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Abstract

Background subtraction is a widely used paradigm to de-
tect moving objects in video taken from a static camera and
is used for various important applications such as video
surveillance, human motion analysis, etc. Various statis-
tical approaches have been proposed for modeling a given
scene background. However, there is no theoretical frame-
work for choosing which features to use to model differ-
ent regions of the scene background. In this paper we in-
troduce a novel framework for feature selection for back-
ground modeling and subtraction. A boosting algorithm,
namely RealBoost, is used to choose the best combination
of features at each pixel. Given the probability estimates
from a pool of features calculated by Kernel Density Es-
timate (KDE) over a certain time period, the algorithm se-
lects the most useful ones to discriminate foreground objects
from the scene background. The results show that the pro-
posed framework successfully selects appropriate features
for different parts of the image.

1 Introduction

Background modeling and subtraction forms a core com-
ponentL in many vision systems. The main idea behind
such a module is to automatically generate and maintain a
representation of the background that is then used to clas-
sify any new observation as background or foreground. The
information provided by such a module can then be utilized
for performing high-level object analysis tasks such as ob-
ject detection, tracking, classification and event analysis.

Various methods of increasing complexity have been
considered in the literature. In [17], a single Gaussian was
considered to model the statistical distribution of the back-
ground at each pixel. Friedman et. al.[3] use a mixture of

1Also affiliated with the Dept. of Computer Science and Automatic
Control, University of Alexandria, Egypt.

2Currently with Dept. of Computer Science and Engg., IIT Madras,
Chennai, India.

three Normal distributions to model the visual properties in
traffic surveillance applications. Three hypothesis are con-
sidered - road, shadow and vehicles. The EM algorithm is
used which gives very good model-fitting but is computa-
tionally expensive. Grimson et. al. [6] extend this idea by
using multiple Gaussians to model the scene and develop a
fast approximate method for updating the parameters of the
model incrementally. Such an approach is capable of deal-
ing with multiple hypothesis for the background and can be
useful in scenes such as waving trees, beaches, escalators,
rain or snow. The mixture-of-Gaussians method is quite
popular and was to be the basis for a large number of related
techniques [8, 7]. In[4], a statistical characterization of the
error associated with this algorithm is studied. When the
density function is more complex and cannot be modeled
parametrically, a non-parametric approach able to handle
arbitrary densities is more suitable. Such an approach was
used in [1] where the use of Gaussian kernels for modeling
the density at a particular pixel was proposed.

Another class of background modeling methods try to
model the short-term dynamical characteristics of the input
signal. Several authors [9, 10] have used a Kalman-filter
based approach for modeling the dynamics of the state at
a particular pixel. A simpler version of the Kalman filter
called Weiner filter was considered in [16] that operates di-
rectly on the data. Such modeling may further be performed
in an appropriately selected subspace [18, 13, 12].

Besides modeling the statistical distribution of the data,
another factor in background modeling is the choice of the
transformation that is applied to the original data in order
to obtain the features that are used. Several features have
been considered including raw color, normalized color, spa-
tial gradients, texture and optical flow. The basic idea be-
hind feature selection is that one wants to be invariant to
certain types of changes in the visual space while maintain-
ing a good detection for the foreground objects. For in-
stance, in outdoor scenes, the classification must be invari-
ant to a change of illumination that might occur due to the
sun, clouds or light from a nearby light source. Similarly,
in dynamic scenes such as ocean waves or waving trees, in-
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variance to such periodic motion is critical. Each feature has
its strength and weakness and is particularly applicable for
handling a certain type of variation. For instance, normal-
ized color, spatial gradients or texture features may be con-
sidered for obtaining invariance to illumination[5, 8], while
optical flow might be useful in handling dynamic scenes
[11, 14]. On the other hand, such features may not be very
suitable in other regions. For instance, spatial gradients or
texture is not very suitable for a region that has low spa-
tial gradients since such feature will be unable to detect any
object that has a low gradient itself. Similarly, optical flow
cannot be computed accurately in regions that have low tex-
ture and is thus not very useful in such regions.

