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Abstract

We address the problem of labeling individual datapoints
given some knowledge about (small) subsets or groups of
them. The knowledge we have for a group is the likelihood
value for each group member to satisfy a certain model.
This problem is equivalent to hypergraph labeling problem
where each datapoint corresponds to a node and the each
subset correspond to a hyperedge with likelihood value as
its weight. We propose a novel method to model the label
dependence using an Undirected Graphical Model and re-
duce the problem of hypergraph labeling into an inference
problem. This paper describes the structure and necessary
components of such model and proposes useful cost func-
tions. We discuss the behavior of proposed algorithm with
different forms of the cost functions, identify suitable algo-
rithms for inference and analyze required properties when
it is theoretically guaranteed to have exact solution. Exam-
ples of several real world problems are shown as applica-
tions of the proposed method.

1. Introduction
The objective of this paper is to label datapoints into two

classes when the information about the datapoints is avail-
able in terms of small groups1 of data. The information
encode the likelihood that the members of the correspond-
ing group follow a certain model. We assume the existence
of such model, either analytical or implicit, for the entity
or pattern we are trying infer. Given the subsets and their
corresponding likelihood measures or weights, we wish to
label all the individual datapoints that satisfy the model into
one class and rest of them to the other class. We call these
weights ‘supervised’ since they were calculated given a
model, not based on similarities in some feature space.

It should be noted here that we are interested in scenarios
where higher order knowledge about data subsets of sizes

1Group simply implies a collection of datapoints. The mathematical definition
of group is not used in this paper. Similarly, likelihood simply implies a numerical
weight.

k > 2 is the primary source of information for labeling; we
may or may not have any information about the individual
data sample or pairs of samples. Furthermore, we may have
data subsets of different sizes, i.e., k = 3, 4, . . . , each with
corresponding likelihood measure, to decide the individual
label from.

There is a direct connection between the problem we are
dealing with and hypergraph node labeling. Hypergraphs
are generalization of graphs where each hyperedge connects
more than two vertices, i.e., a hyperedge is a subset of of
nodes. Weighted hypergraphs, a hypergraph whose hyper-
edges are associated with real valued weights, have been
recently gained much popularity in computer vision for
the purpose of representing geometrical information. Each
small group of data, as discussed above, can be considered
as a hyperedge of some hypergraph. The likelihood mea-
sure for this group of data is analogous to the weight of cor-
responding hyperedge. Given such a hypergraph, we would
like to label its nodes into two categories such that opti-
mal number of nodes, connected by hyperedge with large
weights, tend to fall into the same category.

There are many examples of such problem in machine
learning and vision literature. In part-based object recog-
nition for computer vision, it is useful to learn an implicit
statistical model among groups of detected parts to decide
which of the detected parts actually belong to the object we
are trying to recognize. It is well known that larger groups
of parts capture more geometrical information than pairs of
parts. This is a necessary step in recognition due to the fact
that object part-detectors often generate many false alarms.

Subset-wise information is also utilized in model esti-
mation algorithms. The problem of model estimation is to
determine the parameters of a model given a set of (noisy)
data and an analytic form of a model. Standard algorithms
for this sort of problem, e.g., RANSAC [7] and its vari-
ants, randomly sample smaller subsets of data, compute tar-
get model parameters and calculate an error value for each
of the subsets. These methods are used for fundamental
matrix computation, affine motion estimation etc in com-
puter vision [23] literature. In this paper, we show that any
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model estimation problem can be treated as an instance of
the framework we discuss and our algorithm can solve any
model estimation problem that RANSAC (and its variants)
can handle. In addition, the proposed method can also solve
the problems, where we only have a model for small parts
instead of the whole object/entity, that RANSAC can not
handle.

We propose a novel approach to solve this labeling prob-
lem in a principled fashion. Each datapoint is associated
with a binary label variable. The label variables (and their
dependencies) are modeled by an Undirected Graphical
Model or Markov Network with appropriate neighborhood
system and clique definitions (to be explained later). To
compute the optimal configuration of the label variables, it
is necessary to minimize an overall cost function which is a
summation of all cost functions defined on the cliques.

