Efficient depth reduction for composites is possible

Periklis Papakonstantinou
Rutgers Business School

1/27/2016 at 11:00 am
Core A (Room 301)

Abstract

In 1989 it was shown by Allender and Hertrampf that every circuit of depth \(d \) and gates AND, OR, NOT, and MOD\(p \) can be reduced to a depth 3 circuit of size \(2^{(\log n)^O(d)} \). The question about MOD\(m \) gates was handled a year later by Yao, and subsequently by Beigel and Tarui, with a triple-exponentially size bound, i.e. \(2^{((\log n)^2 O(d))} \).

We resolve the question for composites obtaining the same asymptotic result as Allender-Hertrampf.

Depth reduction is a fundamental question on its own. It also has significant implications. For example, one of its immediate consequences is an exponential depth-improvement in Williams’ program for separations of NEXP.

This is joint work with Shiteng Chen.