The Recursion Theorem and Gödel’s Incompleteness Theorem

In these notes, we show how to use the Recursion Theorem to prove the stronger version of Gödel’s Incompleteness Theorem.

Let M_1 be the Turing machine that takes as input the pair (M, j) and performs the following operations:

- Let $\psi = \neg \exists v \text{VALCOMP}_{M,j}(v)$.

- Search for a proof in PA of ψ. If such a proof is found, halt and output “1”.

Remark: Note that M_1 halts on input (M, j) if and only if there is a proof in Peano Arithmetic of the statement that means “M does not halt on input j”.

Now let σ be the function that takes i as input, and outputs the code for M_1, with “i” hardwired in for the variable M, and with “i” also hardwired in for the variable j. That is, σ takes i as input produces as output a program (i.e., an index for a Turing machine) that performs the following operations:

- Let $\psi = \neg \exists v \text{VALCOMP}_{i,i}(v)$.

- Search for a proof in PA of ψ. If such a proof is found, halt and output “1”.

Note that this program does not look at its input. That is, either $M_\sigma(i)$ halts for every input x, or it runs forever for every input x.

Now let i be an index (guaranteed to exist, by the Recursion Theorem) such that $\phi_i = \phi_{\sigma(i)}$. Is ϕ_i defined?

Note that $\phi_i(x)$ is defined only if M_i halts on input x, which happens if and only if $M_{\sigma(i)}$ halts (and this does not depend on x). Looking at the program $\sigma(i)$, $M_{\sigma(i)}$ halts if and only if there is a proof in PA of the statement $\neg \exists v \text{VALCOMP}_{i,i}(v)$. If PA is consistent, this happens only if machine M_i does not halt on input i. That is, we have concluded that if $\phi_i(x)$ is defined for some x, then $\phi_i(x)$ is defined for every x, which in turn implies that $\phi_i(i)$ is not defined (if PA is consistent). This is a contradiction (if PA is consistent).

Thus we must conclude that M_i does not halt for any x, including $x = i$. Thus $\neg \exists v \text{VALCOMP}_{i,i}(v)$ is true. But since M_i and $M_{\sigma(i)}$ compute the same partial function, this means that $M_{\sigma(i)}$ does not halt, which (looking at the code for $M_{\sigma(i)}$) means that there is not a proof in PA of the sentence $\neg \exists v \text{VALCOMP}_{i,i}(v)$.

That is, assuming PA is consistent, $\neg \exists v \text{VALCOMP}_{i,i}(v)$ is a true statement that is not provable in PA. And since the proof of the Recursion Theorem allows us to construct this value “i”, we have a completely explicit example of such a sentence.