We propose a class of potential function for each clique
which plays the central role in deciding labels of data sam-
ples. From a theoretical point of view, we investigate
what makes the proposed potential function submodular and
therefore is guaranteed to produce an accurate solution for
two-class problems [5, 21, 14]. For a specific form of this
potential function, the inference problem can be solved with
a simple algorithm that runs in linear time w.r.t. the number
of data samples and subsets. Standard methods for infer-
ence, e.g., linear programming relaxation or sum product
algorithms, can be used for other forms of potential func-
tions. This Markov Network formulation is able to cope
with the situation when the likelihood values are available
for different size subsets.

The main contribution of this paper is to cast the hyper-
graph labeling problem as an undirected graphical model
inference problem. This reduction demonstrates the con-
nection between hypergraph problems and graphical mod-
els and widens the scope of application of the latter. We
propose necessary cost functions for the purpose, discuss
how the behavior of the labeling algorithms is influenced
by their different forms and which of these forms have a
theoretical guarantee to have a solution. This work enables
us to use the rich literature of graphical model inference to
be readily applicable in problems like hypergraph labeling.

2. Related work and motivation
The types of problem that proposed method addresses

are different from what hypergraph clustering methods are
designed for (not described here due to space limitation,
see e.g., [1, 10, 24, 19, 12]). In hypergraph clustering,
each hyperedge is usually associated with a weight com-
puted from the similarity of the member datapoints in some
feature space. On the other hand, in our framework, the hy-
peredges are associated with a likelihood value, calculated
given a model. Conceptually, the most significant differ-
ence lies in the objective function the proposed method and

that the clustering method optimizes. For example, spectral
graph clustering methods [1, 10, 24] minimizes a product
of (hyper) cut function and a restraint function. In contrast,
our method minimizes a summation of weighted combina-
tions of competing penalty functions. In what follows next,
we give an example where hypergraph clustering can not
solve the labeling problem given a hypergraph with likeli-
hood values as weights.

Let us suppose we have points in 2D as displayed in Fig-
ure 1 and we wish to determine which 2D points belong to
the lines.
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Figure 1. A toy example for two line estimation. Blue circles: input 2D point, red
squares: detected line points. Left: input, middle: hypergraph clustering result, right:
proposed algorithm. ()

We follow a standard procedure for line fitting: first, k
datapoints (k >= 2) are sampled randomly, then a line
is estimated through these points and the percentage (also
called inlier ratio) of all points approximately falling on
the line is computed. This inlier ratio is used as hyperedge
weights. We wish to verify if hypergraph clustering method
is able to separate the line points from noises given these
weights.

For this example, we apply the method of [24] as a rep-
resentative method for hypergraph clustering. The work
of [24] partitions the set of vertices into two subsets S
and Sc by minimizing a product of a cut function and a
restraint function, Ncut(S, Sc) = cut(S, Sc)

(
1

vol(S) +
1

vol(Sc)

)
, where the volume vol(S) of S quantifies the as-

sociativity among the vertices within the subset S. Without
the restraint function, the solution is always trivial, all ver-
tices are assigned to same cluster. Most of the spectral graph
and hypergraph clustering algorithms use this (or very sim-
ilar) objective function. While the cut function cut(S, Sc)
tries to minimize the strength of the connection between
two clusters, the restraint function ( 1

vol(S) + 1
vol(Sc)

)
con-

trols the size or associativity within the resulting clusters.
As a result, we often observe these algorithms to produce
somewhat ‘balanced’ clusters. That is, it will find subsets
S, Sc so that not only the sum of edge weights crossing the
partition is minimized, but also the connectivity among the
subset members is maximized.

This effect is clearly visible in the result of [24] shown
in Figure 1 (middle). The clustering algorithm separates
the points into two clusters, each having one line and many
noisy samples. This perfectly conforms with the discus-
sion above, the inter-cluster connectivity between the two
clusters is minimum and each of the clusters has high in-
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ternal associativity among the line points. None of the two
lines can be estimated from this output generated by hyper-
graph clustering. We ideally want the line points to be sep-
arated from the noise, which is the outout of the proposed
algorithms as explained below, as shown in Figure 1 (right).
There are other relevant works that we will discuss through-
out the paper where they naturally connect to the context.