In most background subtraction algorithms, the features
are chosen arbitrarily and the same feature are used globally
over the whole scene. No framework is known to the au-
thors for selecting suitable features for different parts of the
scene. The primary contribution of this paper is a generic
formulation that is able to automatically select the features
that obtain the best invariance to the background changes
while maintaining a high detection rate for the foreground
objects. We propose to address the problem as a classifi-
cation problem where we classify the foreground objects
from background pixels. An ensemble learning method,
namely boosting classifier, seems appropriate in this sce-
nario. Boosting algorithms usually generates a weighted
linear combination of some weak classifiers that perform
only a little better than random guess. We learn weak clas-
sifiers from the feature values at a pixel and combine the
ones performing better than the others to produce a strong
classifier. Thus we are effectively selecting different fea-
tures at each pixel to distinguish foreground objects from
the background. Once selected, we expect this combination
of features to perform successfully afterwards, unless there
are major changes in the scene.

The organization of the paper is as the following. Sec-
tion 2 gives a general overview of the framework. Sec-
tions 3 and 4 describes the general Realboost algorithm and
how the it was used in background subtraction, respectively.
Section 5 explains the experimental setup and the results.
Finally, we conclude by a brief discussion over the findings
of this study and on directions for future work in section 6.

2 Feature Selection Framework

In background subtraction, we generally have a sequence
of T training images. Typically a statistical model is
learned from feature values for each pixel over 1 ≤ τ ≤ T
images of a sequence which, is later used to identify the
objects that do not belong to the scene. For the rest of
the paper, we will model every pixel individually and carry
out the same operation on each of them. Given T ob-
served values x1, x2, · · ·xT of certain features of a partic-
ular pixel, we can build a statistical model for the proba-

bility ρ(x) = p(x|x1, x2, · · ·xT ) of any new observation
value x at that pixel given its history. We can use single
Gaussian, mixture of Gaussians [6], or Kernel Density es-
timation (KDE) [1, 11] to generate this model.
Which Feature to Use: Let us suppose we have M dif-
ferent types of features and xj , 1 ≤ j ≤ M is the j-th
feature value (e.g. R,G,B, intensity, spatial gradients, tem-
poral gradients, optical flow, etc.) for a certain pixel of an
image. As discussed in the introduction, pixels of different
part of the image can exhibit different characteristics. This
observation leads us to claim that different features rather
than a single one may produce better accuracy in model-
ing the background distribution at each pixel. Our objec-
tive is to find out the more useful features from a pool of
M features, use weights to quantify their importance and
use their weighted combination to differentiate foreground
objects from the background. The selected subset of fea-
tures can be different from one pixel to another based on the
characteristics of each pixel in the background (tree wav-
ing, water, sky, static road, etc.). This process of feature
selection is supposed to be done only once at system initial-
ization (e.g. while installing a new camera at a new scene).
Once this process is done, a feature map is generated for
the scene background depicting which features are best for
which pixel in the image. This feature map can be used
afterward to model the background. This process does not
need to be performed again unless there is some significant
structural change in the scene.
Model Parameter Selection: The choice of the parameters
of the estimation process also affects the background model
by a huge amount. For example, we know that KDE is vul-
nerable to the choice of the bandwidth parameter σ. It can
produce totally erroneous output for a wrong choice of σ.
Consider the situation when the kernel bandwidth does not
correspond to the variance of the feature values we are try-
ing to model. For pixels in an outdoor scene, the variance
will be substantially different from one another. To argue
in favor of this statement, let us draw histograms of pixels
of an outdoor image shown in Figure 1. The histograms for
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Figure 1. An image from an outdoor scene

only green color values for pixels at a, b, c, d indicated in
the input image (Figure 1) over 200 image frames are shown
in Figure 2. As we can see, pixels in tree leaves (a, b) have



higher variances than that of pixels in more static regions
like sky and grass (c, d). Therefore, kernel estimation with
same bandwidth will fail to estimate the density of many
pixels.
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Figure 2. Histograms of G at different pixel position

Boosted Background Classifier: The framework intro-
duced in this paper provide a solution for these problems
by choosing best features and parameters at each pixel out
of a pool of feature/bandwidth combinations. We want to
generate a classifier for pixel x of the following form

F (x) =
T∑

t=1

wtfjt(x) (1)

such that we will classify a certain pixel to be a background
pixel if F (x) > 0 and a foreground object if F (x) ≤ 0. In
equation 1, fjt

(x) is some function of xjt
,, where jt is the

index of t-th feature chosen and wt’s are the values to mea-
sure the importance of fjt

(x). From what we have already
discussed, some function of the probability estimates of xj

may be a choice for fjt
(x) in equation 1. The summation in

equation 1 is over T of these functions where T is a small
number, representing the top features selected to model the
background at each individual pixel. We can generate these
estimates for all M feature types and for a range of parame-
ters of the estimation process. Therefore, we need an algo-
rithm to select optimal feature and parameter from this pool
of features and parameters for background subtraction. The
algorithm should also calculate the weights for it’s choice
of features simultaneously.

