A Graph-Based Segmentation and Feature Extraction Framework
for Arabic Text Recognition

Ahmed M. Elgammal
Department of Computer Science
University of Maryland
College Park, MD 20742, USA

Abstract

This paper presents a graph-based framework for the segmentation of
Arabic text. The same framework is used to extract font independent struc-
tural features from the text that are used in the recognition. The major
contribution of this paper is a new graph-based structural segmentation
approach based on the topological relation between the baseline and the
line adjacency graph (LAG) representation of the text. The text is seg-
mented to sub-character units that we call “scripts™. A structure analysis
approach is used for recognition of these units. A different classifier is
used to recognize dots and diacritic signs. The final character recognition
is achieved by using a regular grammar that describes how characters are
composed from scripts.

1. Introduction

The cursive nature of the Arabic text is the main obsta-
cle for any Arabic OCR system. Mostly, characters are
connected to each other in what is called "the base line”
to form subwords. Some characters might connect to each
other above the base line as in ligatures. Researchers have
paid special attention to this problem and developed many
algorithms to segment Arabic text into characters. Three
different approaches can be traced in the literature to han-
dle the cursive nature of Arabic text: explicit segmentation,
implicit segmentation and segmentation free approaches.
In [5, 4, 2, 12, 16, 10, 15, 8, 3] explicit segmentation was
used where a separate phase in the text recognition process
is dedicated to segment subwords into smaller units that can
be individually recognized. Implicit segmentation was used
by [7, 6] where character are segmented while being recog-
nized. Segmentation free approach for Arabic word recog-
nition was used by [1]

This paper presents a graph-based framework for the
segmentation of Arabic text. The same framework is used
to extract font independent structural features from the text
that are used in the recognition. The approach is based
on representing the text using line adjacency graph (LAG)
[14]. The major contribution of this paper is the use of this

Mohamed A. Ismail
Department of Computer Science
Faculty of Engineering
University of Alexandria, Egypt

representation for the segmentation of cursive text. The seg-
mentation is achieved by considering the relation between
the text baseline and this graph. The approach can suc-
cessfully handle situations where characters are overlapping
vertically that cause problems to many existing segmenta-
tion techniques.

The text is segmented to what we call scripts. A script is
considered to be the unit of recognition and it does not nec-
essarily correspond to characters. A script may be a com-
plete character, it may be a part of a character or it may be
more than one character (as in ligatures.) The graph repre-
senting the text is used to extract structural shape features
such as strokes, loops and feature points that is used in the
recognition. Two different classifiers are used. A classifier
for the scripts and a classifier for the dots and diacritic signs.
The results of the two classifiers are combined together us-
ing some linguistic rules and the final recognition result are
obtained using a regular grammar describing the formation
of the characters from the basic scripts.

The layout of the paper is as follows: Section 2 describes
the process of script extraction (segmentation.) Section 3
describes the script classifier and the dot and diacritic clas-
sifier. Final character recognition process is described in
section 3.2. Experiments and Error analysis are summa-
rized in section 4.

2. Script Segmentation

The segmentation process extracts the basic scripts from
the textline. By a script we do not mean a character. A
script is considered to be the unit of recognition. A script
may be a complete character, it may be a part of a character
or it may be more than one character (as in ligatures). The
segmentation of a textline into its scripts is based on the
topological relation between the textline, represented as a
graph, and the baseline of the text. This process is described
in more details in the next two subsections.

basetop {‘_H“"—

basebottom:,; =

Figure 1. Top: A text line and its horizontal projection profile.
Bottom: Baseline detection

2.1. Baseline Detection

Baseline plays an essential role on Arabic writing. Most
characters connect to each other on the baseline. The base-
line detection is done by detecting the peak in the the hori-
zontal density histogram of the text line. Fig. 1-top, shows
an Arabic text line and its histogram of horizontal densities,
called the horizontal projection profile. As can be noticed
from the figure, the peak in the histogram corresponds to
the baseline in the text. The global peak of the histogram
is detected. The ratio of this peak to the width of the text
line should exceed certain threshold « to be considered as
a baseline. The base line is parameterized by two values,
basetop and basebottom, which represent the top row and
the bottom row of the base line. These two values are set
such that a certain percentage, t, of the black pixels in the
textline is included between these two rows and the height
of the baseline is minimized. The ratio ¢ as well as the
threshold « are pre-trained based on sample data and their
values may vary slightly without significant effect on the
next phases. Fig. 1 illustrates baseline detection.