3. Graphical model framework
Suppose there are n datapoints {vi| 1 ≤ i ≤ n} that

we wish to separate into two subsets, subset A comprising
the samples that satisfy the model and B comprising the
rest. We wish to label these samples using binary variables
{xi ∈ {0, 1}| 1 ≤ i ≤ n} where xi = 1 implies vi ∈ A
and xi = 0 implies vi ∈ B. Throughout the paper, we
use the term ‘group’ to imply (interchangeably) a subset of
{vi1 , . . . , vik} of size k where 1 ≤ il ≤ n and 1 ≤ l ≤
k. The likelihood (also called weights) that all members of
{vi1 , . . . , vik} are generated from a model M is denoted by
λ(vi1 , . . . , vik). The λ(vi1 , . . . , vik) values are assumed to
be normalized in [0, 1].

As already stated, the objective of this work is to propose
an algorithm to label the datapoints vi, 1 ≤ i ≤ n mainly
based on the information provided in terms of small groups
of them. We may or may not have some information about
individual sample vi or pair of samples, but the focus is on
how to utilize the knowledge we have for the subsets. To
this end, the input to the algorithm is a set of small groups or
subsets of data samples along with their likelihood values.
Let Vk be the set of all groups {vi1 , . . . , vik} that satisfy a
certain condition2.

To establish a neighborhoodN k
i for any datapoint vi, we

define vj is a neighbor of vi if both vi and vj are members
of any group V k ∈ Vk.

N k
i = { vj | j 6= i and ∃V k {vi, vj} ⊆ V k}. (1)

For inputs with different size groups, k1, k2, . . . , we can
similarly define a neighborhood system for each subset size.

Now, we can define a Markov Network over the label
variables xi assuming the Markov property that the value of
xi depends on xj only if vj is a neighbor of vi [9]. Any
subset V k ∈ Vk defines a clique of size k in the neighbor-
hood system. Also, let Xk denote the labels of members of
V k, i.e., Xk = {xi1 . . . xik} and X denote labels of all n
datapoints {x1, . . . , xn}.

It is well known that the probability of any assignment
p(X) depends on what is known as the Gibbs energy func-
tion E(X) [17]. The energy function E(X) is the summa-
tion of potential functions defined on cliques. Let Ek(Xk)
denote an appropriately defined clique potential function for

2For example, a condition check retains only groups with weights larger (or errors
less) than a threshold δk .

the clique V k = {vii , . . . , vik} of size k. With different
size cliques, the Gibbs energy function equals to sum over
all energy function of different sizes [17].

E(X) =

K∑
k=1

∑
V k∈Vk

Ek(Xk) (2)

The optimal assignment X = {x1, . . . , xn} should mini-
mize this Gibbs energy function. To complete the definition
of the overall energy function, we have to define the clique
potential functions Ek(Xk) for each k.

At this point, it is clear that the graphical model we are
utilizing here is more commonly known as Markov Random
Fields (MRF). We choose to use the terms Graphical models
or Markov network primarily to distinguish this work from
more traditional applications of MRFs in vision. Typically,
MRF studies in computer vision assumes a spatial neighbor-
hood among the neighboring pixels or their labels [16, 20].
One popular example of this type of neighborhood is the
grid structure assumed among the pixels. We use a hypo-
thetical neighborhood definition induced by the subsets and
is different from those assumed in traditional applications
of MRF. We use synonymous term for MRF, e.g., proba-
bilistic graphical models, for our work so that one does get
confused with other traditional MRF structure used in vi-
sion.

4. Proposed clique function
The clique potential functions determines the cost of as-

signing the labels within the clique into different classes.
It can be viewed as playing a similar role of the cut func-
tion in clustering algorithms. But, as we do not want to use
an auxiliary function, e.g., the restraint function as in Sec-
tion 2, using a generalized cut function similar to the one
defined in [24] will only produce trivial results.

Instead, we introduce two penalty functions gc(·), c ∈
{1, 0}, for the two categories A and B. The penalty func-
tion value increases with the number of member variables
assuming the opposite class label. Let ηc denote the num-
ber of variables xil ∈ Xk in the clique to be assigned to
class c. A penalty function gc(·) is defined on the num-
ber η(1−c) of variables to be assigned to the opposite class
1−c. Ideally, we want the penalty functions gc(·) to be non-
decreasing with the increase in η1−c. We define a clique po-
tential function Ek(·) for clique V k as a linear combination
of competing penalty functions g1(η0) and g0(η1) weighted
by the likelihood value λ(V k) and 1− λ(V k) respectively.

