawn}} = 1, w_{\text{queen}} = 10 \)
 - \(f_i \) may represent the current advantage of the piece. E.g., a pawn near opponent’s base may have much larger \(f \) than a starting pawn

- Evaluation function may be learned from game databases
 - AlphaGo uses random (Monte Carlo) tree search + deep learning
Issues with Evaluation Functions

- Cutting off game tree and applying evaluation function may cause horizon effect
 - Evaluation function may have big variations at nearby search nodes
 - E.g.,

 ![Chess Diagram](image)

 (a) White to move

 (b) White to move

- Can be alleviated by **selectively adding more search depth**
Stochastic Games

Some games have a stochastic component (i.e., non-rational decisions on the game tree).

Backgammon is such a game.
Handling Stochastic Games

⇒ Same MinMax + alpha-beta pruning + evaluation function approach
⇒ Replaces utility with expected utility to handle randomness

\[
\text{EXPECTIMINIMAX}(s) =
\begin{cases}
\text{UTILITY}(s) & \text{if } \text{TERMINAL-TEST}(s) \\
\max_a \text{EXPECTIMINIMAX}(\text{RESULT}(s, a)) & \text{if } \text{PLAYER}(s) = \text{MAX} \\
\min_a \text{EXPECTIMINIMAX}(\text{RESULT}(s, a)) & \text{if } \text{PLAYER}(s) = \text{MIN} \\
\sum_r P(r) \text{EXPECTIMINIMAX}(\text{RESULT}(s, r)) & \text{if } \text{PLAYER}(s) = \text{CHANCE}
\end{cases}
\]

⇒ Basically, making “chance” a third player who plays by expectation instead of min or max
“Chance” an Expectation Based Player

Diagram of a decision tree with nodes labeled MAX, CHANCE, MIN, and TERMINAL.

- **MAX** node with branches indicating decisions or actions.
- **CHANCE** node with probabilities and outcomes, e.g., $1/36$ for $1,1$.
- **MIN** node with outcomes, e.g., $1/18$ for $6,5$.
- **TERMINAL** node with payoffs, e.g., 2, -1, 1.
Games with Imperfect Information

- In many games, e.g., bridge, players have only partial information about the current state of the game.
- Strategies in such cases:
 - Remembering past moves to **infer** the state of the game.
 - Carry out Monte Carlo simulation to simulate the possible state of the game.
AI for Games: a Brief Incomplete History

⇒ 1912: Ernst Zermelo published MinMax (minimax) algorithm
⇒ 1949: Claude Shannon – proposed evaluation function for chess playing
⇒ 1956: John McCarthy – alpha-beta pruning
⇒ 1956: Arthur Samuel – checkers program playing against itself
⇒ 1958-1972: early chess programs with alpha-beta
⇒ 1975: Knuth & Moore – correctness and complexity of alpha-beta
⇒ 1982: Pearl – showing alpha-beta’s asymptotic optimality
⇒ Many interesting development afterwards...
⇒ Most recently Monte Carlo tree + deep learning
 ⇒ Devil seems to be now in the engineering details
 ⇒ More interesting theory and algorithms ahead?
Al for Games: the Best

⇒ Better than human
 ⇒ Checkers: proven by Schaeffer’s team in 2007 that the best a human player can do against a program (Chinook) is a draw
 ⇒ Chess:
 ⇒ First victory of computer over top human player in 1997 (Deep Blue v.s. Kasparov)
 ⇒ Human rarely wins afterwards

⇒ On par with top human players
 ⇒ Backgammon
 ⇒ Bridge

⇒ Not just yet...
 ⇒ Texas hold’em
 ⇒ Limit Texas hold’em is statistically solved
 ⇒ No-limit, the more common version, still pretty difficult
 ⇒ Go
 ⇒ AlphaGo uses Monte Carlo tree + deep learning to beat a ~600 ranked player
 ⇒ A match against a top player Lee Sedol, will be held in March of this year
 ⇒ Current estimate is that AlphaGo will not win
Additional Resources and Exercises

- *Take a look at paper about AlphaGo
 - http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
 - You should be able to download from Rutgers network