2.2. Subword and Script Extraction

Each text line is represented by a line adjacency graph
(LAG) [14]. The LAG is a graph consisting of nodes repre-
senting horizontal runlengths. Any two runlengths lying on
adjacent scan lines and overlapping with each other have an
edge connecting their corresponding nodes. The process of
building a LAG representation for a text line yields a set of
isolated subgraphs (connected components), in which every
subgraph of is the LAG representing a subword of the text
line. Therefore the process of word isolation is done at the
same time the LAG is constructed. A connected component
of the LAG may corresponds to a dot combination, a dia-
critic, an isolated character or a subword consisting of sev-
eral characters. Each LAG component is classified into one
of three categories; components that intersect with the base
line, i.e., subwords, and components that are either above or
below the baseline. The last two categories are candidates
to be dot combinations or diacritics and are handled as will
be described in section 3.1.

The LAG for each subword is then transformed into an-

other graph which is homomorphic to the LAG and has
minimum number of nodes. The new graph is called com-
pressed LAG, or c-LAG [14]. The nodes of the new graph
are labeled as “path” or “junction”. Obviously path nodes
are never adjacent to each other but junction nodes may be
adjacent to each other. Fig. 2 illustrate a subword with its
corresponding LAG and c-LAG.

Figure 2. (a) asubword with each black run-length is presented
by a rectangle. (b) The LAG representation. (c) The compressed
LAG. (d) a configuration that needs the application of rule 1 and
rule 2 to get the correct baseline relation.

The relation between the c-LAG nodes and the baseline
is very important in feature extraction phase and in script
extraction. Each node of the graph is labeled with one of
the following labels to reflect its relation with the baseline.

1. Above the baseline.
Below the baseline.
Inside the baseline.
Above the baseline and connected with it.
Below the baseline and connected with it.

6. Crossing the baseline.
Any path node may be assigned any of these labels. Junc-
tion nodes can only be assigned any of the first three la-
bels (inside, above or below the baseline) since they have
a height of one. The following two rules are applied to the
graph node labeling. By applying these two rules we can
overcome the problem of the uncertainty in baseline detec-
tion due to font variation or due to slanting in the image or
due to any other factors that may affect the baseline detec-
tion.
Rule 1 : A junction node that is adjacent to another junc-
tion node inside the baseline have to be labeled as inside
the baseline even though it may not be physically located
between basetop,basebottom. This rule should be applied
recursively. In Fig. 2-d J5, Js will both be labeled as inside

ok~ owbd

since they are adjacent to .J; although they are not actually
located inside the baseline.

Rule 2 : If a path node is adjacent to a junction node that
has been labeled as inside, this path node is to be labeled as
connected to the baseline. This rule is illustrated in Fig. 2-
d. P, P, and P; are labeled as above and connected even
though they are not actually connected with the baseline.
This rule is not recursive but must be applied after applying
rule 1.

By a script we mean a subgraph that is a unit for recogni-
tion. A script may be a complete character, it may be a part
of a character or it may be more than one character (as in
ligatures). To find subgraphs corresponding to scripts, first
the c-LAG is traversed starting from any path node that is
above the baseline until we reach a junction node that is la-
beled as inside the baseline. The traversed nodes constitute
a subgraph that we call a script. The dimension of a script
is the maximum dimension of its nodes. As we can see
from the stopping criteria in this graph traversal algorithm,
a Junction node labeled as inside the baseline is the break
point between scripts. This criteria matches with the ba-
sic characteristic of connecting characters in Arabic writing
where characters are connected in the baseline area. Such
nodes will not be considered as part of any of the resulting
scripts. The process of c-LAG traversal is continued until
all scripts are found.

