
Learning to Identify Facial Expression During Detection Using Markov Decision
Process

Ramana Isukapalli
Lucent Technologies, Bell Labs Innovations

Whippany, NJ0 7981, USA
risukapalli@lucent.com

Ahmed Elgammal
Rutgers University

New Brunswick, NJ 08854, USA
elgammal@cs.rutgers.edu

Russell Greiner
University of Alberta, Edmonton, CA T6G 2E8

greiner@cs.ualberta.ca

Abstract

While there has been a great deal of research in face de-
tection and recognition, there has been very limited work
on identifying the expression on a face. Many current
face detection methods use a Viola–Jones style “cascade”
of Adaboost-based classifiers to detect faces. We demon-
strate that faces with similar expression form “clusters” in
a “classifier space” defined by the real-valued outcomes
of these classifiers on the images and address the the task
of using these classifiers to classify a new image into the
appropriate cluster (expression). We formulate this as a
Markov Decision Process and use dynamic programming to
find an optimal policy — here a decision tree whose internal
nodes each correspond to some classifier, whose arcs cor-
respond to ranges of classifier values, and whose leaf nodes
each correspond to a specific facial expression, augmented
with a sequence of additional classifiers. We present em-
pirical results that demonstrate that our system accurately
determines the expression on a face during detection.

1 Introduction

The pioneering work of Viola and Jones [12] has led
to a host of face detectors based on “cascade classifiers”,
where each classifier is learned by applying Adaboost [5] to
a database of training images of faces and non-faces. The
underlying principle in these algorithms is to learn multiple
classifiers during the training phase, then (at performance
time), run these classifiers as a “cascade” — i.e., in a se-
quence one after another, on each region (at various resolu-
tions) of the test image eliminating non-faces at each stage.

The learning algorithm takes as input several thousands

of images correctly labeled as faces and non-faces (each of
size 24 × 24 pixels) and produces a cascade of “boosted
classifiers”. Each classifier consists of several “linear sep-
arators”, each built using features on a rectangular subre-
gion of the training image. The learning algorithm selects
these linear separators from over a hundred thousand possi-
ble candidate features, including the region between the two
eyes and the region spanning the upper cheeks and the eyes.
Each of these binary classifiers is actually a thresholded real
value (see Definition 1), that we refer to as SCO-value.

Using these intermediate results of the N classifiers as
features, we map each input image to a point in the N–
dimensional “classifier space”, where each dimension cor-
responds to the SCO-value of one classifier. Our empirical
results confirm that faces with the same expression often
form clusters in this space. We exploit the classifier space
to build a dynamic tree classifier, DTC, that partitions the
training images of known facial expression into different
clusters, each corresponding to a single expression. This
DTC is a fixed-depth decision tree, whose internal nodes
each correspond to a classifier (feature) and whose arcs each
correspond to a range of SCO-values of the classifiers. We
associate a facial expression with each leaf node; see Fig-
ure 1.

Note that a subset of the N classifiers may be sufficient
to distinguish facial expression#1 from facial expression#2;
here, it would clearly be inefficient to consider all N classi-
fiers. Unfortunately, a different subset may be necessary to
separate expression#1 from expression#3, and a third subset
for expression#2 vs expression#3, and so forth. This is why
we did not want to use a single set of classifiers throughout,
but instead use a dynamic process, that sequentially decides
which classifier to use next when dealing with an input im-
age, based on the values observed from the classifiers pre-
viously executed on this instance. The challenge is to learn

1

the dynamic sequence of classifiers that can effective distin-
guish the clusters corresponding to different facial expres-
sions. We formulate this task as a “Markov Decision Pro-
cess” (MDP), and then use dynamic programming to learn
the best policy, corresponding to the DTC decision tree.

Our learning system uses two sets of training data —
(1) “face labeled training set”, FLT, whose images are la-
beled as either faces (without expression labels) or non-
faces; and (2) “face expression labeled training set”, FELT,
whose faces are labeled with expression. We build a cas-
cade C = 〈C1, C2 . . . CN 〉 of N boosted classifiers using
FLT. We use these as features when building DTC, which is
trained using FELT. At performance time, the resulting sys-
tem will scan through an unlabeled image. It applies DTC

on each sub-image W ; this will follow a path of (at most) d
classifiers. If it reaches a leaf, DTC uses the SCO-value of
these classifiers to find the best matching cluster, i.e., facial
expression. It then applies the remaining (N −d) classifiers
as a cascade to determine whether W is indeed a face. If any
of the N classifiers label W as a non-face, the performance
system stops processing W and proceeds to the next sub-
image. Since we use the entire cascade of N = d+(N −d)
classifiers to detect faces, our detection algorithm is essen-
tially Viola-Jones algorithm. However, rather than using a
single static cascade, our performance algorithm applies the
first d classifiers to each sub-image W dynamically, select-
ing the ith classifier based on the results of the previous
(i − 1) classifiers. It uses the results to identify W with the
best matching cluster, to identify an expression for this po-
tential face. It then applies the remaining (N−d) classifiers
statically, to determine whether W is actually a face or not.

