Skip to content Skip to navigation
Faculty Candidate Talk
2/23/2018 10:30 am
CoRE 301

Neural Architectures for Prediction and Planning

Mikael Henaff, New York University

Faculty Host: Gerard de Melo


Learning to predict how an environment will evolve and the consequences of one's actions is an important ability for autonomous agents, and can enable planning with relatively few interactions with the environment which may be slow or costly. However, learning an accurate predictive model is made difficult due to several challenges, such as partial observability, long-term dependencies and inherent uncertainty in the environment. In this talk, I will present my work on architectures designed to address some of these challenges, as well as work focused on better understanding recurrent network memory over long timescales. I will then present some recent work applying learned environment models for planning, using a simple gradient-based approach which can be used in both discrete and continuous action spaces. This approach is able to match or outperform model-free methods while requiring fewer environment interactions and still enabling real-time performance.


Mikael Henaff is a fifth-year Ph.D student in computer science at New York University, advised by Yann LeCun. His current research interests are centered around learning predictive models of the environment, model-based reinforcement learning and memory-augmented neural networks. Prior to his Ph.D studies, he worked at the NYU Langone Medical Center and has interned several times at Facebook AI Research. He holds a B.S in mathematics from the University of Texas at Austin and an M.S in mathematics from New York University.