Ek(Xk) = β1 λ(V k) g1(η0) + β0 (1− λ(V k)) g0(η1). (3)

In this definition, β1 and β0 are two nonnegative balancing
parameters. Recall, λ(V k) quantifies the likelihood mea-
sures that all vil ∈ V k belong to A, i.e., satisfy a model,
and η1 + η0 = k. With high likelihood λ(V k) value, the
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clique potential would be prone to decrease η0, the number
of variables xil ∈ Xk to assume label 0 and tolerate a small
penalty (1 − λ(V k)) g0(η1) as (1 − λ(V k)) is small. The
behavior will reverse for low λ(V k) when it will try to de-
crease η1. Thus, this potential function becomes a weighted
combination of two competing penalty functions, each try-
ing to increase number of xil ∈ Xk to be labeled to its
corresponding class.

In cases where there are two models available for both
categories A and B, the resulting likelihood values λ1(V k)
for A and λ0(V k) for B will replace λ(V k) and 1− λ(V k)
respectively in Equation 3. Example of such likelihood val-
ues could be found in object recognition where the proba-
bilities of a subset of parts to belong to the object and that
to belong to the background is useful. We show one such
experiment in Section 7.3.

Studies with higher order MRF models generally con-
sider pointwise potential functions as the ‘driving force’or
the main contributing factor for inference. Higher order
clique functions in MRF literature act as smoothness terms
designed to ensure consistency over the neighboring loca-
tions or to remove isolated regions. These functions takes
the minimum value when all the labels in the clique are
equal, without any bias to any particular class, and increases
with the label disagreement among the variables. Examples
functions are truncated linear combination of labels in the
clique [14] or minimum of several truncated linear func-
tions [13]. Without pointwise energies, these higher order
potentials will lead to a trivial solution and assigns all the la-
bels to one of the classes. This is exactly why these type of
non-discriminative potential functions are not useful in the
present scenario where we usually do not have pointwise
information (see [2] for more discussions and examples).

5. Submodularity and tractability

Submodularity [2] is an important property for solv-
ing inference in undirected graphical models. It has been
shown in the literature that for a submodular clique poten-
tial function, there are algorithms to produce a globally op-
timal solution in polynomial time [5, 14] for two class prob-
lems. This section analyzes the proposed clique function to
identify what properties make it submodular and therefore
can be solved efficiently and accurately with existing algo-
rithms.

As stated before, we want gc(·), c ∈ {0, 1}, functions to
be monotonically increasing. Let us express the proposed
clique function of Equation 3 as a set function. Recall that
Xk is an indicator vector for set A ∈ V k (Section 3). We
will writeEk(XK) as f(A) = C1g1(η0)+C0g0(η1) where
C1 = β1λ(V k), C0 = β0(1− λ(V k)) and η0 + η1 = k. If
we add any vil ∈ V k \A to A, the clique function becomes
f(A∪{vil}) = C1g1(η0−1)+C0g0(η1+1). If we augment
A further by vij ∈ V k \ (A ∪ {vil}), the clique function

becomes f(A∪{vil , vij}) = C1g1(η0−2)+C0g0(η1 +2).
To prove submodularity of f(A), we have to prove that the
successive increase in f(A) diminishes.

f(A ∪ {vil})− f(A) ≥ f(A ∪ {vil , vij})− f(A ∪ {vil})
⇒ −C0 g0 (η1 + 2) + 2 C0 g0(η1 + 1)− C0 g0(η1)

≥ C1 g1(η0)− 2 C1 g1(η0 − 1) + C1 g1(η0 − 2)

⇒ C0

{[
g0 (η1 + 2)− g0(η1 + 1)

]
−
[
g0(η1 + 1)− g0(η1)

]}
+C1

{[
g1(η0)− g1(η0 − 1)

]
−
[
g1(η0 − 1)− g1(η0 − 2)

]}
≤ 0

Denoting the second order difference as ∆c(n) =[
gc(n) − gc(n − 1)

]
−
[
gc(n − 1) − gc(n − 2)

]
where

c ∈ {0, 1}, we observe that the condition for submodularity
of the proposed clique function is as follows.

