Lecture 2
Uninformed Search

CS 520: Intro AI
Jingjin Yu | Rutgers
Solving Problems through Search: An Example

Search for a route in Romania
Components of a Search Problem

 prevState S: in this case, an edge-weighted graph

 Initial (start) and goal (final) states: x_I and x_G
 - There can be more than one start/goal state: solve one side of a Rubik’s cube

 Action: in this case, moving from one state to a nearby state

 Transition model: tuples (s_1, a, s_2) that are valid
 - Sometimes written as $T(s_1, a) = s_2$
 - There are usually costs/rewards associated with a transition, $R(s_1, a)$

 Solution: valid transitions connecting x_I and x_G
 - Optimal solution: solution with lowest cost (e.g., length of the path)
Example: Vacuum-Cleaner World

- State space: \(\{A, B\} \times \{A_{\text{dirty}}, A_{\text{clean}}\} \times \{B_{\text{dirty}}, B_{\text{clean}}\} \)
 - State space size: \(2 \times 2 \times 2 = 8\)
- Action: \{left, right, suck\}
- Transition example: \((A, A_{\text{clean}}, B_{\text{dirty}}) \xrightarrow{\text{right}} (B, A_{\text{clean}}, B_{\text{dirty}})\)
- Initial state: can be an arbitrary state
- Goal states: \(\{A, B\} \times \{A_{\text{clean}}\} \times \{B_{\text{clean}}\}\)
- Cost: can be the number of actions in a solution
State Space of the Vacuum-Cleaner World
Example: 8-Queens

⇒ State space: possible locations of 8 queens
 ⇒ State space size: \(C(64, 8) = \frac{64 \times 63 \times \cdots \times 57}{8!} \approx 4 \times 10^9 \)

⇒ Action/transition: place or move a queen

⇒ Initial state: can be an arbitrary state

⇒ Goal states: a placement of queens in which no two queens attacking

⇒ Cost: no clear cost
Example: 8-puzzle

⇒ State space: arrangements of the 8 pieces
⇒ State space size: 9! = 362880

⇒ Action/transition: shifting a piece to the empty cell

⇒ Initial state: an arbitrary state

⇒ Goal state: an arbitrary fixed state

⇒ Cost: number of actions (moves)
Applications of Search Algorithms

- Navigation
- Robot Motion planning
- Competitive Chess
- Game AI
Uninformed Search v.s. Informed Search

→ Uninformed search only uses information from problem definition
→ Example of uninformed and informed search: maze
 → Note that the distinction is a bit vague...

Searching for a hole with unknown location in a maze

Searching for an exit at south
Search Algorithms: An Illustration

Search algorithms generally build a search tree.
State in State Space ≠ Search State!

- A state in state space: where an agent is at a certain time
- A search state: represents a path on the search tree from the root, which is a valid sequence of actions from x_I
Tree Search: Structure

input: $S, x_i, G(\cdot)$

AddToQueue($x_i, Queue$); // Add x_i to a queue of nodes to be expanded

while(!IsEmpty($Queue$))
 $x \leftarrow$ Front($Queue$); // Retrieve the front of the queue
 if($G(x)$) return solution; // Return if goal is reached

for each successor n_i of x // Add all neighbors to the queue
 AddToQueue($n_i, Queue$)

return failure; \hspace{1cm} \text{Expanding a search node}

⇒ Different search algorithms use different AddToQueue
 ⇒ BFS: FIFO queue – first in first out
 ⇒ DFS: LIFO queue – last in first out
 ⇒ Uniform-cost: Priority queue – node with smallest cost in the front

⇒ Tree search CANNOT tell whether a node has been seen before
A Word on Implementation Details

⇒ The “algorithm” covered in the class may not be the most efficient
⇒ For example, DFS algorithms only needs space of $O(m)$ in stead of $O(bm)$
⇒ Our DFS uses $O(bm)$ because we add all successors before working on the next node
⇒ In a standard DFS algorithm, only one successor of a node is added to the queue
⇒ Our purpose here is to provide a general framework that covers all these different uninformed (and later informed) tree/graph search methods
Search Algorithms: Important Properties

- **Completeness**: a complete algorithm returns a correct answer when there is one

- **Optimality**: whether the solution is the best possible according to some cost function

- **Time complexity**: the number of basic operations incurred by the algorithm

- **Space complexity**: the amount of memory needed to run the algorithm

 In our case, the maximum size of the queue
Breadth-First Search (BFS)

- **AddToQueue**: adds newly discovered node at the end of queue

Completeness: Yes, for finite branching factor b
Optimality: Optimal when edges have uniform length
Time complexity: $O(b^d)$ b: branching factor, d: max solution depth
Space complexity: $O(b^d)$
Uniform-Cost Search (UC)

\Rightarrow AddToQueue orders nodes by cost

Completeness: Yes, for finite branching factor
Optimality: Yes
Time complexity: $O(b^{1+C^*}/\epsilon)$
Space complexity: $O(b^{1+C^*}/\epsilon)$

Can be worse than BFS
Depth-First Search (DFS)

\[\text{AddToQueue} \quad \text{inserts in the front of the queue}\]

Depth-First Search (DFS)

\[\text{Completeness} \quad \text{No}\]

\[\text{Optimality} \quad \text{No}\]

\[\text{Time complexity} \quad O(b^m) \text{ with } m \text{ being the maximum depth}\]

\[\text{Space complexity} \quad O(bm), \text{ makes DFS more attractive than BFS}\]
Why Tree Search can be Bad

Assume:
The first neighbor of A is B
The first neighbor of C is also B

DFS search tree generated by tree search
Non-Optimality of DFS

\[x_I = A, x_G = B \]

DFS search tree
Depth-Limited Search

⇒ For handling the case when there are infinite depth paths
⇒ Same as DFS but limit the maximum depth to some $\ell < m$

Completeness No if $\ell < d$, otherwise still no (same as DFS)
Optimality No – Same as DFS
Time complexity $O(b^\ell)$
Space complexity $O(b\ell)$
Choosing the correct ℓ can be tricky – start with 0, 1, ...