Another rule that is applied when extracting scripts from
the c-LAG is: a loop must be contained inside a script
and should not be segmented between different scripts. So,
given a loop, all its nodes are considered to be a part of a
single script. The c-LAG is traversed starting from its path
nodes until a break point is reached, as mentioned above, to
find the entire script.

The resulting scripts are classified to two sets: basic
scripts B and non-basic scripts V. A script is called a ba-
sic script if the whole script or a part of it is located above
the baseline. The majority of Arabic characters contains a
part of them above the baseline and so the basic scripts are
considered as the seeds of the characters. Any other script
that does not satisfy the above condition is considered to be
a non-basic script. Every non-basic script is either a part
of a character below the baseline that has another part of it
above the baseline or a character that is located completely
below the detected baseline. In the first case, we have to
associate the non-basic script with its corresponding basic
one to form a new, larger basic script. The process goes
like that: for every non-basic script, n, the basic script set,
B, is searched to find the best one to associate n with. If
no such basic script is found, n itself is considered to be a
basic script and it is included in B instead of N. After this
association process, we only have one set of script each of
them is a candidate to be a character. Fig. 3-a illustrates the
scripts of a given text line.

3. Script Classification

To develop a font and size independent character recog-
nition system, a set of shape features should be identified
that could describe the different alphabet symbols inde-
pendently from the font and the size. The selected set of
shape features should have discriminating capability and
also should be robust to changes in font and size. The fol-
lowing set of structural descriptors are used for feature ex-
traction:

e Strokes representing the skeleton of the script.

e Holes in the script. Some Arabic characters have one
hole while some other characters have two holes.

e Feature points: Local minimum and maximum in the
counter of the script and endpoints in the vertical di-
rection (top endpoint and bottom end point).

e Script bounding box: The location of the script bound-
ing box with respect to the baseline and its size com-
pared to the height of the text line are powerful fea-
tures. line and ends at the bottom of the text line.

These structural descriptors can be extracted by traversing
the c-LAG of each subword. Strokes representing the skele-
ton of the script can be found by analyzing path nodes of the
c-LAG [14]. Fig. 3-b illustrates a text line and the strokes,
feature points and loops of its scripts.

L . B | 1
j_giéu—_u H DBED?L lﬂ Strokes D ~

e oK1
B[00 ™ g el

a b

——

—_

0

Figure 3. (a) Top: the original text line. middle: path nodes
with rectangles representing their spatial dimension. Bottom: ex-
tracted scripts. (b) Structure Descriptors

For feature identification, we use an approach similar to
that proposed by Kahan and Pavalidis [11]. The objective
of feature identification process is to map the structural de-
scriptors representing each script into a set of binary fea-
tures. The first step in this method is to transform the origi-
nal parameters describing each shape into new ones in such
a way that similarity between shapes can be modelled by a
metric in a new parameter space. Once this is done, a binary
feature is associated with each feature defining region (clus-
ter) in the parameter space as follows: the feature will take

the value one when at least one shape lies in the associated
region in the parameter space and zero otherwise. These
“feature-defining” regions can be selected by an automatic
clustering algorithm.

The details of shape parameterization are generally dif-
ferent for each shape-type. The transformation from the
original shape space into the parameter space is performed
by evaluating the shape dimensions locally with respect to
the bounding box of the script containing this shape. The di-
agonal of the script bounding box is considered as reference
for length normalization. Also the location and dimension
of the script bounding box is considered as a shape feature
in this model.

Clustering is used to find clusters of each shape in each
parameter space. About 7000 strokes, 9000 feature points
and 500 loops are extracted from a training set of pages and
are used in clustering experiments. The result of the cluster-
ing is a set of clusters’ mean and variance. Each cluster is
approximated by a hyper-rectangular region centered at the
cluster mean. As mentioned before, each cluster (region) is
assigned a binary feature variable which is set to one when
any input shape falls within its neighborhood. As a result of
this process, each script is represented by a binary feature
vector. Statistical Bayesian classifier using binary features
[13] is used to classify the scripts. Figure 5-a illustrates a
block diagram for the whole script classification process.