Section 2 formulates the problem as a MDP. Section 3
describes how we produce this DTC system from a collec-
tion of labeled images. In particular, this section shows how
we use dynamic programming to sidestep the combinatorial
issues — e.g., the exponential number of possible decision
trees. This section also explains the details of how we use
DTC to detect faces and identify the associated expressions.
Section 4 presents empirical results that illustrate the effec-
tiveness of this approach. Section 5 presents relevant work
related to our research.

2 Framework

2.1 Markov Decision Process

A Markov Decision Process (MDP) is a 4-tuple
〈S, A,M,R〉 where S = {s1, s2, . . . , sn} is a finite set
of states, A = {a1, a2, . . . , am} is a finite set of actions,
M : S × A × S → [0, 1] is the transition model (Ma

s,s′ =
P (s′ | s, a) is the probability that taking action a in state
s ∈ S leads to being in state s′) and R : S × A → � is
the reward an agent gets for taking an action a ∈ A, in s.

Notice this is Markovian as the transition from state si to
sj using action a depends only on si and not the previous
history. A policy π : S → A is a mapping from states to
actions. For any policy π, we can define a utility function
Uπ such that

Uπ(s) = max
a

{
R(s, a) +

∑
s′

Ma
s,s′ × Uπ(s′)

}

corresponds to the expected cumulative rewards of execut-
ing the action a in state s, then following policy π after that.
Given an MDP, we naturally seek an optimal policy π∗ —
i.e., a policy that produces the optimal cumulative reward,
U∗(s), for each state s.

Dynamic programming provides a way to compute this
optimal policy, by computing the utilities of the best ac-
tions. See Sutton and Barto [11] for details of MDPs and
techniques for solving them.

2.2 Identifying facial expression as MDP

In this section we describe how we formulate the prob-
lem of identifying facial expression as a MDP.

States: We let “state representation” denote the results of
evaluating a set of classifiers on an image region. When
processing a test image, DTC will apply some sequence
〈C1, C2, . . . , Ci−1〉 to a sub-image W , then use the re-
sults to select the next classifier Ci (i ≤ d) to apply. Of
course, we would like to apply the classifier sequence that
has proved to be the most successful in identifying the facial
expression of W in similar situations during training. To do
this, at training time, our learner will explore every possible
sequence of d classifiers on training images, to determine
which depth-d tree of classifiers yields the most appropriate
clusters. We assign utilities to the leaves of each of these
trees — giving a high score if the leaf contains face im-
ages with the same expression (see Section 3.1). We then
propagate these utility values up the tree. We capture this
information in several states and use them to build the DTC.

We identify each node in DTC with a state s. With
each state s we associate a “best classifier” to apply, so
that it may lead to a cluster with one expression. We can
identify each state s with both the sequence of classifiers
〈C1, . . . , Ck〉 on the path from the root 〈〉 (where no classi-
fier is applied) to s, and a posterior probability distribution
over the facial expressions. That is,

s = 〈[Vmin,1, Vmax,1], . . . [Vmin,k, Vmax,k], �P 〉

where [Vmin,i, Vmax,i] is the range of SCO-values of clas-
sifier Ci already applied and �P = 〈Pe〉 such that Pe =
P (expr(s) = e | �E) is the probability of that s’s expres-
sion is e given the evidence �E accumulated so far — which

2

...
0

1

2

d
leaves

 (clusters)

.

.

depth

S0, C1

S1 , C2 S2 , C3

S3, C3 S4 , C4

S6

(happy)

[V1 - V2] [V3 - V4]

[V7- V8]

[V9 - V10]

[V5- V6]

S5

(surprise)

.

.
.
.