C1 ∆1(η0) + C0 ∆0(η1 + 2) ≤ 0. (4)

There are several options for gc(·) functions to render the
clique potential to be submodular.
Linear gc(·): It is obvious that for linear gc(·), the second
order differences is 0 and the clique function is submodu-
lar. In fact, for linear gc(·), the clique potential becomes
modular.
Concave gc(·): As the second derivative of any concave
function is negative, the condition in Equation 4 holds.
Constant ∆c: For gc(·) functions with constant ∆c(n) =
∆̄c, one can design a submodular clique function with a
concave g1(·) and convex (or linear) g0(·) whenever C1 >
C0 and |∆̄1| > |∆̄0| where | · | implies absolute value
(and vice versa). We can also use a combination only when
C1 > C0 and use concave functions for both g1() and g0()
otherwise.

The focus of this paper is neither to propose a clique
reduction technique nor a new MRF inference algorithm.
Therefore, it is unnecessary to analyze whether or not the
proposed clique potentials can be transformed into some
other form in order to apply a specific inference technique.

6. Inference and Learning
The inference algorithm to be used to minimize the en-

ergy function E(X) depends on the choice of gc(·) func-
tions. The following two subsections describes two algo-
rithms that can solve the inference problem. We also discuss
how to learn the form of penalty function gc(·) function for
the cases when labeled examples are available (i.e., xi are
given).

6.1. Special case: Linear gc(·)

The linear form of gc(·), c ∈ {0, 1} increases from lc to
hc in proportion to k − ηc.

gc(k − ηc) = lc +
hc − lc
k

(k − ηc). (5)
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It is straightforward to see ( and well known, see [2])that the
value of xi is simply the label for which the summation of
likelihood ratios weighted by the slope of gc(·) is minimum.

x∗i = arg min
c∈{0,1}

∑
V k∈Vk∧vi∈V k

βcλc(V
k)
hc − lc
k

. (6)

For simplicity, we used λ1(V k) = λ(V k) and λ0(V k) =
(1−λ(V k)). This solution can be computed inO(n+|Vk|),
with one pass over all the subset weights and another pass
over all the datapoints. For multiple k, the corresponding
weights for each tuple size will be added.

6.2. General Case: Nonlinear gc(·)

For nonlinear gc(·), c ∈ {0, 1}, e.g., concave or convex
forms, the likelihood weights can not be evenly distributed
to each of the datapoints as in Equation 6. Problems with
nonlinear gc(·) can be solved using a linear programming
(LP) formulation suggested in [5, 14]. See [11, 22] and ref-
erences therein to learn more about various inference algo-
rithms available in the literature. We adopted the LP relax-
ation technique and used CPlex solver to produce the label-
ing. It is not clear yet how a general submodular higher
order clique function can be reduced efficiently to pairwise
interactions (see [8, 21]) to apply Graph-cut algorithm, but
other algorithms like sum-product belief propagation [15]
or more efficient variants of it can also be used for the pro-
posed method.

6.3. Behavior of clique function

Intuitively, an increase of min gc() or a decrease of
max gc() will lower the number of datapoints to be labeled
as category c since the former would introduce a penalty to
assign label c to any sample in a subset and the latter would
simply reduce the penalty to assign 1 − c. Also, a concave
gc() would be more conservative on the number of xil to be
labeled as 1−c, that is, it will be more difficult to have label
disagreement within the clique. A convex penalty function
would impose less amount of cost to have few xil to take
the opposite label.

6.4. Learning penalty functions

Modeling the framework as a Markov Network also al-
lows us to learn the penalty functions and the parameters
when several labeled sequences are available. Since, in our
framework, penalty functions gc() are defined for the inte-
ger values, we only want the values of gc(η(1−c)) for all
c ∈ {0, 1} and 0 ≤ η(1−c) ≤ k. A redefinition of penalty
functions makes it possible for us to use training algorithms
(e.g., [4]) for log-linear models to learn these values.

7. Experiments and Results
7.1. Model Estimation

One important application of the proposed method is
model estimation. Let us suppose that we have n datapoints
vi, i = 1, . . . , n, in some feature space. Part of these data
samples are generated from some model that we wish to es-
timate. We sample T k subsets of size k, fit the candidate
model to these subsets and compute the model estimation
errors. The value of k is kept larger than or equal to s which
is the minimum number of points required to fit a model
(e.g. s = 2 to fit a line). The subsets producing an error
less than a problem specific threshold δk constitute the set
Vk. The estimation error ε of any member V k ∈ Vk is
transformed to a likelihood measure by a suitable transfor-
mation, e.g., λ(V k) = 1 − ε if we know 0 ≤ ε ≤ 1 or
λ(V k) = exp(−ε/σ).