3.1. Dot and Diacritic Classifier

Dots and diacritics play a very important role in reading
Arabic text. Scripts recognized in the previous phase can-
not be transformed into real characters without associating
them with dots and diacritics above and below them. Al-
though diacritics have no effect on the recognition decision,
they must be treated carefully in order not to be misclassi-
fied as dot combinations. Recognizing diacritics themselves
is important in understanding the text. A word in Arabic
can have different meaning with different diacritics above
or below its characters.

¢ - W b8 0~z ane 3

Figure 4. Recognized Dot a Diacritic Classes

The appearance of dots and diacritics does not vary sig-
nificantly with font but their appearances are affected very
much with printing quality and sampling rates since their
size are relatively small. We used a template matching tech-
nigue to recognize 14 different classes of dots, diacritics and
their combinations. First the patterns are normalized to fit
into 8x8 gray-scale grid. The resulting patterns are clas-
sified using minimum Euclidean distance classifier where
class prototype are learned using a sample training set of
about 800 dots and diacritics from different font and size

environments. Figure 4 shows the 14 classes that can be
recognized by the system. Figure 5-b illustrates a block di-
agram for dot and diacritic classifier.

3.2. Dot Association and Character Recognition

Each classified dot and diacritic pattern is associated
with one of the classified scripts based on the topology and
linguistic rules. For example, some classes of scripts do
not have dots above or below them. Others can only have
dots above and/or below them. Since dots and diacritics are
sensitive to noise, the best two dot classifier matchings are
considered for the association. A classified script associ-
ated with its classified dot combination is called a “charac-
ter candidate”.

The mapping from scripts associated with dots (charac-
ter candidates) to actual Arabic character is not one to one
since a script may be a part of a character, a complete char-
acter or more than one character. A regular grammar is used
in this phase to identify Arabic characters from the stream
of character candidates resulting from the association phase.
The input to this phase is a string of character candidates.
This grammar is a regular grammar, i.e., it can be repre-
sented as a finite state automaton and back tracking is not
required in parsing character candidate string. Fig 5-c illus-
trates an example of a parse tree for a word. The number of
script classes that are recognized by the system is 38 basic
script besides 11 ligatures. After dot association process,
33 character candidates can be identified. The details of the
grammar used as well as dot and diacritic association rules
can be found in [9]

4. Experimental Results

Experiments have been performed to evaluate the sug-
gested algorithms. In one of the experiments, two sets of
pages were used. The first set included 31 pages which
did not contain any diacritics while the second set included
15 pages which contained diacritic signs extensively. All
the pages were taken from 5 Arabic magazines and con-
tains some Naskh fonts (more than 10 fonts) that are reg-
ularly used in printed Arabic documents with size varying
from 10 to 16 point size. Non of these pages were used in
the training process. All the pages were scanned at resolu-
tion 300 dot per inch. The first set gave an average correct
script classification rate of 95.2% while the second set gave
94.1%. The performance of dot and diacritic classifier was
also tested. Two classifiers were tested: The first one used
only for the basic dot combination classification (4 classes:
single dot, double dots, triple dots, hamza). The other clas-
sifier is used for all the 14 dots and diacritics classes as
shown in figure 4. The first set of pages gave an average
correct dot classification rate of 97.3% in the 4-class case,
and 94.7% in the 14-class case while the second set, which
contained diacritics, gave 91.7% using the 14-class classi-

Scripts S¢Sy S: 5.8, 8,5,5, 8,8, 8,
Associated Dots 9
c
b

LSl

Character Candidates

b

Figure 5. (a) Block Diagram For Script Classifier. (b) Block Diagram For Dot and Diacritic Classification and Association. (c) A word and its

parse tree

fier. The final recognition rates were obtained using the 4-
class dot classifier for the first set and the 14-class classifier
for the second set. The average correct recognition rates
were 94.8% for the first set and 88.9% for the second set
with average substitution rate of 2.7% and 4.1% for the two
sets respectively.