The boosting algorithm, RealBoost [15] seems ideal for
this scenario. Unlike Adaboost (which combines weak hy-
potheses having outputs in {-1, +1}), RealBoost algorithm
computes real-valued weak classifiers given real numbered
feature values, and generates a linear combination of these
weak classifiers that minimizes the training error. We can
expect that, using the density estimates, the Realboost algo-
rithm will be able to select the features most appropriate for
any specific pixel.

3 RealBoost

Let S = {(x1, y1), · · · , (xN , yN )} be a sequence of
training examples where each instance xi, i = 1, 2, · · · , N
belongs to an instance space X and each label yi belongs to
a label set Y . We will consider the case of binary classifi-
cation where Y = {−1,+1}. Suppose we have M different
types of features for each x ∈ X . Denote xj ∈ R as the j-th
feature value of x and ρj(x) = g(xj) where g : R → [0, 1]
is some function applied to the feature values. The aim of
boosting algorithm is to find a linear combination of some
functions hj(x) of ρj(x) of the form

H(x) =
T∑

t=1

αthjt
(x) ,

where hj(x) = f(ρj(x)) (2)

where T is a small number of selected functions. Accord-
ing to this equation, an instance x can be classified as an
example of class yi = +1 if H(xi) > 0 and as an exam-
ple of yi = −1 otherwise [2, 15]. The hj(x) : [0, 1] →
{−1, 1} are called the weak hypothesis 1. At each round
of boosting [2, 15], we choose a particular hjt

(x) from all
hj(x) , j = 1, 2, · · ·M ; i.e. we add one more term to the
summation. Each weak hypothesis is given a weight αt

based on its performance in classifying the training exam-
ples. These weights quantify how much confident we are
on the corresponding hypotheses in predicting the unknown
test cases.

In [15], the weak hypotheses were modified to produce
real-valued output, i.e. h(x) : R → R for suitably chosen
h(x) on x so that it absorbs the corresponding confidence
weights αt’s into themselves. We will adopt this strategy
so that the weak hypotheses in equation 3 can be defined
as hj(x) : [0, 1] → R. This can be accomplished by de-
signing a weak learner algorithm such that the sign(hj(x))
denotes the predicted label for x and |hj(x)| denotes the
‘confidence’ of the prediction. Then the form of the strong
classifier becomes

H(x) = sign
( T∑

t=1

hjt
(x)

)
. (3)

Let Ψj be the set values obtained by applying the
ρj(·) function at the training instances, i.e. Ψj =
{ρj(x1), ρj(x2), · · · ρj(xN )}, where j = 1, 2, · · · ,M .
One approach to compute h(x) is to partition the set Ψj

into disjoint subsets Ψ1
j , Ψ2

j , · · · ΨB
j and assign the same

h∗
j to all hj(x∗) such that ρj(x∗) ∈ Ψb

j , where 1 ≤ b ≤ B.
The idea is to partition X into smaller sets containing x’s
that are similar in some sense according to the value of the

1Notice that, hj is actually a function of ρj(x). We use the notation
hj(x) instead of h(ρj(x)) for simplicity.



function ρj(·) and then use a single representative value of
h∗

j for all instances in the same partition. Let us assume that
we know how to partition Ψj into B subsets and define the
term

W j,b
t,c =

∑
i:ρj(xi)∈Ψb

j ∧ yi=c

Dt(i)

where c ∈ Y and Dt(i) is the normalized weight
associated with instance xi at iteration t of the boost-
ing [15]. It has been shown in [15] that the cost func-
tion (i.e. the error term) is minimized for a partic-
ular feature j at iteration t of boosting if hj(x) =
1
2 ln[(W j,b

t,+)/(W j,b
t,−)] for all x such that ρj(x) ∈ Ψb

j . The

minimized value of the cost function becomes Zj
t =

2
∑

b

√
W j,b

t,+W j,b
t,−; j = 1, 2, . . . , J at iteration t. The

algorithm determines jt as follows

jt = arg minj∈J Zj
t .

