Collective Intelligence and Machine Learning

Haym Hirsh
Department of Computer Science
Rutgers University


Tutorial at the 2011 International Conference on Machine Learning
Tuesday, June 28, 2011


Overview

"Collective intelligence" refers to ways that information and communications technologies are bringing people and computing together to achieve outcomes that were previously beyond our individual capabilities or expectations. Google's search algorithms, Wikipedia's millions of articles, Amazon's recommendations, and open source software's multiple successes are prominent examples of ways in which technology and people are being brought together to exhibit behaviors that, collectively, are more intelligent than is possible by people or machines alone.

Collective intelligence makes contact with machine learning in three ways. First, machine learning scholars and practitioners are using collective intelligence as an element in conducting their work, such as using crowdsourcing resources like Amazon Mechanical Turk to create corpora in computational linguistics or computer vision or to evaluate results in user interfaces or information retrieval. Second, existing techniques and new innovations in machine learning have become a key enabler of many examples of collective intelligence, such as mining consumer behaviors and product review sentiments to facilitate product recommendation. Finally, collective intelligence offers a provocative phenomenon to consider by those seeking to expand our ability to build computational systems that can be said to learn.

This tutorial will survey the state of the art in collective intelligence from a machine learning perspective. First, it will discuss examples in which people explicitly serve as participants in collectively intelligent systems, such as editing Wikipedia articles, participating in the Netflix Challenge, identifying astronomical objects in GalaxyZoo, providing reviews and ratings on Amazon or TripAdvisor, or using Amazon Mechanical Turk to label images with tags. Second, it will present examples in which collectively intelligent outcomes arise through the computationally distilled wisdom of the behaviors and creations of individuals otherwise acting for their own, often unrelated purposes, as exhibited by Google's page ranking algorithm and Amazon's recommendation system. The tutorial will conclude with a discussion of prospects for the future.


What Will Attendees Learn?


Outline


Tutorial Slides