It is important to mention here that, in model estima-
tion, only higher order information is available. We do not
have any knowledge about how likely each sample is to fol-
low a certain model. For linear penalty functions for the
proposed clique potentials, the inference algorithm (Equa-
tion 6) breaks the higher order costs into pointwise costs.
Reducing the higher order costs into pointwise ones is not
equivalent of using unary potentials only, because we do
not have a tool to compute this unary potentials. Nonlinear
penalties may not be as attractive as linear ones, since it will
require sophisticated inference algorithms. But, as we will
see, clique functions with nonlinear penalties offer certain
advantages that could be useful in special cases.
Fundamental matrix computation: Given two images of
the same scene from different viewpoint, the objective is to
find the point matches that conform with the camera model
expressed by the fundamental matrix. Four pairs of images
from the Corridor, Valbonne, Merton II, Library datasets
of the standard Oxford database3 were used in this experi-
ment. We selected the two images with the largest variation
in viewpoint, usually the first and last images (see Table 1).

For the proposed method each match is considered as a
datapoint. We sampled 2500 subsets of size k = 8 (we
know s = 7 in this case). Other parameter values are,
threshold δk = 1, and linear parameters [h1, l1, h0, l0] =
[1.01, 0.02, 1.0, 0] for the clique function. For RANSAC,
we sampled a subset of size 7 for at most 2500 times and
used δransac = 0.001 as distance threshold (that produces
the best result). We also compare the performance with
three other variants of RANSAC, namely MLESAC, MAP-
SAC and LO-RANSAC, that were shown to be able to com-
pute higher number of inliers in the survey paper [3]. The
maximum number of iterations were kept the same as that of
RANSAC and parameters in original implementations were
retained.

3http://www.robots.ox.ac.uk/ vgg/data/data-mview.html
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method Corridor: {000, 010}, 50/150 Valbonne: {000, 010}, 30/90 Merton: {002, 003}, 50/150 Library: {002, 003}, 50/150
missed FP missed FP missed FP missed FP

RANSAC 0.07± 0.06 0.10± 0.03 0.13± 0.06 0.13± 0.02 0.01± 0.02 0.38± 0.01 0.02± 0.01 0.25± 0.01
MLESAC 0.01± 0.03 0.07± 0.02 0.13± 0.04 0.11± 0.03 0.00± 0.00 0.33± 0.00 0.01± 0.01 0.17± 0.01
MAPSAC 0.04± 0.04 0.05± 0.02 0.19± 0.03 0.09± 0.01 0.00± 0.00 0.30± 0.00 0.02± 0.01 0.15± 0.01

LO-RANSAC 0.17± 0.07 0.11± 0.04 0.19± 0.03 0.10± 0.03 0.03± 0.03 0.37± 0.04 0.01± 0.01 0.22± 0.01
Proposed 0.09± 0.02 0.06± 0.01 0.16± 0.02 0.05± 0.01 0.14± 0.02 0.25± 0.01 0.05± 0.01 0.13± 0.01

Table 1. Performance comparison for Model Estimation. Each column head shows the name and indices of the image used and the ratio of correct over incorrect matches. Each
row shows the mean and std deviation of the missed inliers and false positives (FP) produced by the corresponding method.

Table 1 shows the image names (ratio of true inliers) and
the result statistics such as fraction of missed inliers (ratio of
missed example over inliers only) and ratio of false positive
inliers (ratio of false positives over all matches) in 100 runs
for all the methods. As we can see, in almost all the cases,
the proposed labeling method generates lower false positive
rates than that of all the variants of RANSAC with similar or
close miss rates. In model estimation, lower false positive
rates are desirable up to a small increase of miss rate since
there will be less impurities to influence the computation of
the model. One possible reason is, RANSAC and variants,
decide based on the performance of the most recently sam-
pled V k and replace the set of inliers, if needed, and dis-
card the estimation results from all previous subsets. The
proposed method aggregates the results of all past model
estimation results in order to obtain a better decision about
which datapoints in the set should be labeled inliers.