Apply (N-d) classifiers as a cascade

[V11 - V12]

Figure 1. Each node in this DTC is identified
with a state. Associated with each state is a
best classifier to apply.

is SCO-values of the classifiers applied. Figure 1 shows a
simple DTC. Each node in the tree is identified by a state.
The SCO-value of the classifier determines which branch
to take. Nodes at depth d are leaves, which correspond to
clusters (which each represent a single facial expression).
E.g., in the figure, state s8 is a cluster of happy faces. It can
be identified by the sequence of classifiers 〈C1, C2, C4 . . .〉,
each with its own range of SCO-values.

We define an equivalency property to compare two
states. We say two states are “δ-equivalent”, written s1 ≈δ

s2, iff
• s1 and s2 have applied the same set of classifiers, not

necessarily in the same order

• For every classifier Ci used in s1 and s2, |V (1)
min,i −

V
(2)
min,i| ≤ δ and |V (1)

max,i − V
(2)
max,i| ≤ δ, where δ is a

pre-defined constant. We set δ = 70 throughout this
work.

Actions: Actions are the set of classifiers that can be ap-
plied to a state — i.e., A = {C1, C2 . . . CN}.

Reward: We assign a high reward to states that group ob-
jects of the same expression together. We use the reward
function

R(s) =
{

maxi {P (expr(s) = i)} if depth = d
−α × FN(s) otherwise

(1)

If the node’s depth is d, this assigns the probability of the
most likely expression (of the images that reach here); oth-
erwise it penalizes by α × FN(s) where α is predefined
constant (set to 0.01) and FN(s) is the number false nega-
tives in state s.

Transition Model: The transition model Ma
s,s′ =

P (s′ | s, a) is the probability that taking action a in state
s leads to s′ — i.e., applying a classifier a to an image

from s will produce an image in s′. That is, when at-
tempting to classify a test image It, let W be the cur-
rent sub-image and 〈a1, a2 . . . ai−1〉 be the classifiers al-
ready applied on W . Assume all of these classifiers clas-
sify W as a positive instance (face) and let s be the delta-
equivalent state (defined above) in DTC that is the closest
to matching the outcomes (SCO-value) of these classifiers.
Further, let ai be the classifier that is applied next (as de-
cided by DTC) on W and oi be the SCO-value of ai on
W . Since we are interested in finding the expression of W ,
we set Ma

s,s′ = P (expr(s′) = e | a = oi). Since oi can
have a large range of values, we discretize it into “buckets”
Br ⊂ �, i.e., B0 = [−500,−400), B1 = [−400,−300)
and so on. Using Bayes rule,

P (expr(s′) = e | ai = oi)
= P (ai=oi | expr(s′)=e)×P (expr(s′)=e)

P (ai=oi)

= P (oi∈Bi | expr(s′)=e)×P (expr(s′)=e)
P (oi∈Bi)

(2)

We estimate the terms on the right hand side of Equa-
tion 2 from training data. We apply every classifier on train-
ing images of each expression e in FELT, partition the SCO-
values into different buckets (ranges), and compute P (oi ∈
Bi | expr(s′) = e). We set P (expr(s′) = e) = 1

M where
M is the total number of expressions, which here is 5.

Further, to update �P using the outcomes of two actions,
a1 and a2 we use the Naive-Bayes assumption [4]

P (expr(s′) = e | a1 = o1, a2 = o2)
= P (a1=o1,a2=o2 | expr(s′=e))×P (expr(s′)=e)

P (a1=o1,a2=o2)

= P (a1=o1 | expr(s′=e))×P (a2=o2 | expr(s′=e))×P (expr(s′)=e)
P (a1=o1,a2=o2)

= P (expr(s′=e) | a1=o1)P (expr(s′=e) | a2=o2)
P (expr(s′)=e) ×

P (a1=o1)×P (a2=o2)
P (a1=o1,a2=o2)

(3)
Taking P (expr(s′)) = e = 1

M (a constant) and P (a1 =
o1, a2 = o2) = P (a1 = o1) × P (a2 = o2) we get

P (expr(s′) = e | a1 = o1, a2 = o2)
= α × P (expr(s′ = e) | a1 = o1)×

P (expr(s′ = e) | a2 = o2)
(4)

where α is a normalizing constant.

3 Identifying Facial Expression

In this section we describe the details of constructing a
DTC using dynamic programming. We also explain how we
use DTC to identify facial expression during detection.

