Practical formal techniques and tools for developing LLVM’s
peephole optimizations

David Menendez
Dept. of Computer Science

10/3/2017 at 12:30 pm
CoRE A (301)

Abstract

Peephole optimizations are local transformations which perform algebraic
simplification to improve performance, reduce code size, or canonicalize code
before it is presented to other stages of a compiler. They are a common
source of compiler errors. This dissertation presents Alive, a domain-specific
language for specifying peephole optimizations in LLVM, and the Alive-NJ
toolkit, which automatically checks the correctness of integer- and floating
point-based optimizations. The latter are particularly challenging, due to
ambiguities in LLVM’s semantics. The correctness conditions for Alive opti-
mizations are encoded as constraints, which are checked using a satisfiability
modulo theories (SMT) solver. Alive optimizations can also be automatically
translated into C++ code suitable for inclusion in LLVM. Incorrect optimiza-
tions can frequently be corrected by strengthening their preconditions. The
dissertation discusses Alive-Infer, a data-driven method for synthesizing pre-
conditions which make an optimization correct. It addresses the challenges of
generating examples in a static setting, learning new predicates through enu-
meration, and assembling these predicates into a precondition. Finally, the
high-level view of LLVM’s peephole optimizer provided by Alive allows for
analysis of the optimizer as whole. In particular, the Alive-Loops toolkit an-
alyzes sequences of transformations, detects whether they can cause compiler
non-termination during optimization, and generates concrete input programs
demonstrating this non-termination.

Defense Committee: Prof. Santosh Nagarakatte (Chair), Prof. Ulrich Kremer, Prof. Thu Nguyen, Prof.
Rajeev Alur (University of Pennsylvania)



