On Polynomial Approximations Over Z/2kZ

Abhishek Bhrushundi
Dept. of Computer Science

2/28/2017 at 03:15 pm
CoRE A (301)

Abstract

We study approximation of Boolean functions by low-degree polynomials over the ring $\mathrm{Z} / 2 \mathrm{kZ}$. More precisely, given a Boolean function $\mathrm{F}:\{0,1\} \mathrm{n}$ $\{0,1\}$, define its k-lift to be $\mathrm{F}:\{0,1\} \mathrm{n}\{0,2 \mathrm{k}-1\}$ by $\mathrm{Fk}(\mathrm{x})=2 \mathrm{k}-\mathrm{F}(\mathrm{x}) \bmod 2 \mathrm{k} \$$. We consider the fractional agreement (which we refer to as $\mathrm{d}, \mathrm{k}(\mathrm{F})$) of $\mathrm{Fk}(\mathrm{x})$ with degree d polynomials from $\mathrm{Z} / 2 \mathrm{kZ}[\mathrm{x} 1, \ldots, \mathrm{xn}]$.

Our results are the following: 1. Increasing k can help: We observe that as k increases, $\mathrm{d}, \mathrm{k}(\mathrm{F})$ cannot decrease. We give two kinds of examples where $\mathrm{d}, \mathrm{k}(\mathrm{F})$ actually increases. The first is an infinite family of functions F such that $2 \mathrm{~d}, 2(\mathrm{~F}) 3 \mathrm{~d}-1,1(\mathrm{~F})$ (1). The second is an infinite family of functions F such that $\mathrm{d}, 1(\mathrm{~F}) \quad 1 / 2+\mathrm{o}(1)$ - as small as possible - but d, $3(\mathrm{~F}) \quad 1 / 2+(1)$. 2. Increasing k doesn't always help: Adapting a proof of Green[Comput. Complexity, $9(1): 16-38,2000$], we show that irrespective of the value of k, the Majority function Majn satisfies d,k(Majn) $1 / 2+\mathrm{O}(\mathrm{d} / \mathrm{n})$. In other words, polynomials over $\mathrm{Z} / 2 \mathrm{kZ}$ for large k do not approximate the majority function any better than polynomials over $\mathrm{Z} / 2 \mathrm{Z}$.

We observe that the model we study subsumes the model of non-classical polynomials in the sense that proving bounds in our model implies bounds on the agreement of non-classical polynomials with Boolean functions. In particular, our results answer questions raised by Bhowmick and Lovett [In Proc. 30th Computational Complexity Conf., pages 72-87, 2015] that ask whether non-classical polynomials approximate Boolean functions whether non-classical polynomials approximate Boolean functions better than