3.1 Use of dynamic programming to build
DTC

Figure 2(a) presents the learning algorithm. It has two
goals: first, to partition the images in the training set into

3

Learn DTC(FLT, FELT: TrainingSets)
• Build a cascade of Adaboost classifiers

〈C1, C2, . . . CN 〉 using images in FLT.
• Let All be the set of all

(
N
d

)
sequences of d of classifiers

• Build decision tree based on C1:N . During tree expansion,
at depth i after applying any Ci from each of All sequences
− Remove each image Ci classifies as a non-face
− Partition remaining images into two equal halves

based on their Ci-based SCO-value
− Apply each Ci+1 to each half and continue

• Compute utility at each leaf (i.e., cluster), U(s(d))
• Propagate utility up tree

− For state si at depth i < d, U(s(i)) = maxj

{
U(s

(i+1)
j)

}
− Let C∗

i yield maximum utility when applied on si

− Associate C∗
i with si, store 〈si, C

∗
i 〉

• Merge all δ-equivalent si states (i ≤ d) into one,
store one classifier C∗

i with the maximum utility

Use DTC(It : Test Image)
• Set ratio = 1.0
� For each window W (of 24 × 24 pixels) within It

◦ For i ≤ d
– Find state si “closest” to W
– Apply C∗

i associated with si

– Update posterior distribution �P over expressions
◦ If 〈C1, C2, . . . Cd〉 label the window as a face

– Find the corresponding cluster, i.e., sd

– Note the most likely expression e of sd

– Apply the other classifiers 〈Cd+1, Cd+2, . . . CN 〉
– If they label W as a face, mark W as a face

with expression e
• Set ratio := ratio × 0.8, resize It by a factor of ratio.
• If It.length ≥ 24 and It.width ≥ 24, goto �
• Return all marked faces with their expressions

Figure 2. (a) Learning algorithm to discover clusters and build DTC; (b) Dynamic classification algo-
rithm

meaningful clusters of images with the same expression,
and second, to find the most effective sequence of d clas-
sifiers for each cluster. First we define SCO-value.

Definition 1 SCO-value: Let Ci be any boosted classifier
with T linear separators. Viola Jones algorithm classi-
fies any sub-image W as a face if

∑T
i=1 αi · hi(W) ≥

1
2

∑T
i=1 αi where αi is the weight given to ith linear sep-

arator hi and hi(W) is the classification result of hi on W
as a face or non-face (see [12] for details). We refer to the
quantity

∑T
i=1 αi ·hi(W), i.e., the weighted sum of the indi-

vidual linear separators outcome as the SCO-value (“sum
of classifier output values”) of Ci on W .

Exploring sequences of classifiers: We build a cascade of
N boosted classifiers using the images of FLT. We then
produce a depth-d decision tree (DTC) by exploring all pos-
sible sequences of d classifiers, from the N classifiers. If
N is large (typically > 15), we choose the first N ′ < N
classifiers and build the DTC from N ′ classifiers. We use
a dynamic programming tableau to learn an optimal depth-
d decision tree. For any classifier Ci that we apply on the
image set FELT, we compute the SCO-value of Ci on FELT

and sort them based on their SCO-values. We reject each
images that any Ci labels as negative. We partition the rest
into two equal halves, 〈TL

i 〉 and 〈TR
i 〉 (to denote the left

and right branches after partitioning). We then apply the
next classifier Ci+1 on 〈CL

i 〉 and 〈CR
i 〉 separately at depth

(i + 1) and repeat the procedure until a total of d classifiers
are applied. The leaves at depth d represent clusters.

Applying a classifier is equivalent to finding its projec-
tion on the ith dimension in the classifier space. If we take
such projections and partition the images repeatedly along

d dimensions corresponding to d classifiers, then we can re-
trieve the clusters.

The single depth-0 node 〈〉 contains all of the images
considered, FELT. To compute the images in the 〈CL

1 〉 node:
First let T1 be the subset of FELT that pass the C1 clas-
sifier; assume these are sorted based on their SCO-value
as 〈w1, . . . , wm/2, wm/2+1, . . . , wm〉, where V1(wj) ≥
V1(wk) when j > k. Then the 〈TL

1 〉 node contains
{w1, . . . , wm/2}, and 〈TR

1 〉 contains {wm/2+1, . . . , wm}.
We can then compute 〈TL

1 , TL
2 〉 and 〈TL

1 , TR
2 〉 that each

contains one half of the images of 〈TL
1 〉 that classifier C2 la-

bels as faces. We continue for d levels, producing 2d nodes
at the leaves, each of which represents one cluster. When
we consider

(
N
d

)
sequences of classifiers, we get

(
N
d

) × 2d

clusters. There may be over-segmentation but any test im-
age can still be assigned the correct expression by being
matched to one of the over-segmented clusters.