Analyzing the formulae above, we can interpret the quan-
tity W j,b

t,+/W j,b
t,− as a measure of discriminative power of

the weak hypothesis for x such that ρj(x) ∈ Ψb
j .

All that we are left with is to find out a way to parti-
tion the instance set Ψj into Ψ1

j ,Ψ
2
j , . . . ,Ψ

B
j . The function

(or estimate) ρj(x) of feature values lies within the range
[0, 1]. We can always build a histogram within the range
[0, 1] with B bins: binb = [ (b−1)

B , b
B ) for b = 1, 2, . . . , B.

Then we define the subset Ψb
j = {ρj(x) : ρj(x) ∈ binb}.

Notice that this is a histogram of the values of the ρj func-
tions and not a histogram of the feature values themselves.
Essentially we are creating partitions X1,X2, . . . XB of the
instance space X comprising instance x with close ρj(x)
values; i.e. with similar properties that are being quantified
by ρj

2. Given these settings, we can describe the RealBoost
algorithm as:

• Initialize the weights D1(i) = 1
N

• For t = 1, 2, . . . , T

1. For j = 1, 2, . . . , M , Decompose Ψj into Ψj
1, Ψj

2, . . . Ψj
B

2. Calculate

W j,b
t,c =

∑
i:ρ(xi)∈Ψb

j∧yi=c

Dt(i) ,

for j = 1, 2, . . . , M ; and b = 1, 2, . . . , B; where c ∈
{−1, +1}.

3. Set the output of h for all x such that ρj(x) ∈ Ψb
j as

hj(x) = 1
2

ln
[
(W j,b

t,+ + ε)/(W j,b
t,− + ε)

]
where ε is a

small positive constant for numerical stability.

4. Select hjt minimizing the normalization factor Zj
t =

2
∑B

b=1

√
W j,b

t,+W j,b
t,− ; jt = arg minjZj

t

5. Update Dt+1(i) = Dt(i)e
−

(
yihjt

(xi)
)

• The strong classifier is: H(x) = sign

[ ∑T
t=1 hjt (x)

]

2A complete theoretical step by step construction and analysis of the
boosting algorithm can be found in [15].

4 Feature Selection in Background Subtrac-
tion

4.1 Statistical Background model

The density functions of the feature values constitutes
the statistical model for the background. Using the notation
of section 2, the probability density function (pdf) for j-th
feature for any pixel is estimated by Kernel Density Estima-
tion (KDE) [1, 11] as the following

p(xj) =
1
T

T∑
τ=1

Kσ(xj − xτ
j ), (4)

where Kσ is a kernel function. We use such probability
estimate as the function ρj(·), i.e. ρj(x) = p(xj), which
(as defined in section 3) maps from the real-valued feature
to the [0, 1] range. Choosing K to be a Gaussian kernel
N(0, σ), the pdf can be written as

ρj(x) =
1

N · C · σ

T∑
τ=1

exp(− 1
2σ2

(xj − xτ
j )2). (5)

Here σ is the bandwidth parameter of the kernel function.
We will use these estimates to learn the weak classifiers.

4.2 RealBoost in Feature Selection

We divided the training set into two parts- first T im-
ages are used to generate the statistical model for the back-
ground and then next N images are used for boosting. All
these T + N images are assumed to be free of foreground
objects. In this study, we consider background pixels as the
positive examples. We have M one dimensional features
for each pixel to choose from (e.g. R,G,B, intensity, spa-
tial gradients, temporal gradients, optical flow, etc.). For
each of the features, we also need to select the parameters
of KDE that produces the best weak classifier. Therefore,
we calculate the KDE estimates of the feature values using
different parameters and let RealBoost chose the best one.

Suppose the set of bandwidths used is Σ =
{σ1, σ2 . . . σQ}. So, for every pixel, we have M × Q fea-
ture/parameter combinations; i.e. we have Q functions ρjq

for feature j with bandwidth σq ∈ Σ. Consequently, we
also have M × Q number of Ψj(q) sets. Each of these sets
will then be partitioned into B bins to calculate the corre-
sponding weak classifiers hj(x) (for each bin).

