Towards Active and Interactive Visual Learning

Yan Zhu
Dept. of Computer Science
9/29/2017 at 11:00 am
CBIM 22

Abstract
Modern computer vision models mostly rely on massive human annotated dataset for supervised training. Models are typically learned from the supervision of a static dataset with a passive manner.

This work explores three new settings when huge dataset supervisions are scarce and novel learning paradigms beyond passive training are proposed. First, we addressed the active learning for histopathological images diagonal systems, and proposed an active selection algorithm via constrained submodular function maximization, the result shows the active selected training set is compact and outperform state of the art selection algorithms. Second, we proposed a novel semantic amodal segmentation task in which occluded object segmentation masks are predicted, and synthetic hard occluded examples are actively generated for training. Third, we addressed learning a visual grounding task via natural language interactions, in which two agents are trained to interact via interpretable dialogue to achieve a common goal.

Defense Committee: Prof. Dimitris Metaxas (Chair), Prof. Kostas Bekris, Prof. Konstantinos Michmizos, Prof. Dimitris Samaras (Stony Brook University)