Computing U(s): We want to determine the best decision
tree within this tableau — the one that leads to the “purest”
leaf nodes. Each leaf of the tree represents a possible clus-
ter. We want the clusters that are as “pure” as possible,
i.e., which group images of only one expression together.
We compute the various utility values using a dynamic pro-
gramming approach. We first set the utility of the s(d) leaf
states (clusters), then we propagate the utility up the tree us-
ing dynamic programming. We set the utility of any internal
node as the maximum utility of its children,

U(s(d)) = maxe{P (expr(s(d)) = e | �E)} −∑d
i=1 α · FN(Ci)

U(s(i)) = maxj{U(s(i+1)
j)}

(5)

All the terms used here have the same notation as in Sec-
tion 2.2. The idea is to assign high utility value to clusters

4

that group images of the same expression together and pe-
nalize them for having a lot of false negatives.

Building DTC: We collect the 〈si, C
∗
i 〉 tuples and also the

corresponding utilities, for all depths i < d. C∗
i denotes the

classifier that, when applied to si, transitions it to another
state s∗i+1, with the maximum utility among the children
of si. For every two states si and sj (i
= j) that are δ-
equivalent we retain only one state that has a higher utility
and the corresponding classifier. Note that the 〈si, C

∗
i 〉 tu-

ples for i ≤ d tell us precisely the i classifiers applied so
far, their individual SCO-values and the best classifier C∗

i

to apply in si. This produces the decision tree, DTC.

3.2 Detection

Our detection algorithm, shown in Figure 2(b), uses clas-
sifiers built by the cascade classifiers method [12, 13]. It
examines each 24 × 24 pixel window in the image; it then
rescales length and width of the test image by a factor of 0.8
and repeats. For each window W , DTC first applies the clas-
sifier C∗

1 associated with root. This might reject the window
W ; if so DTC continues with the next window. Otherwise,
DTC computes the SCO-value associated with C∗

1 on W , up-
dates the probability distribution of facial expressions (us-
ing Equations 2 and 4) and uses this value to decide which
subsequent classifier C∗

2 to apply. Again this could reject
W , but if not, C∗

2 ’s SCO-value identifies the next classifier
C∗

3 to apply on W . This can continue for d steps, until W
reaches a leaf. If all the d classifiers label W as a posi-
tive instance, DTC finds the most likely expression e asso-
ciated with the cluster. We then run the remaining (N − d)
classifiers 〈Cd+1, . . . CN 〉 and declare W to be a face with
expression e if all these classifiers label it as a positive in-
stance. Otherwise, we reject W as a non-face.

4 Experimental Results

Our training set FLT has 1600 images of faces and 2320
images of non-faces1. The FELT set has a total of 551 face
images of the five basic expressions (sad, fear, surprise, no-
expression and happy). It also has 2320 non-face images.
The size of each training image is 24 × 24 pixels.

During the training stage, we built a cascade of 21 clas-
sifiers using Adaboost. Using the first 10 classifiers, we ex-
plore all sequences of d classifiers, as a tree of depth d = 3,
as explained in Section 3.1. Figure 3 shows face images of
the same expression from some interesting clusters that our
algorithm learned.

To detect faces in any given test image, we use the dy-
namic detection technique explained in Section 3.2. Fig-

1All the images were downloaded from popular databases like Olivetti
Research & AT&T, Caltech, Yale, JAFFE, PICS, etc.

(a)

(b)

(c)

(d)

(e)

Figure 3. Various clusters discovered from
the FELT data — (a) Fear (b) Sad (c) No Ex-
pression (d) Surprised (e) Happy

ure 4 shows the performance of our detection algorithm on
a number of face images with various expressions.

Accuracy: We ran our performance algorithm over 150
randomly selected images from Olivetti Research database
face images. We manually assigned a facial expression to
each image and compared it to the facial expression as-
signed by our performance algorithm. Our performance al-
gorithm could identify the expression correctly in 92 im-
ages, i.e., its accuracy was 61.33% in assigning expres-
sion. Note that facial expressions can be mixed — sad and
fear, happy and surprised, etc. To account for this, we also
noted the number of images for which the most likely or the
second most likely expression assigned by our algorithm
matched with the facial expression we assigned manually.
In this case, our algorithm could performed correctly for
105 images, i.e., its accuracy improved to 70.0%. To find
out the effectiveness of our face detection algorithm, we ran
it on 178 image face images of the MIT-CMU database with
a total of over 532 faces and covering more than 76 million
windows. Figure 5 gives the ROC curve on these faces.