Let the j-th feature values for any pixel in N con-
secutive images be x1

j ,x
2
j , . . . ,x

N
j . Given these val-

ues, the KDE estimates with parameter σq are Ψj(q) =
{ρjq(x1), ρjq(x2), · · · ρjq(xN )}. These values will be used
to generate the weak classifiers in the boosting procedure
(see section 3). The negative examples are generated ran-
domly from a uniform distribution. The KDE estimates of



these random negative examples are also provided to the
boosting algorithm along with the ρjq(x)s. Finally, we will
have a strong classifier H for each pixel as the output of the
RealBoost algorithm by combining T out of M × Q weak
classifiers. Any new value xnew of x will be classified as a
background pixel (positive example) if H(xnew) > 0 and
as a foreground pixel otherwise.

As discussed in section 3, in each bin, the weak classi-
fier quantifies the discriminative power of the correspond-
ing feature (along with the associated parameter for KDE).
We may also view the approach as a histogram approach
for estimating the distribution of the ρjq(x) values for some
feature j and bandwidth σq. Let us call the KDE estimates
of positive examples as ρ(x+) and that of negative exam-
ples as ρ(x−) for any feature values computed with some
bandwidth. For a feature to be useful in background sub-
traction, the probability estimates of feature values of posi-
tive examples should be substantially different than that of
negative examples; i.e. the distributions of the ρ(x+) need
to be fairly separated from that of ρ(x−). In other words,
the KDE with a specific bandwith is supposed to keep the
amount of ‘mixing ’of ρ(x+) and ρ(x−) as low as possible.
For example, in Figure 4, the red and blue bars corresponds
to the histogram bins of ρ(x−) and ρ(x+) respectively.
The labels of the sub-images state the feature-bandwidth
combination used for respective histogram. In this figure,
the feature R with bandwidth 200 will be the most useful
feature-parameter combination. In terms of probability, this
is the same as saying a good feature-parameter combina-
tion should keep the estimated probability (approximated
by the histogram) of ρ(x+) to lie in some range of values
as different as possible than that of ρ(x−) to lie in the same
range. This is precisely what is being done when we are

minimizing the cost function Zj
1 = 2

∑B
b=1

√
W j,b

1,+W j,b
1,−.

Recall that the first iteration of boosting all D1(i)’s are
equal. We are choosing the feature and bandwidth value
that decreases the probability that ρ(x+) and ρ(x−) assume
values in the same range. Therefore, the weak hypothesis
calculates the difference between the log-probabilities of
ρ(x+) and ρ(x−). In the subsequent iterations, the Dt(i)
is changed based on the performance of the of hjt−1 . Then,
the examples that were missed in the last iteration are em-
phasized to minimize the probability that both ρ(x+) and
ρ(x−) are present in bin b = 1, 2, . . . B. Thus, the strong
classifier simply gives us the differences of log-likelihoods
for ρ(x+) and ρ(x−).

Since we are using random examples, the estimates for
negative examples will be distributed all over the range
[0, 1]. This is apparent from the histograms of estimates in
Figure 4. The presence of estimates for negative examples
in the intervals where the estimates of positive examples are
concentrated, will pull down the confidence level of the cor-
responding weak hypothesis. Consider the scenario where,

pixel x is a background pixel (and hence a positive exam-
ple) but there is at least one weak classifier hr(x) in H(x)
that does not classify x correctly. If the confidence value of
hr(x) is high and the rest of the weak classifiers had their
confidence values reduced, the value of H(x) may become
negative. Therefore, we cannot rely on the theoretical bias
of 0 anymore. We use a bias δ < 0 and modify the strong
classifier in equation 3 as follows:

H(x) = sign
( T∑

t=1

hjt
(x) − δ

)
. (6)

This bias δ is the only control parameter in our algorithm.
One method to determine the optimum δ is to change it’s
value iteratively until a certain rate of false positives is at-
tained [1].