In Figure 2, we show qualitative comparison in worst
case. The results of proposed methods are compared with
MAPSAC, because of its superior performance w.r.t. other
variants, where they produced the largest number of missed
correct matches and false detections (miss+FP). This figure
shows that, in the worst case, the proposed method would
miss less correct matches and generate fewer false alarms
than those of MAPSAC. In our experiments, we experi-
enced same pattern for all the images.

Proposed method, largest # Miss= 12

miss: proposed

MAPSAC, largest # Miss= 22

miss: MAPSAC
Proposed method, largest # FA= 13

false positives: proposed

MAPSAC, largest # FA= 20

false positives: MAPSAC
Figure 2. Worst case qualitative performances for detecting valid correspondences
between two images. Showing the largest miss+FP case. Yellow (red) line: matching
point pair missed (falsely detected) by the method.

To show the advantage of using a nonlinear penalty term,
let us imagine a scenario where we wish to tolerate a large

miss rate (but not too high to miss required number of sam-
ples) but attain as low false positive rate as possible. To
achieve this result, we experimented with a concave g0()
and a linear g1() on the same set of data described above.
The subsets and their weights for the proposed method were
generated in the exact same manner. As explained before,
concave gc() functions are reluctant to assign the datapoints
within a clique to label into different classes. Hence, a con-
cave g0() will produce more missed inliers and less false
positives. We compare the result with a two step recursive
RANSAC method with decreasing threshold. The initial
threshold was taken much lower than the previous experi-
ments to produce as low false positives as possible.

Table 2 shows the miss and false positive results of recur-
sive RANSAC (along with required threshold at first step),
proposed method with linear and nonlinear penalties. It is
clear that, very different thresholds for different datasets for
recursive RANSAC are required to achieve similar miss and
false positive rate as that of the proposed method with linear
and non-linear penalties. We used the same penalty func-
tion to produce outputs for all four datasets; this implies the
robustness of our method over algorithms in RANSAC fam-
ily for this purpose. This also shows that proposed method
can achieve much lower false positive rates with nonlinear
penalties than it linear counterpart. More results for model
estimation are presented in the supplementary material.

7.2. Circle/Ellipse detection

This section describes an experiment where we used a
part based model to detect the full object. We detect cir-
cles/ellipses in in images and synthetic 2D points (with 40%
inlier ratio) as a collection of small curves. From the edge
points detected on an image, k = 4 neighboring ones are se-
lected randomly. Then we fit a second degree polynomial
on these K points. If the estimated curve turned out to be a
line, we assign a very low weight on it. In Figure 3, the edge
points labeled as xi = 1 by the inference algorithm with lin-
ear penalty terms are colored in red (white in the last image)
. It is interesting to see that the proposed method can detect
all the circles (multilpe ones) in the images.

It is also possible to identify the circles in these images
using a model for the whole circle (as opposed to those for
curves) utilizing a circle fitting algorithm [18] for model fit-
ting procedure. The proposed method produced the same
result as in Figure 3 when we used such model. When ap-
plied to the same dataset with the same circle fitting algo-
rithm, RANSAC was able to extract only the largest circle.
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method Corridor: {000, 010}, 50/150 Valbonne: {000, 010}, 30/90 Merton: {002, 003}, 50/150 Library: {002, 003}, 50/150
thd, missed, FP thd, missed, FP thd, missed, FP thd, missed, FP

Rec-RANSAC 1−3, 0.61± 0.14, 0.02± 0.02 1−4, 0.63± 0.17, 0.06± 0.03 5−5, 0.62± 0.10, 0.08± 0.04 1−5, 0.70± 0.19, 0.05± 0.13
Proposed-lin −, 0.46± 0.05, 0.03± 0.00 −, 0.67± 0.07, 0.02± 0.01 −, 0.57± 0.05, 0.20± 0.02 −, 0.36± 0.03, 0.08± 0.02

Proposed-nonlin −, 0.57± 0.04, 0.02± 0.00 −, 0.63± 0.07, 0.02± 0.01 −, 0.61± 0.04, 0.07± 0.01 −, 0.46± 0.05, 0.05± 0.01

Table 2. Performance in minimizing false positives. Each column shows the name and indices of the image used, the ratio of correct over incorrect matches and in the second
line the threshold used for recursive RANSAC, miss and FP rates. Each row shows the mean and std deviation of the missed inliers and false positives (FP) produced by the
corresponding method.Note that, RANSAC requires threshold to vary between a wide range to achieve similar result of the proposed method with fixed parameters.
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Figure 3. Circles detected by proposed method overlaid on the image.

