Syndrome decoding of Reed-Muller codes and tensor decomposition over finite fields

Aditya Potukuchi
Rutgers University

11/15/2017 at 11:00 am
CoRE A 301

Abstract

In this talk, we will look at decoding Reed-Muller codes beyond their minimum distance when the errors are random (i.e., in the binary symmetric channel). A recent beautiful result of Saptharishi, Shpilka and Volk showed that for binary Reed-Muller codes of length $n$ and degree $n - O(1)$, one can correct $\text{polylog}(n)$ random errors in $\text{poly}(n)$ time (which is well beyond the worst-case error tolerance of $O(1)$). We will see two efficient algorithms as well as a different proof of the same result, where the decoding is done given the $\text{polylog}(n)$-bit long syndrome vector of the corrupted codeword: 1) The first is via. a connection to the well-studied ‘tensor decomposition problem’. 2) The second via. a reduction to finding all common roots of a space of low degree polynomials, which is also of independent interest.

Joint work with Swastik Kopparty

Organizer(s): Rutgers/DIMACS Theory of Computing