5 Experiments & Results

We implemented our algorithm on several indoor and
outdoor (both color and gray level)image sequences. All the
images used in the experiments had dimensions 320 × 240
pixels. In total 9 types of features, namely three color val-
ues R,G,B and spatial derivatives for each of these color
channels in both x and y directions for each pixel of a color
image, were used in this study. Some experiments only used
a subset of these features. For intensity images, we used 3
features- the pixel intensity value and its spatial gradients in
horizontal and vertical directions.

The first image sequence was a video taken from outside
an office. The images in this video contains trees with mov-
ing leaves; cars and pedestrians on the road etc. We used
T = 100 kernel points for KDE. The first experiment was
carried out with only color values R,G,B as features and
with kernel bandwidths of ΣR ∈ {40, 160, 200}, ΣG ∈
{60, 160, 240} and ΣB = {60, 100, 240}. We generated
one dimensional KDE estimates for all these color features
with each of the bandwidths in the corresponding Σ set.
Therefore, if we wish to produce a strong classifier with
T weak classifiers, there can be

(
9
T

)
possible combinations

to select from. We used 200 frames to learn the RealBoost
classifier, i.e. to learn which features are performing better
than the others. In this experiment the negative examples
are 400 samples from a uniform distribution over [0, 255]
for color values.

We anticipate the boosting process to choose features
with larger bandwidth estimates in the regions surrounding
pixels a and b in Figure 1, and to select smaller bandwidth
estimates in regions surrounding c. Figure 3, shows some
sample classifier maps. Classifier maps are binary images
IC to describe the feature and parameter selection . For any
feature/parameter combination, we set a pixel in IC to 1,
if the feature and bandwidth were chosen by RealBoost for
that pixel. We are using T = 3 for the boosting process,



i.e. each pixel can be chosen at most three times in all the
classifier maps. Each classifier map is labeled by the fea-
ture name and kernel bandwidth at the bottom in Figure 3.
As we can see (refer to Figure 1), in the low variance re-
gions (e.g. the sky), boosting method selected weak clas-
sifier calculated using smaller bandwidth KDE estimates.
Similarly, in regions with high variance in the feature val-
ues, weak hypotheses calculated with large bandwidth esti-
mates were selected. Also notice that, the hypothesis using
the green value as feature were selected more in number
within the leaves of the tree and in the herb. The selection

R,bw 40 B, bw 60 G, bw 60

R,bw 200 B, bw 240 G, bw 240

Figure 3. Classifier maps for the hypotheses chosen

of the hypotheses can be explained better by the plots of the
histograms of densities of the ρ(x) at pixel (101, 31) given
in Figure 4. The black and white bars represent the frequen-
cies of ρj(x+) and ρj(x−) respectively in the correspond-
ing bins. The number of bins used to build the histogram
of ρ(x) is B = 10 for all the experiments performed in
this study. We observe that the lower bandwidth estimates
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Figure 4. Distribution of KDE estimates of features with
different bandwidths

are spread out in a wider range, [0.4, 0.92] approximately,

whereas the estimates of higher bandwidths are concen-
trated in [0.8 1). This will make the value of the cost func-
tion Zt

j (defined in section 3) of the weak hypothesis con-
structed from higher bandwidth estimates lower than that of
the others. Consequently, the weak hypothesis constructed
from higher bandwidth estimates will be selected. Further-
more, among the features estimated with higher bandwidth,
R has the least spread in its distribution of probability esti-
mates. Therefore, feature R with kernel bandwidth 240 will
be the feature to choose for pixel (101, 31) provided that all
weights of the training samples are equal.

Figure 5. Detection results using R,G,B only. The second
row uses the method of [11] and the bottom row shows the
result of our approach.

We used the threshold value of −13 for the first sequence
(at a false positive rate 5× 10−3 pixels/frame), which gives
us the output shown in Figure 5, bottom row. It should be
made clear that no post-processing operation (e.g. removal
of connected components) was applied to any of the out-
puts of the experiments we performed. Inclusion of spatial
gradients produced similar output for these images.

Figure 5 also compares the output using our approach
with that of [11]. In [11], normalized color values along
with the optical flow vector were used as features to gen-
erate the background model using Adaptive Kernel Density
Estimation (AKDE). The approach of [11] was shown to
be superior to the original KDE approach in [1]. For a fair
comparison, the outputs of [11] were also displayed without
any post-processing. Clearly, our method produces signif-
icantly fewer number of false detections than that of [11].