Another experiment was performed to evaluate the algo-
rithms on pages printed using laser printers. For this ex-
periment a data set of pages were prepared using an Arabic
word processor using some of the fonts that are available
commercially. The pages were printed using a laser printer
with resolution 300 dpi (lower quality printing than the pre-
vious case but with the same scanning resolution.) The av-
erage correct script classification rate was 94.6% and the
average correct dot classification rate was 96.6%. The final
correct recognition rate was 93.4% with substitution rate of
2.9%.

5. Conclusion

In this paper, a graph-based approach was presented for
segmentation and recognition of Arabic text. A novel al-
gorithm for segmentation was presented based on the topo-
logical relation between the text, represented by a line adja-
cency graphs, and the baseline. The resulting segments are
classified using font independent structural features that are
extracted from the same graph. Another classifier is used
for dots and diacritic signs. A regular grammar is used in
the final character recognition phase. The system was tested
on different groups of pages with different properties. The
testing data set contained many Naskh fonts that is used reg-
ularly in Arabic printing.

The main cause of errors in script classification was
touching characters in irregular positions due to poor qual-
ity printing and scanning. We can distinguish between four
different types of touching that occur in Arabic text: 1) Dot
touching, 2) Ascender touching: character touching above
the baseline, 3) Descender touching: touching below base-
line and 4) Baseline touching. The algorithm was robust
in case of baseline touching while other types of touching

caused failure for the segmentation. Future work includes
extending the segmentation algorithm to handel these types
of touching errors.

References

[1] B. Al-Badr and R. M. Haralick. Segmentation-free word

recognition with application to arabic. In ?CDA_R, 1995.
[2] H. Al-Yousefiand S. Udpa. Recognition of arabic characters.

IEEE PAMI, 14(52:853—857, Aug. 1992, .
[3] H. Almuallim and S. Yamaguchi. A method of recognition of

arabic cursive handwiting. PAMI, 9(5):715-722, Sept. 1987.
[4] A. Amin. Arabic character recognition. In H. Bunke and

P. Wang, editors, Handbook of Character Recognition and
Document Image Analysis, pages 397-420. World Sceintific
Publishing CompanK,/I 1997.] .

[5]1 A. Amin and J. F. Mari. Machine recognition and correc-
tion of printed arabic text. IEEE Trans. Syst. Man Cybern.,

19(5):1300-1306, Sept. 1989.)
[6] I. Bazzi, R. Schwartz, and J. Makhoul. An omnifont open-

vocabulary ocr system for english and arabic. IEEE PAMI,

21%3):495—504, June 1999.)
S. S. El-Dabi, R. Ramsis, and A. Kamel. Arabic character

recognition system: A statistical approach for recognizing
cursive typewritten text. Pattern Recognition, 23(5):485-495,

[7]

1990.
[8] T. El-Sheikh and R. Guindi. Computer recognition of arabic

cursive script. Pattern Recognition, 21(4%:293—302, 1988.
[9] A. Elgammal. Bilingual (arabic/english) document image

analysis system with font independent arabic text recog-
nition. Master’s thesis, Computer Science Department -

Alexandria University, 1996. . . .
[10] A. M. Emam. Designing a reading machine for the blind.

PhD thesis, University of Alexandria, 1995.)
[11] S. Kahan and T. Pavalidis. On the recognition of printed

characters of any font and size. PAMI, 9(2):274-288, 3 1987.
[12] B. A. Najoua and E. Noureddine. A robust approach for

arabic printed character segmentation. In ICDAR, pages 865—

868, 1995. o
[13] R. O.Duda and P. E. Hart. Patter Classification and Scene

Analysis, Wiley-interscience, 1973.

[14] T. Pavalidis. A vectorizor and feature extractor for document
recognition. Comput. Vision, Graphics, and Image Process-
ing, 35:111-127, 1986. .

[15] K. Romeo-Pakker, H. Miled, and Y.Lecourtier. A new ap-
proach for latin/arabic character segmentation. In ICDAR,
pages 874-877, 1995. .)

[16] A. Shoukry. A sequential algorithm for the segmentation of

typewritten arabic digitized text. The Arabian Journal for
Science and Engineering, 16(4b):543-556, Oct. 1990.