Completeness: Yes, for finite branching factor

Optimality: Yes, for unit edge costs

Time complexity: $O(b^d)$

Space complexity: $O(bd)$
Bidirectional Search

- Run in parallel two BFS searches, one from start and one from goal
- Stop when the two trees meet

Completeness: Same as BFS
Optimality: Same as BFS
Time complexity: $O(b^{d/2})$
Space complexity: $O(b^{d/2})$
Graph Search

input: $S, x_i, G(·)$

AddToQueue($x_i, Queue$); // Add x_i to a queue of nodes to be expanded

while(!IsEmpty($Queue$))
 x ← Front($Queue$); // Retrieve the front of the queue
 if($x.expanded == true$) continue; // Do not expand a node twice
 $x.expanded = true$; // Mark x as expanded
 if($G(x)$) return solution; // Return if goal is reached
 for each successor n_i of x // Add all neighbors of x to the queue
 if($n_i.expanded == false$) AddToQueue($n_i, Queue$)

return failure;

- Keeps track of expanded nodes – each node is expanded once
- AddToQueue can be more efficient
 - Recall that tree search cannot tell nodes apart but graph search can
 - For priority queue, only a single copy of n_i with smallest cost needs to be in the queue
Tree Search versus Graph Search

- Both tree and graph search build a **search tree**
 - Graph search’s search tree is part of the state space graph
 - The queue forms a **frontier** on the graph, separating the explored nodes from nodes that are not explored

- Graph search expands the same state once – graph search DFS is complete on finite graph

- If one cannot distinguish the states, then graph search cannot be applied – use tree search in this case

- Another reason for using tree search is space – graph search needs extra memory for tracking expanded nodes
BFS Tree Search and Graph Search Example

Problem graph

![Problem graph diagram]

Running BFS tree and graph search

Tree search

Graph search

More compact search tree!

Adjacency list

S: A, B
A: B, C, G
B: C
C: G
G:
Summary on Uninformed (Tree) Search

<table>
<thead>
<tr>
<th>Method</th>
<th>Complete?</th>
<th>Optimal?</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td>Yes, for $b < \infty$</td>
<td>Yes, for uniform edge costs</td>
<td>$O(b^d)$</td>
<td>$O(b^d)$</td>
</tr>
<tr>
<td>Uniform cost</td>
<td>Yes, for $b < \infty$ and $\epsilon > \text{fixed } \delta > 0$</td>
<td>Yes</td>
<td>$O(b^{1+\frac{C^*}{\epsilon}})$</td>
<td>$O(b^{1+\frac{C^*}{\epsilon}})$</td>
</tr>
<tr>
<td>DFS</td>
<td>No</td>
<td>No</td>
<td>$O(b^m)$</td>
<td>$O(bm)$</td>
</tr>
<tr>
<td>Depth limited DFS</td>
<td>No</td>
<td>No</td>
<td>$O(b^{\ell})$</td>
<td>$O(b^{\ell})$</td>
</tr>
<tr>
<td>Iterative deepening DFS</td>
<td>Yes, for $b < \infty$</td>
<td>Yes, for uniform edge costs</td>
<td>$O(b^d)$</td>
<td>$O(bd)$</td>
</tr>
<tr>
<td>Bidirectional</td>
<td>Yes, for BFS with $b < \infty$</td>
<td>Yes, for uniform edge costs</td>
<td>$O(b^{\frac{d}{2}})$</td>
<td>$O(b^{\frac{d}{2}})$</td>
</tr>
</tbody>
</table>

b: branching factor (average)
d: max. solution depth (i.e., depth of x_G)
m: max. depth of any node from x_I
ℓ: depth limit
C^*: optimal solution cost
ϵ: smallest step (edge) cost, must be finite

\[\Rightarrow\text{For graph search on finite state space, DFS is complete and depth limited DFS is complete when } \ell \geq d\]
Search from AI and Algorithms Perspectives

⇒ AI perspective
 ⇒ The state space may be infinite
 ⇒ Often the state space is not explicitly given
 ⇒ Does not assume x_G is always reachable
 ⇒ That is why “goal detector” is provided
 ⇒ There may not even be an x_G
 ⇒ Therefore, we use branching factor and search depth to measure time and space complexity

⇒ Algorithms perspective
 ⇒ The state space (a graph) is often finite
 ⇒ Otherwise it is not possible to provide running time analysis
 ⇒ State space (graph) is often explicitly given though not always
 ⇒ Goal is usually given as a known state
 ⇒ Therefore, generally does not discuss “tree search”
Use the Romania road map, pick a random start/goal pair and carry out the various search strategies by hand (draw the search tree)

*Read CLRS algorithm book’s coverage on search algorithms