Efficiency: Our test set has 150 images each of size
92 × 112 pixels. Our detection algorithm averaged (per
image) 45 msec. to detect faces and assign an expression
to each face. By comparison, Viola-Jones algorithm took
36.3 msec. We attribute the increase in computational time
to two factors: (1) our overhead in assigning an expression
and (2) the standard Viola-Jones algorithm is optimized for
speed, as it applies classifiers with a small number of lin-
ear separators first. We need to choose the first d classifiers
dynamically using DTC. Our algorithm may choose to ap-
ply complex classifiers first (to assign an expression), which
can increase the run time. We still see that our algorithm has

5

(a)

(b)

(c)

(d)

(e)

Figure 4. Performance on several test images
— (a) happy (b) no expression (c) sad (d) fear
(e) surprise.

 80

 85

 90

 95

 0 1e-005 2e-005 3e-005

Ac
cu

ra
cy

FP-ratio

DTC

Figure 5. ROC curve

speed comparable to Viola-Jones algorithm.

5 Previous Work

As noted above, our work is closely related to Viola-
Jones algorithm [12]; we extend it by identifying the facial
expression of each detected face. There has been other re-
sults in this area. Liu and others [7, 3, 2] track facial features
and analyze them for facial expressions. Almost all of the
other methods [1] perform a local analysis of facial features,
like mouth, eyes, etc. Our work is different from all these as
we do not use sequence of images or analyze facial features
explicitly, but instead use a training set to group face images
of expression into clusters. We associate each detected face
with a cluster to identify the expression.

We addressed related issues in a feature-based face-
recognition system by posing the task as MDP [6]. We
used dynamic programming to produce an optimal policy,
π∗, that maps “states” to “actions” (feature detectors) for
that MDP, then used that optimal policy to recognize faces
efficiently. We use similar techniques here to assign a facial
expression to each face during detection. Many researchers
have recently proposed several methods for detecting faces
in images; see [8, 10, 9] for a small sample.

6 Conclusions

Our main contribution is a system that assigns expres-
sions to faces, during detection. We demonstrate empiri-
cally that face images of the same expression form clusters
in the classifier space. We formulate the problem of find-
ing an optimal sequence of classifiers to retrieve clusters
as a MDP and use dynamic programming to solve it. Our
training algorithm partitions training images into clusters of
similar expressions. During detection, every detected face
is matched to a cluster to identify the expression.

References

[1] B. Abboud and F. Davoine. Facial expression recognition and
synthesis based on appearance model, Signal Processing and
Image Communication, Elsevier, Vol. 19, No. 8, Sep. 2004

[2] J.F. Cohn, T. Kanade, T.K. Wu, Y.T. Lien and A.Zlochower.
Facial Analysis: Preliminary analysis of a new image pro-
cessing based method, International Society for Research in
Motion, Toronto, 1996

[3] J.F. Cohn, A. Zlochower, J. Lien, Y.T. Wu, T. Kanade. Auto-
mated face coding: A computer vision based method of facial
expression analysis, Seventh European Conference on Facial
Expression, Measurement and Meaning, Salzburg, 1997.

[4] Richard O. Duda and Peter E. Hart. Pattern Classification and
Scene Analysis, Wiley, New York, 1973.

[5] Y. Freund and R.E. Schapire. A decision-theoretic generaliza-
tion of on-line learning and an application to boosting, Com-
putational Learning Theory: Eurocolt, 1995.

[6] R. Isukapalli, and R. Greiner. Use of Off-line Dynamic Pro-
gramming for Efficient Image Interpretation, IJCAI, 2003.

[7] Y. Liu, K. Schmidt, J.F. Cohn and S. Mitra. Facial asymmetry
quantification for expression invariant human identification,
Computer Vision and Image Understanding, vol 91, 2003.

[8] H. Rowley, S. Baluja, and T. Kanade. Neural network-based
face detection, IEEE Transactions on PAMI, 1998.

[9] D. Roth, M. Yang, and N. Ahuja. A snowbased face detector,
In NIPS, 2000.

[10] H. Schneiderman and T. Kanade. A statistical method for 3d
object detection applied to faces and cars, ICCV, 2000.

[11] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction, MIT Press, Cambridge, 1998.

[12] P. Viola and M. Jones. Robust real-time face detection, IJCV,
57(2), 2004.

[13] J. Wu, J.M. Rehg, and M.D. Mullin. Learning a rare event
detection cascade by direct feature selection, NIPS, 2003.

6