Figure 6. Outputs from a rainy outdoor sequence

To make a quantitative comparison, we used an image se-
quence without any foreground objects and imposed a syn-
thetic object to pass over the regions where it is most likely
to have foreground objects. We used a circle of radius 10
pixels as the synthetic image generated by the method de-
scribed in [1]. Figure 7 depicts the ROC curves for both the
algorithms. The proposed method supersedes the AKDE
method both in terms of false positives and detection rate
when used without the post-processing steps. The strategy
of adaptive selection of elementary features for each pixel
is shown to significantly outperform the method of back-
ground subtraction using adaptive statistical models with
additional complex features.
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Figure 7. Receiver-Operator Characteristic (ROC) curves
for results using proposed method and using the method in
[11] (without post-processing)

We also tested our method with the same fetures, on an
image sequence of a rainy day. For color channels R,G,B,
three bandwidth triplets {140, 100, 100}, {40, 30, 30} and
{80, 80, 80} were chosen to estimate their density. The first
50 images were used to learn the density and the next 170
images were used to learn the RealBoost classifier. A to-
tal of 400 negative examples were sampled from [0, 255].
Figures 6 and 8 shows some of the sample outputs and clas-
sifier maps respectively. We observe that the learning algo-
rithm was able to segment the image into different regions
that are most suitable for a certain feature. In this image
sequence, we see that the hypothesis that uses B value as
the feature and estimates the density with a kernel band-
width 20 is most appropriate for the road and the hypothe-

sis using G with the same bandwidth is appropriate for the
trees and grasses. We keep changing the bias until a spe-
cific false positive rate is achieved. For this sequence, we
had a false positive rate of almost zero for a bias of −8.
The algorithm was next tested on an indoor sequence. The

G, bw 20 B, bw 20 G, bw 80

Figure 8. Classifier maps for the rainy sequence.

use of only R,G,B as features in indoor images gives rise to
lots of false positive due to shadows. So, we tested our al-
gorithm adding six spatial gradients of these three features.
The result, shown in Figure 9, implies that use of spatial
gradients suppresses the shadows totally. It also produces
many false negatives within the body of foreground object.
Since usually there is not much variation inside the region
of a foreground object, the feature values of the pixels inside
the forwground object region produces high estimates given
the background model. The reason behind this is that, in
this case, the background model for spatial gradients is cen-
tered around zero. The two sets of kernel bandwidth used
were {50, 160} and {40, 10} respectively for color values
and spatial gradients. The bias value used for the strong
classifier is −12. The images used to learn the model and
to choose the features were 80 and 120, respectively.

Figure 9. Results for the indoor sequence. Left- In-
put, middle- Output with R,G,B, right-Output with R,G,B
+ Spatial gradients.



Figure 10. Intensity image output

Our final experiment was carried out on a sequence of
gray level images taken in the woods. This sequence is also
considered comparatively difficult since the foreground ob-
ject often becomes occluded by tree branches and the back-
ground also has moving parts like tree leaves. Two sets
of kernel bandwidths {15, 50, 150, 200} and {60, 160, 200}
were used for the two types of features, namely intensity
and spatial gradients. A bias of −15 for the final strong
classifier gives the output as in Figure 10. Again, the boost-
ing algorithm was able to pick a higher bandwidth for the
upper regions with moving tree leaves and a lower band-
width for the static portion of the image (Figure 11).

bw 50 bw 150 bw 200

Figure 11. Classifier maps for the intensity image.

6 Conclusion

A new framework for background subtraction has been
proposed which addresses the problem as a classification
problem. The classification algorithm will be generalized
in the sense that after it has been learned for the first time,
it will be able to satisfactorily subtract background from
the image unless there are some structural changes in the
scene. The choice of the classifier facilitates combining dif-
ferent features, which is analytically more justifiable and
has been experimentally shown to perform better than pre-
vious methods [1, 11].The learning method has been shown
to follow a clear pattern to choose features which is inter-
pretable in terms of the input image. However, the use of
1D features like spatial gradients introduces some negative
examples which is inevitable in our experimental setup. As
a future work, a combination of higher dimensional features
with some additional constraints may be tried so that the ad-
verse effect of one feature can be compensated by the con-
tribution of the others.
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