By iterating the process, each time removing the inliers of
the previous step, it is possible to recover all the circles.
But, RANSAC needs to know the number of instances of a
model (in this case circle) present in the dataset to obtain
all of them. On the contrary, the proposed algorithm was
able to identify all the model instances in a single iteration.
It is possible, at least for the geometric structures, to com-
pute the number of model instances simply by running a
connected component search on the positively labeled data.

7.3. Object localization

Part based representation of an object has gained much
attention recent years in computer vision. In a recent work
by Ferrari et.al. [6], subsets of edge contour segments were
used to describe different objects. This work generated all
the edges from an input image and then computes all k ad-
jacent segments (kAS) that were shown to represent the ob-
ject well for detection. We apply the proposed method to
identify all the edges that should belong to the object given
the set of all kAS. That is, all the kAS are considered to be
the subset of k datapoints ( for this case, each datapoint is
an edge) and given many of these subsets we wish to find
which edges belong to the object (the set A).

The experiments were conducted on three objects of
the the ETH shape dataset, namely applelogos, bottles and
swan. For each type of object, half the images for each
category were selected as training images. Out of all 3AS
(k = 3) descriptor [6] in the training set, we select repre-
sentative ones to be the centers of a hierarchical clustering
output. These representative descriptors, called code, are
generated for both foreground and background. During test-
ing, we generate all the 3AS from the test image. For each

3AS, we generate the likelihood value for the edge segments
to belong to the object(background) to be the distance from
the closest object(background) code. As described in Sec-
tion 4, there are two (implicit) models in this experiment,
one characterizes the object and the other correspond to the
background. Finally, we run the hypergraph labeling algo-
rithm to get the edges of an object. We employed both linear
and nonlinear penalty functions in this experiment too. For
nonlinear gc() functions we used concave functions for both
the classes.

Figure 4 shows some output of proposed method for
identifying object edges. To clarify that only kAS likeli-
hoods , without the labeling technique, are not sufficient
to identify the object edges, we show all the edges that
belong to kAS segments that have λ1(V k) > λ0(V k).
The proposed labeling algorithm with nonlinear penalties
more accurately identifies the object edges from the back-
ground than that with linear penalties. As explained be-
fore, concave penalty functions tend to prevent breaking up
the clique members into different classes. As a result, the
proposed method with nonlinear penalties attempts to attain
more edges on the object and reduce the number of back-
ground edges to be labeled as 1 than its counterpart with lin-
ear penalties. Table 3 summarizes average number of edges
detected by these three methods on the object and outside
of the groundtruth bounding box for the whole dataset. In
comparison, proposed method with nonlinear penalties is
able to detect more object edges with fewer false detections
than other two techniques describe here.

method Bottles Applelogos Swan
in out in out in out

kAS Pr 9.16 7.2 5.9 8.72 6 9
linear 8.83 6.86 5.81 7.09 5.06 4.85
nonlin 8.16 6.66 5.77 6.95 4.81 4

Table 3. Number of edges detected by three methods, kAS likelihood only,
proposed-linear and proposed-nonlinear. For each object class, the columns show
average number of detected edges within and outside of the groundtruth bounding
box.

8. Conclusion
This paper describes a novel method for datapoint label-

ing given a hypergraph of data with supervised weights. We
discuss how the problem can not be handled by clustering
methods and provide a graphical model framework to solve
it. The necessary cost functions for this framework is pro-
posed and suitable inference algorithms for labeling is dis-
cussed. In addition to theoretical treatment of the form of
the cost function to discover when it will lead to a global
solution, we also show several applications where the pro-
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Figure 4. Qualitative performances of proposed method for detecting edges on objects (from left to right) applelogos, swan and bottle. Rows: top to bottom, input edges, edges
with p(kAS ∈ object) > p(kAS ∈ bckgnd), proposed linear, proposed nonliner.

posed labeling algorithm can either produce better results or
interesting results to be investigated further.
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